-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolo_video.py
405 lines (363 loc) · 14 KB
/
yolo_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# USAGE
# python yolo_video.py --input videos/airport.mp4 --output output/airport_output.avi --yolo yolo-coco
# import the necessary packages
import numpy as np
import argparse
import imutils
import time
import cv2
import os
import logging
def initializeTracker(tracker_type,minor_ver):
if int(minor_ver) < 3:
tracker = cv2.Tracker_create(tracker_type)
else:
if tracker_type == 'BOOSTING':
tracker = cv2.TrackerBoosting_create()
if tracker_type == 'MIL':
tracker = cv2.TrackerMIL_create()
if tracker_type == 'KCF':
tracker = cv2.TrackerKCF_create()
if tracker_type == 'TLD':
tracker = cv2.TrackerTLD_create()
if tracker_type == 'MEDIANFLOW':
tracker = cv2.TrackerMedianFlow_create()
if tracker_type == 'GOTURN':
tracker = cv2.TrackerGOTURN_create()
if tracker_type == 'MOSSE':
tracker = cv2.TrackerMOSSE_create()
if tracker_type == "CSRT":
tracker = cv2.TrackerCSRT_create()
return tracker
def get_IOU(bbox1, bbox2):
if bbox1[0] > bbox2[0]+bbox2[2] or bbox2[0] > bbox1[0]+bbox1[2]:
return 0
if bbox1[1] > bbox2[1]+bbox2[3] or bbox2[1] > bbox1[1]+bbox1[3]:
return 0
minx = min(bbox1[0]+bbox1[2],bbox2[0]+bbox2[2])
miny = min(bbox1[1]+bbox1[3],bbox2[1]+bbox2[3])
maxx = max(bbox1[0],bbox2[0])
maxy = max(bbox1[1],bbox2[1])
intersection = (maxx-minx)*(maxy-miny)
return intersection/(bbox1[2]*bbox1[3] + bbox2[2]*bbox2[3] - intersection)
def get_IO1(bbox1, bbox2):
if bbox1[0] > bbox2[0]+bbox2[2] or bbox2[0] > bbox1[0]+bbox1[2]:
return 0
if bbox1[1] > bbox2[1]+bbox2[3] or bbox2[1] > bbox1[1]+bbox1[3]:
return 0
minx = min(bbox1[0]+bbox1[2],bbox2[0]+bbox2[2])
miny = min(bbox1[1]+bbox1[3],bbox2[1]+bbox2[3])
maxx = max(bbox1[0],bbox2[0])
maxy = max(bbox1[1],bbox2[1])
intersection = (maxx-minx)*(maxy-miny)
return intersection/(bbox1[2]*bbox1[3])
def is_valid_multi_IOU(bboxs1, bboxs2, threshold):
for bbox1 in bboxs1:
max_iou = 0
for bbox2 in bboxs2:
# max_iou = max(max_iou,get_IOU(bbox1,bbox2))
max_iou = max(max_iou,get_IO1(bbox1,bbox2))
if max_iou <= threshold:
return False
return True
(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--input", required=True,
help="path to input video")
ap.add_argument("-o", "--output", required=True,
help="path to output video")
ap.add_argument("-y", "--yolo", required=True,
help="base path to YOLO directory")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
ap.add_argument("-t", "--threshold", type=float, default=0.3,
help="threshold when applyong non-maxima suppression")
args = vars(ap.parse_args())
# load the COCO class labels our YOLO model was trained on
labelsPath = os.path.sep.join([args["yolo"], "coco.names"])
LABELS = open(labelsPath).read().strip().split("\n")
# initialize a list of colors to represent each possible class label
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),
dtype="uint8")
# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"])
configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"])
#Create and configure logger
logging.basicConfig(filename="redaction.log",
format='%(asctime)s %(message)s',
filemode='w')
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
# load our YOLO object detector trained on COCO dataset (80 classes)
# and determine only the *output* layer names that we need from YOLO
logger.info("[INFO] loading YOLO from disk...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# initialize the video stream, pointer to output video file, and
# frame dimensions
vs = cv2.VideoCapture(args["input"])
writer = None
(W, H) = (None, None)
# try to determine the total number of frames in the video file
try:
prop = cv2.cv.CV_CAP_PROP_FRAME_COUNT if imutils.is_cv2() \
else cv2.CAP_PROP_FRAME_COUNT
total = int(vs.get(prop))
