-
Notifications
You must be signed in to change notification settings - Fork 0
/
vilbert_utils.py
347 lines (285 loc) · 12.2 KB
/
vilbert_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import sys
import os
import torch
import yaml
sys.path.append('vilbert-multi-task/')
from easydict import EasyDict as edict
from pytorch_transformers.tokenization_bert import BertTokenizer
from vilbert.datasets import ConceptCapLoaderTrain, ConceptCapLoaderVal
from vilbert.vilbert import VILBertForVLTasks, BertConfig, BertForMultiModalPreTraining
from vilbert.task_utils import LoadDatasetEval
import numpy as np
import matplotlib.pyplot as plt
import PIL
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.layers import nms
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.structures.image_list import to_image_list
from maskrcnn_benchmark.utils.model_serialization import load_state_dict
from PIL import Image
import cv2
import argparse
import glob
from types import SimpleNamespace
import pdb
import torchvision
class FeatureExtractor:
MAX_SIZE = 1333
MIN_SIZE = 800
def __init__(self):
self.args = self.get_parser()
self.detection_model = self._build_detection_model()
def get_parser(self):
parser = SimpleNamespace(model_file= 'vilbert-multi-task/data/detectron_model.pth',
config_file='vilbert-multi-task/data/detectron_config.yaml',
batch_size=1,
num_features=100,
feature_name="fc6",
confidence_threshold=0,
background=False,
partition=0)
return parser
def _build_detection_model(self):
cfg.merge_from_file(self.args.config_file)
cfg.freeze()
model = build_detection_model(cfg)
checkpoint = torch.load(self.args.model_file, map_location=torch.device("cpu"))
load_state_dict(model, checkpoint.pop("model"))
model.to("cuda")
model.eval()
return model
def _image_transform_tensor(self, im):
# IndexError: too many indices for array, grayscale images
print(im.shape)
if len(im.shape) < 3:
im = torch.repeat(im[:, :, np.newaxis], 3, axis=2)
im = torch.flip(im, [2])
im -= torch.tensor([102.9801, 115.9465, 122.7717]).to("cuda")
im_shape = torch.tensor(im.shape)
im_height = im_shape[0]
im_width = im_shape[1]
im_size_min = torch.min(im_shape[0:2])
im_size_max = torch.max(im_shape[0:2])
# Scale based on minimum size
im_scale = self.MIN_SIZE / im_size_min
# Prevent the biggest axis from being more than max_size
# If bigger, scale it down
if int(im_scale * im_size_max) > self.MAX_SIZE:
im_scale = self.MAX_SIZE / im_size_max
# takes size as (h, w)
resizer = torchvision.transforms.Resize((int(im_scale * im.shape[0]), int(im_scale * im.shape[1])))
# expects (c, h, w)
img = resizer(im.permute(2, 0, 1))
#im = cv2.resize(
# im, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR
#)
#img = im.permute(2, 0, 1)
im_info = {"width": im_width, "height": im_height}
return img, im_scale, im_info
def _image_transform(self, path):
img = Image.open(path)
im = np.array(img).astype(np.float32)
# IndexError: too many indices for array, grayscale images
if len(im.shape) < 3:
im = np.repeat(im[:, :, np.newaxis], 3, axis=2)
im = im[:, :, ::-1]
im -= np.array([102.9801, 115.9465, 122.7717])
im_shape = im.shape
im_height = im_shape[0]
im_width = im_shape[1]
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
# Scale based on minimum size
im_scale = self.MIN_SIZE / im_size_min
# Prevent the biggest axis from being more than max_size
# If bigger, scale it down
if np.round(im_scale * im_size_max) > self.MAX_SIZE:
im_scale = self.MAX_SIZE / im_size_max
im = cv2.resize(
im, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR
)
img = torch.from_numpy(im).permute(2, 0, 1)
im_info = {"width": im_width, "height": im_height}
return img, im_scale, im_info
def _process_feature_extraction(
self, output, im_scales, im_infos, feature_name="fc6", conf_thresh=0
):
batch_size = len(output[0]["proposals"])
n_boxes_per_image = [len(boxes) for boxes in output[0]["proposals"]]
score_list = output[0]["scores"].split(n_boxes_per_image)
score_list = [torch.nn.functional.softmax(x, -1) for x in score_list]
feats = output[0][feature_name].split(n_boxes_per_image)
cur_device = score_list[0].device
feat_list = []
info_list = []
for i in range(batch_size):
dets = output[0]["proposals"][i].bbox / im_scales[i]
scores = score_list[i]
max_conf = torch.zeros((scores.shape[0])).to(cur_device)
conf_thresh_tensor = torch.full_like(max_conf, conf_thresh)
start_index = 1
# Column 0 of the scores matrix is for the background class
if self.args.background:
start_index = 0
for cls_ind in range(start_index, scores.shape[1]):
cls_scores = scores[:, cls_ind]
keep = nms(dets, cls_scores, 0.5)
max_conf[keep] = torch.where(
# Better than max one till now and minimally greater than conf_thresh
(cls_scores[keep] > max_conf[keep])
& (cls_scores[keep] > conf_thresh_tensor[keep]),
cls_scores[keep],
max_conf[keep],
)
sorted_scores, sorted_indices = torch.sort(max_conf, descending=True)
num_boxes = (sorted_scores[: self.args.num_features] != 0).sum()
keep_boxes = sorted_indices[: self.args.num_features]
feat_list.append(feats[i][keep_boxes])
bbox = output[0]["proposals"][i][keep_boxes].bbox / im_scales[i]
