diff --git a/_toc.yml b/_toc.yml
index 005b21c..b24ae3a 100644
--- a/_toc.yml
+++ b/_toc.yml
@@ -7,3 +7,6 @@ parts:
- caption: Radar Data with Py-ART
chapters:
- glob: notebooks/pyart/*
+ - caption: Xarray
+ chapters:
+ - glob: notebooks/xarray/*
diff --git a/environment.yml b/environment.yml
index 94bb0c0..126a442 100644
--- a/environment.yml
+++ b/environment.yml
@@ -1,12 +1,17 @@
name: arm-ams-short-course-2024-dev
channels:
- conda-forge
+ - pyviz
dependencies:
+ - python=3.11
- jupyter-book
- jupyterlab
- xarray
- dask
- arm_pyart
+ - holoviews
+ - hvplot
+ - datashader
- act-atmos
- matplotlib
- jupyter_server
diff --git a/notebooks/data/comble/.DS_Store b/notebooks/data/comble/.DS_Store
new file mode 100644
index 0000000..c6f40ab
Binary files /dev/null and b/notebooks/data/comble/.DS_Store differ
diff --git a/notebooks/data/comble/radar/.DS_Store b/notebooks/data/comble/radar/.DS_Store
new file mode 100644
index 0000000..5008ddf
Binary files /dev/null and b/notebooks/data/comble/radar/.DS_Store differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.000000.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.000000.nc
new file mode 100644
index 0000000..059368a
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.000000.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.010002.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.010002.nc
new file mode 100644
index 0000000..180f979
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.010002.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.020000.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.020000.nc
new file mode 100644
index 0000000..dfbe1db
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.020000.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.030002.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.030002.nc
new file mode 100644
index 0000000..2082392
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.030002.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.035957.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.035957.nc
new file mode 100644
index 0000000..31a1610
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.035957.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.045959.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.045959.nc
new file mode 100644
index 0000000..8cf7971
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.045959.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.055959.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.055959.nc
new file mode 100644
index 0000000..0728bc2
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.055959.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.070005.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.070005.nc
new file mode 100644
index 0000000..6de2cf4
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.070005.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.080005.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.080005.nc
new file mode 100644
index 0000000..b1b446c
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.080005.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.090007.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.090007.nc
new file mode 100644
index 0000000..917a14c
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.090007.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.100002.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.100002.nc
new file mode 100644
index 0000000..ae17be1
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.100002.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.110002.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.110002.nc
new file mode 100644
index 0000000..cc67078
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.110002.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.120004.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.120004.nc
new file mode 100644
index 0000000..868ecac
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.120004.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.130004.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.130004.nc
new file mode 100644
index 0000000..b92246b
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.130004.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.140003.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.140003.nc
new file mode 100644
index 0000000..86b63b2
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.140003.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.150003.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.150003.nc
new file mode 100644
index 0000000..12f345c
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.150003.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.160001.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.160001.nc
new file mode 100644
index 0000000..a9d8014
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.160001.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.170003.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.170003.nc
new file mode 100644
index 0000000..35a00c5
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.170003.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.180002.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.180002.nc
new file mode 100644
index 0000000..97ec1ec
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.180002.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.190000.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.190000.nc