logger.info("[INFO] {} total frames in video".format(total))
# an error occurred while trying to determine the total
# number of frames in the video file
except:
logger.info("[INFO] could not determine # of frames in video")
logger.info("[INFO] no approx. completion time can be provided")
total = -1
tracker_types = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN', 'MOSSE', 'CSRT']
tracker_type = tracker_types[7]
# tracker = initializeTracker(tracker_type,minor_ver)
multi_tracker = cv2.MultiTracker_create()
frame_number = 0
ok = False
initialized = False
frames = []
iou_mismatch_idx = []
# loop over frames from the video file stream
while True:
frame_number += 1
# read the next frame from the file
(grabbed, frame) = vs.read()
# if the frame was not grabbed, then we have reached the end
# of the stream
if not grabbed:
break
# if the frame dimensions are empty, grab them
if W is None or H is None:
(H, W) = frame.shape[:2]
if frame_number%5 == 0 or not ok or not initialized:
# construct a blob from the input frame and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes
# and associated probabilities
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416),
swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()
# initialize our lists of detected bounding boxes, confidences,
# and class IDs, respectively
boxes = []
confidences = []
classIDs = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability)
# of the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > args["confidence"]:
# scale the bounding box coordinates back relative to
# the size of the image, keeping in mind that YOLO
# actually returns the center (x, y)-coordinates of
# the bounding box followed by the boxes' width and
# height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top
# and and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates,
# confidences, and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# apply non-maxima suppression to suppress weak, overlapping
# bounding boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"],
args["threshold"])
face_boxes = []
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
x = max(0,x)
y = max(0,y)
text = "{}: {:.4f}".format(LABELS[classIDs[i]],
confidences[i])
if 'face' in text.lower():
# draw a bounding box rectangle and label on the frame
sub_face = frame[y:y+h, x:x+w]
# apply a gaussian blur on this new recangle image
sub_face = cv2.GaussianBlur(sub_face,(15, 15), 30)
# merge this blurry rectangle to our final image
frame[y:y+sub_face.shape[0], x:x+sub_face.shape[1]] = sub_face
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, text, (x, y - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
xt = max(x - 0.3*w,0)
yt = max(y - 0.3*h,0)
wt = 1.6*w
ht = 1.6*h
if not initialized:
multi_tracker.add(initializeTracker(tracker_type,minor_ver),frame,(xt,yt,wt,ht))
# tracker.init(frame, (xt,yt,wt,ht))
else:
face_boxes.append(boxes[i])
if initialized:
ok, bboxs = multi_tracker.update(frame)
if not is_valid_multi_IOU(face_boxes,bboxs,0.95):
logger.info("IOU Failed: untracked faces found")
iou_mismatch_idx.append(frame_number-1)
multi_tracker = cv2.MultiTracker_create()
for fb in face_boxes:
fb[0] = max(fb[0] - 0.3*fb[2],0)
fb[1] = max(fb[1] - 0.3*fb[3],0)
fb[2] = 1.6*fb[2]
fb[3] = 1.6*fb[3]
multi_tracker.add(initializeTracker(tracker_type,minor_ver),frame,(fb[0],fb[1],fb[2],fb[3]))
# ok = False
p1 = (int(fb[0]), int(fb[1]))
p2 = (int(fb[0] + fb[2]), int(fb[1] + fb[3]))
cv2.rectangle(frame, p1, p2, (0,255,0), 2, 1)
for bbox in bboxs:
p1 = (int(max(0,bbox[0])), int(max(0,bbox[1])))
p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
cv2.rectangle(frame, p1, p2, (0,0,255), 2, 1)
else:
for bbox in bboxs:
p1 = (int(max(0,bbox[0])), int(max(0,bbox[1])))