# Predict the class label using the scores
#objects = torch.argmax(scores[keep_boxes][start_index:], dim=1)
#cls_prob = torch.max(scores[keep_boxes][start_index:], dim=1)
info_list.append(
{
"bbox": bbox,
"num_boxes": num_boxes.item(),
#"objects": objects.cpu().numpy(),
"image_width": im_infos[i]["width"],
"image_height": im_infos[i]["height"],
#"cls_prob": scores[keep_boxes].cpu().numpy(),
}
)
return feat_list, info_list
def get_detectron_features(self, image_paths):
img_tensor, im_scales, im_infos = [], [], []
for image_path in image_paths:
if isinstance(image_path, torch.Tensor):
im, im_scale, im_info = self._image_transform_tensor(image_path)
else:
im, im_scale, im_info = self._image_transform(image_path)
img_tensor.append(im)
im_scales.append(im_scale)
im_infos.append(im_info)
# Image dimensions should be divisible by 32, to allow convolutions
# in detector to work
current_img_list = to_image_list(img_tensor, size_divisible=32)
current_img_list = current_img_list.to("cuda")
#with torch.no_grad():
output = self.detection_model(current_img_list)
feat_list = self._process_feature_extraction(
output,
im_scales,
im_infos,
self.args.feature_name,
self.args.confidence_threshold,
)
return feat_list
def _chunks(self, array, chunk_size):
for i in range(0, len(array), chunk_size):
yield array[i : i + chunk_size]
def _save_feature(self, file_name, feature, info):
file_base_name = os.path.basename(file_name)
file_base_name = file_base_name.split(".")[0]
info["image_id"] = file_base_name
info["features"] = feature.cpu().numpy()
file_base_name = file_base_name + ".npy"
np.save(os.path.join(self.args.output_folder, file_base_name), info)
def extract_features(self, image_path):
features, infos = self.get_detectron_features([image_path])
return features, infos
def tokenize_batch(batch, tokenizer):
return [tokenizer.convert_tokens_to_ids(sent) for sent in batch]
def untokenize_batch(batch, tokenizer):
return [tokenizer.convert_ids_to_tokens(sent) for sent in batch]
def detokenize(sent, tokenizer):
""" Roughly detokenizes (mainly undoes wordpiece) """
new_sent = []
for i, tok in enumerate(sent):
if tok.startswith("##"):
new_sent[len(new_sent) - 1] = new_sent[len(new_sent) - 1] + tok[2:]
else:
new_sent.append(tok)
return new_sent
# write arbitary string for given sentense.
import _pickle as cPickle
def prediction(
model,
question,
features,
spatials,
segment_ids,
input_mask,
image_mask,
co_attention_mask,
task_tokens
):
(
vil_prediction,
vil_prediction_gqa,
vil_logit,
vil_binary_prediction,
vil_tri_prediction,
vision_prediction,
vision_logit,
linguisic_prediction,
linguisic_logit,
attn_data_list
) = model(
question,
features,
spatials,
segment_ids,
input_mask,
image_mask,
co_attention_mask,
task_tokens,
output_all_attention_masks=True
)
return vil_prediction
def custom_prediction(model, query, task, features, infos, tokenizer):
tokens = tokenizer.encode(query)
tokens = tokenizer.add_special_tokens_single_sentence(tokens)
segment_ids = [0] * len(tokens)
input_mask = [1] * len(tokens)
max_length = 37
if len(tokens) < max_length:
# Note here we pad in front of the sentence
padding = [0] * (max_length - len(tokens))
tokens = tokens + padding
input_mask += padding
segment_ids += padding
text = torch.from_numpy(np.array(tokens)).cuda().unsqueeze(0)
input_mask = torch.from_numpy(np.array(input_mask)).cuda().unsqueeze(0)
segment_ids = torch.from_numpy(np.array(segment_ids)).cuda().unsqueeze(0)
task = torch.from_numpy(np.array(task)).cuda().unsqueeze(0)
num_image = len(infos)
feature_list = []
image_location_list = []
image_mask_list = []
for i in range(num_image):
image_w = infos[i]['image_width']
image_h = infos[i]['image_height']
feature = features[i]
num_boxes = feature.shape[0]
g_feat = torch.sum(feature, dim=0) / num_boxes
num_boxes = num_boxes + 1
feature = torch.cat([g_feat.view(1,-1), feature], dim=0)
boxes = infos[i]['bbox']
image_location = torch.zeros((boxes.shape[0], 5)).float().to(boxes.device)
image_location[:,:4] = boxes
image_location[:,4] = (image_location[:,3] - image_location[:,1]) * (image_location[:,2] - image_location[:,0]) / (float(image_w) * float(image_h))
image_location[:,0] = image_location[:,0] / float(image_w)
image_location[:,1] = image_location[:,1] / float(image_h)
image_location[:,2] = image_location[:,2] / float(image_w)
image_location[:,3] = image_location[:,3] / float(image_h)
g_location = torch.tensor([0,0,1,1,1]).to(boxes.device)
image_location = torch.cat([torch.unsqueeze(g_location, 0), image_location], axis=0)
image_mask = [1] * (int(num_boxes))
feature_list.append(feature)
image_location_list.append(image_location)
image_mask_list.append(torch.tensor(image_mask).to(boxes.device))
features = torch.stack(feature_list, dim=0).float()
spatials = torch.stack(image_location_list, dim=0).float()
image_mask = torch.stack(image_mask_list, dim=0).byte()
co_attention_mask = torch.zeros((num_image, num_boxes, max_length)).cuda()
return prediction(model, text, features, spatials, segment_ids, input_mask, image_mask, co_attention_mask, task)