new file mode 100644
index 0000000..f3815ee
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.190000.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.200002.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.200002.nc
new file mode 100644
index 0000000..ea9e6e7
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.200002.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.210002.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.210002.nc
new file mode 100644
index 0000000..0437363
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.210002.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.220001.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.220001.nc
new file mode 100644
index 0000000..5ef7d6a
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.220001.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.230001.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.230001.nc
new file mode 100644
index 0000000..b81e1da
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.230001.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.000003.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.000003.nc
new file mode 100644
index 0000000..2724a66
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.000003.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.010005.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.010005.nc
new file mode 100644
index 0000000..1c498a9
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.010005.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.020001.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.020001.nc
new file mode 100644
index 0000000..5bfe4a3
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.020001.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.030002.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.030002.nc
new file mode 100644
index 0000000..f570327
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.030002.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.040004.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.040004.nc
new file mode 100644
index 0000000..f9586ff
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.040004.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.050004.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.050004.nc
new file mode 100644
index 0000000..0c913ba
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.050004.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.060002.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.060002.nc
new file mode 100644
index 0000000..aa1478c
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.060002.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.065959.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.065959.nc
new file mode 100644
index 0000000..49453ac
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.065959.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.080005.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.080005.nc
new file mode 100644
index 0000000..fc501d0
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.080005.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.090003.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.090003.nc
new file mode 100644
index 0000000..52f1a3f
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.090003.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.100005.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.100005.nc
new file mode 100644
index 0000000..9b492b1
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.100005.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.110005.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.110005.nc
new file mode 100644
index 0000000..6837fe5
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.110005.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.120002.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.120002.nc
new file mode 100644
index 0000000..f14f3dc
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.120002.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.130000.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.130000.nc
new file mode 100644
index 0000000..c0244d5
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.130000.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.140004.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.140004.nc
new file mode 100644
index 0000000..24d852c
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.140004.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.150000.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.150000.nc
new file mode 100644
index 0000000..5186cbe
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.150000.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.160001.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.160001.nc
new file mode 100644
index 0000000..159e878
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.160001.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.170003.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.170003.nc
new file mode 100644
index 0000000..34f8b7f
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.170003.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.180003.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.180003.nc
new file mode 100644
index 0000000..daaa6f5
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.180003.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.190005.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.190005.nc