p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1)
initialized = True
# if ok:
# # Tracking success
# p1 = (int(bbox[0]), int(bbox[1]))
# p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
# sub_face = frame[p1[1]:p2[1], p1[0]:p2[0]]
# # apply a gaussian blur on this new recangle image
# sub_face = cv2.GaussianBlur(sub_face,(15, 15), 30)
# # merge this blurry rectangle to our final image
# frame[p1[1]:p1[1]+sub_face.shape[0], p1[0]:p1[0]+sub_face.shape[1]] = sub_face
# cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1)
# else :
# # Tracking failure
# cv2.putText(frame, "Tracking failure detected", (100,80), cv2.FONT_HERSHEY_SIMPLEX, 0.75,(0,0,255),2)
else:
ok, bboxs = multi_tracker.update(frame)
if ok:
# Tracking success
for bbox in bboxs:
p1 = (int(max(0,bbox[0])), int(max(0,bbox[1])))
p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
# logger.info(p1,p2,frame.shape)
sub_face = frame[p1[1]:p2[1], p1[0]:p2[0]]
# apply a gaussian blur on this new recangle image
sub_face = cv2.GaussianBlur(sub_face,(15, 15), 30)
# merge this blurry rectangle to our final image
frame[p1[1]:p1[1]+sub_face.shape[0], p1[0]:p1[0]+sub_face.shape[1]] = sub_face
cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1)
frames.append(frame)
logger.info("Processing frame number:%d",frame_number)
logger.info("Processing IOU mismatch cases")
e_index = 0
for imi in iou_mismatch_idx:
s_index = max(0,imi-4,e_index)
e_index = max(imi,s_index+1)
for ind in range(s_index,e_index):
logger.info("Processing frame number:%d",ind)
frame = frames[ind]
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416),
swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()
# initialize our lists of detected bounding boxes, confidences,
# and class IDs, respectively
boxes = []
confidences = []
classIDs = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability)
# of the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > args["confidence"]:
# scale the bounding box coordinates back relative to
# the size of the image, keeping in mind that YOLO
# actually returns the center (x, y)-coordinates of
# the bounding box followed by the boxes' width and
# height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top
# and and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates,
# confidences, and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# apply non-maxima suppression to suppress weak, overlapping
# bounding boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"],
args["threshold"])
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
x = max(0,x)
y = max(0,y)
text = "{}: {:.4f}".format(LABELS[classIDs[i]],
confidences[i])
if 'face' in text.lower():
# draw a bounding box rectangle and label on the frame
sub_face = frame[y:y+h, x:x+w]
# apply a gaussian blur on this new recangle image
sub_face = cv2.GaussianBlur(sub_face,(15, 15), 30)
# merge this blurry rectangle to our final image
frame[y:y+sub_face.shape[0], x:x+sub_face.shape[1]] = sub_face
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(frame, (x, y), (x + w, y + h), (255,255,255), 2)
cv2.putText(frame, text, (x, y - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
frames[ind] = frame
for frame in frames:
# check if the video writer is None
if writer is None:
# initialize our video writer
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter(args["output"], fourcc, 30,
(frame.shape[1], frame.shape[0]), True)
# some information on processing single frame
if total > 0:
elap = (end - start)
# logger.info("[INFO] single frame took {:.4f} seconds".format(elap))
# logger.info("[INFO] estimated total time to finish: {:.4f}".format(
# elap * total))
# write the output frame to disk
writer.write(frame)
# release the file pointers
logger.info("[INFO] cleaning up...")
writer.release()
vs.release()