forked from rizwan09/EntityNamedLanguageModel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
embed_regularize.py
41 lines (33 loc) · 1.06 KB
/
embed_regularize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
import torch
from torch.autograd import Variable
def embedded_dropout(embed, words, dropout=0.1, scale=None):
if dropout:
mask = embed.weight.data.new().resize_((embed.weight.size(0), 1)).bernoulli_(1 - dropout).expand_as(embed.weight) / (1 - dropout)
mask = Variable(mask)
masked_embed_weight = mask * embed.weight
else:
masked_embed_weight = embed.weight
if scale:
masked_embed_weight = scale.expand_as(masked_embed_weight) * masked_embed_weight
padding_idx = embed.padding_idx
if padding_idx is None:
padding_idx = -1
X = embed._backend.Embedding.apply(words, masked_embed_weight,
padding_idx, embed.max_norm, embed.norm_type,
embed.scale_grad_by_freq, embed.sparse
)
return X
if __name__ == '__main__':
V = 50
h = 4
bptt = 10
batch_size = 2
embed = torch.nn.Embedding(V, h)
words = np.random.random_integers(low=0, high=V-1, size=(batch_size, bptt))
words = torch.LongTensor(words)
words = Variable(words)
origX = embed(words)
X = embedded_dropout(embed, words)
print(origX)
print(X)