new file mode 100644
index 0000000..7be0071
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.190005.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.200003.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.200003.nc
new file mode 100644
index 0000000..dbccfed
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.200003.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.210000.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.210000.nc
new file mode 100644
index 0000000..491e641
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.210000.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.220000.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.220000.nc
new file mode 100644
index 0000000..b785c03
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.220000.nc differ
diff --git a/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.230004.nc b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.230004.nc
new file mode 100644
index 0000000..3771462
Binary files /dev/null and b/notebooks/data/comble/radar/anxkazrcfrgeqcM1.b1.20200313.230004.nc differ
diff --git a/notebooks/xarray/Untitled.ipynb b/notebooks/xarray/Untitled.ipynb
new file mode 100644
index 0000000..363fcab
--- /dev/null
+++ b/notebooks/xarray/Untitled.ipynb
@@ -0,0 +1,6 @@
+{
+ "cells": [],
+ "metadata": {},
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/notebooks/xarray/xarray-intro.ipynb b/notebooks/xarray/xarray-intro.ipynb
new file mode 100644
index 0000000..d01c688
--- /dev/null
+++ b/notebooks/xarray/xarray-intro.ipynb
@@ -0,0 +1,11615 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "![xarray Logo](http://xarray.pydata.org/en/stable/_static/dataset-diagram-logo.png \"xarray Logo\")\n",
+ "\n",
+ "# Introduction to Xarray"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "---"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Overview\n",
+ "\n",
+ "This notebook will introduce the basics of gridded, labeled data with Xarray. Since Xarray introduces additional abstractions on top of plain arrays of data, our goal is to show why these abstractions are useful and how they frequently lead to simpler, more robust code.\n",
+ "\n",
+ "We'll cover these topics:\n",
+ "\n",
+ "1. Create a `DataArray`, one of the core object types in Xarray\n",
+ "1. Understand how to use named coordinates and metadata in a `DataArray`\n",
+ "1. Combine individual `DataArrays` into a `Dataset`, the other core object type in Xarray\n",
+ "1. Subset, slice, and interpolate the data using named coordinates\n",
+ "1. Open netCDF data using XArray\n",
+ "1. Basic subsetting and aggregation of a `Dataset`\n",
+ "1. Brief introduction to plotting with Xarray"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Prerequisites\n",
+ "\n",
+ "| Concepts | Importance | Notes |\n",
+ "| --- | --- | --- |\n",
+ "| [NumPy Basics](https://foundations.projectpythia.org/core/numpy/numpy-basics.html) | Necessary | |\n",
+ "| [Intermediate NumPy](https://foundations.projectpythia.org/core/numpy/intermediate-numpy.html) | Helpful | Familiarity with indexing and slicing arrays |\n",
+ "| [NumPy Broadcasting](https://foundations.projectpythia.org/core/numpy/numpy-broadcasting.html) | Helpful | Familiar with array arithmetic and broadcasting |\n",
+ "| [Introduction to Pandas](https://foundations.projectpythia.org/core/pandas/pandas) | Helpful | Familiarity with labeled data |\n",
+ "| [Datetime](https://foundations.projectpythia.org/core/datetime/datetime) | Helpful | Familiarity with time formats and the `timedelta` object |\n",
+ "| [Understanding of NetCDF](https://foundations.projectpythia.org/core/data-formats/netcdf-cf.html) | Helpful | Familiarity with metadata structure |\n",
+ "\n",
+ "- **Time to learn**: 30 minutes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "---"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Imports"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Simmilar to `numpy`, `np`; `pandas`, `pd`; you may often encounter `xarray` imported within a shortened namespace as `xr`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "(function(root) {\n",
+ " function now() {\n",
+ " return new Date();\n",
+ " }\n",
+ "\n",
+ " var force = true;\n",
+ " var py_version = '3.3.0'.replace('rc', '-rc.').replace('.dev', '-dev.');\n",
+ " var is_dev = py_version.indexOf(\"+\") !== -1 || py_version.indexOf(\"-\") !== -1;\n",
+ " var reloading = false;\n",
+ " var Bokeh = root.Bokeh;\n",
+ " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n",
+ "\n",
+ " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n",
+ " root._bokeh_timeout = Date.now() + 5000;\n",
+ " root._bokeh_failed_load = false;\n",
+ " }\n",
+ "\n",
+ " function run_callbacks() {\n",
+ " try {\n",
+ " root._bokeh_onload_callbacks.forEach(function(callback) {\n",
+ " if (callback != null)\n",
+ " callback();\n",
+ " });\n",
+ " } finally {\n",
+ " delete root._bokeh_onload_callbacks;\n",
+ " }\n",
+ " console.debug(\"Bokeh: all callbacks have finished\");\n",
+ " }\n",
+ "\n",
+ " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n",
+ " if (css_urls == null) css_urls = [];\n",
+ " if (js_urls == null) js_urls = [];\n",
+ " if (js_modules == null) js_modules = [];\n",
+ " if (js_exports == null) js_exports = {};\n",
+ "\n",
+ " root._bokeh_onload_callbacks.push(callback);\n",
+ "\n",
+ " if (root._bokeh_is_loading > 0) {\n",
+ " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n",
+ " return null;\n",
+ " }\n",
+ " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n",
+ " run_callbacks();\n",
+ " return null;\n",
+ " }\n",
+ " if (!reloading) {\n",
+ " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n",
+ " }\n",
+ "\n",
+ " function on_load() {\n",
+ " root._bokeh_is_loading--;\n",
+ " if (root._bokeh_is_loading === 0) {\n",
+ " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n",
+ " run_callbacks()\n",
+ " }\n",
+ " }\n",
+ " window._bokeh_on_load = on_load\n",
+ "\n",
+ " function on_error() {\n",
+ " console.error(\"failed to load \" + url);\n",
+ " }\n",
+ "\n",
+ " var skip = [];\n",
+ " if (window.requirejs) {\n",
+ " window.requirejs.config({'packages': {}, 'paths': {'jspanel': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/jspanel', 'jspanel-modal': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal', 'jspanel-tooltip': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip', 'jspanel-hint': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint', 'jspanel-layout': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout', 'jspanel-contextmenu': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu', 'jspanel-dock': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock', 'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@7.2.3/dist/gridstack-all', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'jspanel': {'exports': 'jsPanel'}, 'gridstack': {'exports': 'GridStack'}}});\n",
+ " require([\"jspanel\"], function(jsPanel) {\n",
+ "\twindow.jsPanel = jsPanel\n",
+ "\ton_load()\n",
+ " })\n",
+ " require([\"jspanel-modal\"], function() {\n",
+ "\ton_load()\n",
+ " })\n",
+ " require([\"jspanel-tooltip\"], function() {\n",
+ "\ton_load()\n",
+ " })\n",
+ " require([\"jspanel-hint\"], function() {\n",
+ "\ton_load()\n",
+ " })\n",
+ " require([\"jspanel-layout\"], function() {\n",
+ "\ton_load()\n",
+ " })\n",
+ " require([\"jspanel-contextmenu\"], function() {\n",
+ "\ton_load()\n",
+ " })\n",
+ " require([\"jspanel-dock\"], function() {\n",
+ "\ton_load()\n",
+ " })\n",
+ " require([\"gridstack\"], function(GridStack) {\n",
+ "\twindow.GridStack = GridStack\n",
+ "\ton_load()\n",
+ " })\n",
+ " require([\"notyf\"], function() {\n",
+ "\ton_load()\n",
+ " })\n",
+ " root._bokeh_is_loading = css_urls.length + 9;\n",
+ " } else {\n",
+ " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n",
+ " }\n",
+ "\n",
+ " var existing_stylesheets = []\n",
+ " var links = document.getElementsByTagName('link')\n",
+ " for (var i = 0; i < links.length; i++) {\n",
+ " var link = links[i]\n",
+ " if (link.href != null) {\n",
+ "\texisting_stylesheets.push(link.href)\n",
+ " }\n",
+ " }\n",
+ " for (var i = 0; i < css_urls.length; i++) {\n",
+ " var url = css_urls[i];\n",
+ " if (existing_stylesheets.indexOf(url) !== -1) {\n",
+ "\ton_load()\n",
+ "\tcontinue;\n",
+ " }\n",
+ " const element = document.createElement(\"link\");\n",
+ " element.onload = on_load;\n",
+ " element.onerror = on_error;\n",
+ " element.rel = \"stylesheet\";\n",
+ " element.type = \"text/css\";\n",
+ " element.href = url;\n",
+ " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n",
+ " document.body.appendChild(element);\n",
+ " } if (((window['jsPanel'] !== undefined) && (!(window['jsPanel'] instanceof HTMLElement))) || window.requirejs) {\n",
+ " var urls = ['https://cdn.holoviz.org/panel/1.3.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/jspanel.js', 'https://cdn.holoviz.org/panel/1.3.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal.js', 'https://cdn.holoviz.org/panel/1.3.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip.js', 'https://cdn.holoviz.org/panel/1.3.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint.js', 'https://cdn.holoviz.org/panel/1.3.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout.js', 'https://cdn.holoviz.org/panel/1.3.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu.js', 'https://cdn.holoviz.org/panel/1.3.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock.js'];\n",
+ " for (var i = 0; i < urls.length; i++) {\n",
+ " skip.push(urls[i])\n",
+ " }\n",
+ " } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n",
+ " var urls = ['https://cdn.holoviz.org/panel/1.3.1/dist/bundled/gridstack/gridstack@7.2.3/dist/gridstack-all.js'];\n",
+ " for (var i = 0; i < urls.length; i++) {\n",
+ " skip.push(urls[i])\n",
+ " }\n",
+ " } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n",
+ " var urls = ['https://cdn.holoviz.org/panel/1.3.1/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n",
+ " for (var i = 0; i < urls.length; i++) {\n",
+ " skip.push(urls[i])\n",
+ " }\n",
+ " } var existing_scripts = []\n",
+ " var scripts = document.getElementsByTagName('script')\n",
+ " for (var i = 0; i < scripts.length; i++) {\n",
+ " var script = scripts[i]\n",
+ " if (script.src != null) {\n",
+ "\texisting_scripts.push(script.src)\n",
+ " }\n",
+ " }\n",
+ " for (var i = 0; i < js_urls.length; i++) {\n",
+ " var url = js_urls[i];\n",
+ " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n",
+ "\tif (!window.requirejs) {\n",
+ "\t on_load();\n",
+ "\t}\n",
+ "\tcontinue;\n",
+ " }\n",
+ " var element = document.createElement('script');\n",
+ " element.onload = on_load;\n",
+ " element.onerror = on_error;\n",
+ " element.async = false;\n",
+ " element.src = url;\n",
+ " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n",
+ " document.head.appendChild(element);\n",
+ " }\n",
+ " for (var i = 0; i < js_modules.length; i++) {\n",
+ " var url = js_modules[i];\n",
+ " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n",
+ "\tif (!window.requirejs) {\n",
+ "\t on_load();\n",
+ "\t}\n",
+ "\tcontinue;\n",
+ " }\n",
+ " var element = document.createElement('script');\n",
+ " element.onload = on_load;\n",
+ " element.onerror = on_error;\n",
+ " element.async = false;\n",
+ " element.src = url;\n",
+ " element.type = \"module\";\n",
+ " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n",
+ " document.head.appendChild(element);\n",
+ " }\n",
+ " for (const name in js_exports) {\n",
+ " var url = js_exports[name];\n",
+ " if (skip.indexOf(url) >= 0 || root[name] != null) {\n",
+ "\tif (!window.requirejs) {\n",
+ "\t on_load();\n",
+ "\t}\n",
+ "\tcontinue;\n",
+ " }\n",
+ " var element = document.createElement('script');\n",
+ " element.onerror = on_error;\n",
+ " element.async = false;\n",
+ " element.type = \"module\";\n",
+ " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n",
+ " element.textContent = `\n",
+ " import ${name} from \"${url}\"\n",
+ " window.${name} = ${name}\n",
+ " window._bokeh_on_load()\n",
+ " `\n",
+ " document.head.appendChild(element);\n",
+ " }\n",
+ " if (!js_urls.length && !js_modules.length) {\n",
+ " on_load()\n",
+ " }\n",
+ " };\n",
+ "\n",
+ " function inject_raw_css(css) {\n",
+ " const element = document.createElement(\"style\");\n",
+ " element.appendChild(document.createTextNode(css));\n",
+ " document.body.appendChild(element);\n",
+ " }\n",
+ "\n",
+ " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.0.min.js\", \"https://cdn.holoviz.org/panel/1.3.1/dist/panel.min.js\"];\n",
+ " var js_modules = [];\n",
+ " var js_exports = {};\n",
+ " var css_urls = [];\n",
+ " var inline_js = [ function(Bokeh) {\n",
+ " Bokeh.set_log_level(\"info\");\n",
+ " },\n",
+ "function(Bokeh) {} // ensure no trailing comma for IE\n",
+ " ];\n",
+ "\n",
+ " function run_inline_js() {\n",
+ " if ((root.Bokeh !== undefined) || (force === true)) {\n",
+ " for (var i = 0; i < inline_js.length; i++) {\n",
+ " inline_js[i].call(root, root.Bokeh);\n",
+ " }\n",
+ " // Cache old bokeh versions\n",
+ " if (Bokeh != undefined && !reloading) {\n",
+ "\tvar NewBokeh = root.Bokeh;\n",
+ "\tif (Bokeh.versions === undefined) {\n",
+ "\t Bokeh.versions = new Map();\n",
+ "\t}\n",
+ "\tif (NewBokeh.version !== Bokeh.version) {\n",
+ "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n",
+ "\t}\n",
+ "\troot.Bokeh = Bokeh;\n",
+ " }} else if (Date.now() < root._bokeh_timeout) {\n",
+ " setTimeout(run_inline_js, 100);\n",
+ " } else if (!root._bokeh_failed_load) {\n",
+ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n",
+ " root._bokeh_failed_load = true;\n",
+ " }\n",
+ " root._bokeh_is_initializing = false\n",
+ " }\n",
+ "\n",
+ " function load_or_wait() {\n",
+ " // Implement a backoff loop that tries to ensure we do not load multiple\n",
+ " // versions of Bokeh and its dependencies at the same time.\n",
+ " // In recent versions we use the root._bokeh_is_initializing flag\n",
+ " // to determine whether there is an ongoing attempt to initialize\n",
+ " // bokeh, however for backward compatibility we also try to ensure\n",
+ " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n",
+ " // before older versions are fully initialized.\n",
+ " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n",
+ " root._bokeh_is_initializing = false;\n",
+ " root._bokeh_onload_callbacks = undefined;\n",
+ " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n",
+ " load_or_wait();\n",
+ " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n",
+ " setTimeout(load_or_wait, 100);\n",
+ " } else {\n",
+ " Bokeh = root.Bokeh;\n",
+ " bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n",
+ " root._bokeh_is_initializing = true\n",
+ " root._bokeh_onload_callbacks = []\n",
+ " if (!reloading && (!bokeh_loaded || is_dev)) {\n",
+ "\troot.Bokeh = undefined;\n",
+ " }\n",
+ " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n",
+ "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n",
+ "\trun_inline_js();\n",
+ " });\n",
+ " }\n",
+ " }\n",
+ " // Give older versions of the autoload script a head-start to ensure\n",
+ " // they initialize before we start loading newer version.\n",
+ " setTimeout(load_or_wait, 100)\n",
+ "}(window));"
+ ],
+ "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.3.0'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var is_dev = py_version.indexOf(\"+\") !== -1 || py_version.indexOf(\"-\") !== -1;\n var reloading = false;\n var Bokeh = root.Bokeh;\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {'jspanel': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/jspanel', 'jspanel-modal': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal', 'jspanel-tooltip': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip', 'jspanel-hint': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint', 'jspanel-layout': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout', 'jspanel-contextmenu': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu', 'jspanel-dock': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock', 'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@7.2.3/dist/gridstack-all', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'jspanel': {'exports': 'jsPanel'}, 'gridstack': {'exports': 'GridStack'}}});\n require([\"jspanel\"], function(jsPanel) {\n\twindow.jsPanel = jsPanel\n\ton_load()\n })\n require([\"jspanel-modal\"], function() {\n\ton_load()\n })\n require([\"jspanel-tooltip\"], function() {\n\ton_load()\n })\n require([\"jspanel-hint\"], function() {\n\ton_load()\n })\n require([\"jspanel-layout\"], function() {\n\ton_load()\n })\n require([\"jspanel-contextmenu\"], function() {\n\ton_load()\n })\n require([\"jspanel-dock\"], function() {\n\ton_load()\n })\n require([\"gridstack\"], function(GridStack) {\n\twindow.GridStack = GridStack\n\ton_load()\n })\n require([\"notyf\"], function() {\n\ton_load()\n })\n root._bokeh_is_loading = css_urls.length + 9;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } if (((window['jsPanel'] !== undefined) && (!(window['jsPanel'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.3.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/jspanel.js', 'https://cdn.holoviz.org/panel/1.3.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal.js', 'https://cdn.holoviz.org/panel/1.3.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip.js', 'https://cdn.holoviz.org/panel/1.3.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint.js', 'https://cdn.holoviz.org/panel/1.3.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout.js', 'https://cdn.holoviz.org/panel/1.3.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu.js', 'https://cdn.holoviz.org/panel/1.3.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.3.1/dist/bundled/gridstack/gridstack@7.2.3/dist/gridstack-all.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.3.1/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.0.min.js\", \"https://cdn.holoviz.org/panel/1.3.1/dist/panel.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n Bokeh = root.Bokeh;\n bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n if (!reloading && (!bokeh_loaded || is_dev)) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));"
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/javascript": [
+ "\n",
+ "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n",
+ " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n",
+ "}\n",
+ "\n",
+ "\n",
+ " function JupyterCommManager() {\n",
+ " }\n",
+ "\n",
+ " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n",
+ " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n",
+ " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n",
+ " comm_manager.register_target(comm_id, function(comm) {\n",
+ " comm.on_msg(msg_handler);\n",
+ " });\n",
+ " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n",
+ " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n",
+ " comm.onMsg = msg_handler;\n",
+ " });\n",
+ " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n",
+ " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n",
+ " var messages = comm.messages[Symbol.asyncIterator]();\n",
+ " function processIteratorResult(result) {\n",
+ " var message = result.value;\n",
+ " console.log(message)\n",
+ " var content = {data: message.data, comm_id};\n",
+ " var buffers = []\n",
+ " for (var buffer of message.buffers || []) {\n",
+ " buffers.push(new DataView(buffer))\n",
+ " }\n",
+ " var metadata = message.metadata || {};\n",
+ " var msg = {content, buffers, metadata}\n",
+ " msg_handler(msg);\n",
+ " return messages.next().then(processIteratorResult);\n",
+ " }\n",
+ " return messages.next().then(processIteratorResult);\n",
+ " })\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n",
+ " if (comm_id in window.PyViz.comms) {\n",
+ " return window.PyViz.comms[comm_id];\n",
+ " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n",
+ " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n",
+ " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n",
+ " if (msg_handler) {\n",
+ " comm.on_msg(msg_handler);\n",
+ " }\n",
+ " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n",
+ " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n",
+ " comm.open();\n",
+ " if (msg_handler) {\n",
+ " comm.onMsg = msg_handler;\n",
+ " }\n",
+ " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n",
+ " var comm_promise = google.colab.kernel.comms.open(comm_id)\n",
+ " comm_promise.then((comm) => {\n",
+ " window.PyViz.comms[comm_id] = comm;\n",
+ " if (msg_handler) {\n",
+ " var messages = comm.messages[Symbol.asyncIterator]();\n",
+ " function processIteratorResult(result) {\n",
+ " var message = result.value;\n",
+ " var content = {data: message.data};\n",
+ " var metadata = message.metadata || {comm_id};\n",
+ " var msg = {content, metadata}\n",
+ " msg_handler(msg);\n",
+ " return messages.next().then(processIteratorResult);\n",
+ " }\n",
+ " return messages.next().then(processIteratorResult);\n",
+ " }\n",
+ " }) \n",
+ " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n",
+ " return comm_promise.then((comm) => {\n",
+ " comm.send(data, metadata, buffers, disposeOnDone);\n",
+ " });\n",
+ " };\n",
+ " var comm = {\n",
+ " send: sendClosure\n",
+ " };\n",
+ " }\n",
+ " window.PyViz.comms[comm_id] = comm;\n",
+ " return comm;\n",
+ " }\n",
+ " window.PyViz.comm_manager = new JupyterCommManager();\n",
+ " \n",
+ "\n",
+ "\n",
+ "var JS_MIME_TYPE = 'application/javascript';\n",
+ "var HTML_MIME_TYPE = 'text/html';\n",
+ "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n",
+ "var CLASS_NAME = 'output';\n",
+ "\n",
+ "/**\n",
+ " * Render data to the DOM node\n",
+ " */\n",
+ "function render(props, node) {\n",
+ " var div = document.createElement(\"div\");\n",
+ " var script = document.createElement(\"script\");\n",
+ " node.appendChild(div);\n",
+ " node.appendChild(script);\n",
+ "}\n",
+ "\n",
+ "/**\n",
+ " * Handle when a new output is added\n",
+ " */\n",
+ "function handle_add_output(event, handle) {\n",
+ " var output_area = handle.output_area;\n",
+ " var output = handle.output;\n",
+ " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n",
+ " return\n",
+ " }\n",
+ " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n",
+ " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n",
+ " if (id !== undefined) {\n",
+ " var nchildren = toinsert.length;\n",
+ " var html_node = toinsert[nchildren-1].children[0];\n",
+ " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n",
+ " var scripts = [];\n",
+ " var nodelist = html_node.querySelectorAll(\"script\");\n",
+ " for (var i in nodelist) {\n",
+ " if (nodelist.hasOwnProperty(i)) {\n",
+ " scripts.push(nodelist[i])\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " scripts.forEach( function (oldScript) {\n",
+ " var newScript = document.createElement(\"script\");\n",
+ " var attrs = [];\n",
+ " var nodemap = oldScript.attributes;\n",
+ " for (var j in nodemap) {\n",
+ " if (nodemap.hasOwnProperty(j)) {\n",
+ " attrs.push(nodemap[j])\n",
+ " }\n",
+ " }\n",
+ " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n",
+ " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n",
+ " oldScript.parentNode.replaceChild(newScript, oldScript);\n",
+ " });\n",
+ " if (JS_MIME_TYPE in output.data) {\n",
+ " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n",
+ " }\n",
+ " output_area._hv_plot_id = id;\n",
+ " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n",
+ " window.PyViz.plot_index[id] = Bokeh.index[id];\n",
+ " } else {\n",
+ " window.PyViz.plot_index[id] = null;\n",
+ " }\n",
+ " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n",
+ " var bk_div = document.createElement(\"div\");\n",
+ " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n",
+ " var script_attrs = bk_div.children[0].attributes;\n",
+ " for (var i = 0; i < script_attrs.length; i++) {\n",
+ " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n",
+ " }\n",
+ " // store reference to server id on output_area\n",
+ " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "/**\n",
+ " * Handle when an output is cleared or removed\n",
+ " */\n",
+ "function handle_clear_output(event, handle) {\n",
+ " var id = handle.cell.output_area._hv_plot_id;\n",
+ " var server_id = handle.cell.output_area._bokeh_server_id;\n",
+ " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n",
+ " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n",
+ " if (server_id !== null) {\n",
+ " comm.send({event_type: 'server_delete', 'id': server_id});\n",
+ " return;\n",
+ " } else if (comm !== null) {\n",
+ " comm.send({event_type: 'delete', 'id': id});\n",
+ " }\n",
+ " delete PyViz.plot_index[id];\n",
+ " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n",
+ " var doc = window.Bokeh.index[id].model.document\n",
+ " doc.clear();\n",
+ " const i = window.Bokeh.documents.indexOf(doc);\n",
+ " if (i > -1) {\n",
+ " window.Bokeh.documents.splice(i, 1);\n",
+ " }\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "/**\n",
+ " * Handle kernel restart event\n",
+ " */\n",
+ "function handle_kernel_cleanup(event, handle) {\n",
+ " delete PyViz.comms[\"hv-extension-comm\"];\n",
+ " window.PyViz.plot_index = {}\n",
+ "}\n",
+ "\n",
+ "/**\n",
+ " * Handle update_display_data messages\n",
+ " */\n",
+ "function handle_update_output(event, handle) {\n",
+ " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n",
+ " handle_add_output(event, handle)\n",
+ "}\n",
+ "\n",
+ "function register_renderer(events, OutputArea) {\n",
+ " function append_mime(data, metadata, element) {\n",
+ " // create a DOM node to render to\n",
+ " var toinsert = this.create_output_subarea(\n",
+ " metadata,\n",
+ " CLASS_NAME,\n",
+ " EXEC_MIME_TYPE\n",
+ " );\n",
+ " this.keyboard_manager.register_events(toinsert);\n",
+ " // Render to node\n",
+ " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n",
+ " render(props, toinsert[0]);\n",
+ " element.append(toinsert);\n",
+ " return toinsert\n",
+ " }\n",
+ "\n",
+ " events.on('output_added.OutputArea', handle_add_output);\n",
+ " events.on('output_updated.OutputArea', handle_update_output);\n",
+ " events.on('clear_output.CodeCell', handle_clear_output);\n",
+ " events.on('delete.Cell', handle_clear_output);\n",
+ " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n",
+ "\n",
+ " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n",
+ " safe: true,\n",
+ " index: 0\n",
+ " });\n",
+ "}\n",
+ "\n",
+ "if (window.Jupyter !== undefined) {\n",
+ " try {\n",
+ " var events = require('base/js/events');\n",
+ " var OutputArea = require('notebook/js/outputarea').OutputArea;\n",
+ " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n",
+ " register_renderer(events, OutputArea);\n",
+ " }\n",
+ " } catch(err) {\n",
+ " }\n",
+ "}\n"
+ ],
+ "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n"
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.holoviews_exec.v0+json": "",
+ "text/html": [
+ "
\n",
+ ""
+ ]
+ },
+ "metadata": {
+ "application/vnd.holoviews_exec.v0+json": {
+ "id": "p1722"
+ }
+ },
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "
\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from datetime import timedelta\n",
+ "\n",
+ "import cmweather\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import xarray as xr\n",
+ "import glob\n",
+ "\n",
+ "from bokeh.models.formatters import DatetimeTickFormatter\n",
+ "import hvplot.xarray\n",
+ "import holoviews as hv\n",
+ "hv.extension(\"bokeh\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Introducing the `DataArray` and `Dataset`\n",
+ "\n",
+ "Xarray expands on the capabilities on NumPy arrays, providing a lot of streamlined data manipulation. It is similar in that respect to Pandas, but whereas Pandas excels at working with tabular data, Xarray is focused on N-dimensional arrays of data (i.e. grids). Its interface is based largely on the netCDF data model (variables, attributes, and dimensions), but it goes beyond the traditional netCDF interfaces to provide functionality similar to netCDF-java's [Common Data Model (CDM)](https://docs.unidata.ucar.edu/netcdf-java/current/userguide/common_data_model_overview.html). "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Creation of a `DataArray` object\n",
+ "\n",
+ "The `DataArray` is one of the basic building blocks of Xarray (see docs [here](http://xarray.pydata.org/en/stable/user-guide/data-structures.html#dataarray)). It provides a `numpy.ndarray`-like object that expands to provide two critical pieces of functionality:\n",
+ "\n",
+ "1. Coordinate names and values are stored with the data, making slicing and indexing much more powerful\n",
+ "2. It has a built-in container for attributes\n",
+ "\n",
+ "Here we'll initialize a `DataArray` object by wrapping a plain NumPy array, and explore a few of its properties."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Generate a random numpy array\n",
+ "\n",
+ "For our first example, we'll just create a random array of \"temperature\" data in units of Kelvin:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[[286.27956776, 277.95199244, 282.03019204, 289.72997186],\n",
+ " [291.40837238, 280.71852405, 288.30962373, 278.38771859],\n",
+ " [283.54050134, 281.50088874, 283.67147977, 282.69508194]],\n",
+ "\n",
+ " [[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]],\n",
+ "\n",
+ " [[276.37392534, 285.66779544, 275.7531373 , 285.74384742],\n",
+ " [285.6877712 , 283.67698247, 281.84754872, 276.55362898],\n",
+ " [285.59721942, 276.05622785, 286.45987133, 289.96323162]],\n",
+ "\n",
+ " [[270.92446753, 282.98749258, 284.09955379, 284.50343734],\n",
+ " [277.34994456, 278.27143906, 277.69850219, 284.11487834],\n",
+ " [275.94418059, 283.27421098, 269.83904741, 276.73236976]],\n",
+ "\n",
+ " [[282.15740785, 286.21591172, 279.85464686, 285.96992707],\n",
+ " [290.88477194, 281.37684085, 281.49092035, 282.16621324],\n",
+ " [283.85810564, 285.68428321, 277.78787953, 285.17050016]]])"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = 283 + 5 * np.random.randn(5, 3, 4)\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Wrap the array: first attempt\n",
+ "\n",
+ "Now we create a basic `DataArray` just by passing our plain `data` as input:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray (dim_0: 5, dim_1: 3, dim_2: 4)>\n",
+ "array([[[286.27956776, 277.95199244, 282.03019204, 289.72997186],\n",
+ " [291.40837238, 280.71852405, 288.30962373, 278.38771859],\n",
+ " [283.54050134, 281.50088874, 283.67147977, 282.69508194]],\n",
+ "\n",
+ " [[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]],\n",
+ "\n",
+ " [[276.37392534, 285.66779544, 275.7531373 , 285.74384742],\n",
+ " [285.6877712 , 283.67698247, 281.84754872, 276.55362898],\n",
+ " [285.59721942, 276.05622785, 286.45987133, 289.96323162]],\n",
+ "\n",
+ " [[270.92446753, 282.98749258, 284.09955379, 284.50343734],\n",
+ " [277.34994456, 278.27143906, 277.69850219, 284.11487834],\n",
+ " [275.94418059, 283.27421098, 269.83904741, 276.73236976]],\n",
+ "\n",
+ " [[282.15740785, 286.21591172, 279.85464686, 285.96992707],\n",
+ " [290.88477194, 281.37684085, 281.49092035, 282.16621324],\n",
+ " [283.85810564, 285.68428321, 277.78787953, 285.17050016]]])\n",
+ "Dimensions without coordinates: dim_0, dim_1, dim_2 286.3 278.0 282.0 289.7 291.4 280.7 ... 282.2 283.9 285.7 277.8 285.2
array([[[286.27956776, 277.95199244, 282.03019204, 289.72997186],\n",
+ " [291.40837238, 280.71852405, 288.30962373, 278.38771859],\n",
+ " [283.54050134, 281.50088874, 283.67147977, 282.69508194]],\n",
+ "\n",
+ " [[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]],\n",
+ "\n",
+ " [[276.37392534, 285.66779544, 275.7531373 , 285.74384742],\n",
+ " [285.6877712 , 283.67698247, 281.84754872, 276.55362898],\n",
+ " [285.59721942, 276.05622785, 286.45987133, 289.96323162]],\n",
+ "\n",
+ " [[270.92446753, 282.98749258, 284.09955379, 284.50343734],\n",
+ " [277.34994456, 278.27143906, 277.69850219, 284.11487834],\n",
+ " [275.94418059, 283.27421098, 269.83904741, 276.73236976]],\n",
+ "\n",
+ " [[282.15740785, 286.21591172, 279.85464686, 285.96992707],\n",
+ " [290.88477194, 281.37684085, 281.49092035, 282.16621324],\n",
+ " [283.85810564, 285.68428321, 277.78787953, 285.17050016]]]) Coordinates: (0)
Indexes: (0)
Attributes: (0)
"
+ ],
+ "text/plain": [
+ "\n",
+ "array([[[286.27956776, 277.95199244, 282.03019204, 289.72997186],\n",
+ " [291.40837238, 280.71852405, 288.30962373, 278.38771859],\n",
+ " [283.54050134, 281.50088874, 283.67147977, 282.69508194]],\n",
+ "\n",
+ " [[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]],\n",
+ "\n",
+ " [[276.37392534, 285.66779544, 275.7531373 , 285.74384742],\n",
+ " [285.6877712 , 283.67698247, 281.84754872, 276.55362898],\n",
+ " [285.59721942, 276.05622785, 286.45987133, 289.96323162]],\n",
+ "\n",
+ " [[270.92446753, 282.98749258, 284.09955379, 284.50343734],\n",
+ " [277.34994456, 278.27143906, 277.69850219, 284.11487834],\n",
+ " [275.94418059, 283.27421098, 269.83904741, 276.73236976]],\n",
+ "\n",
+ " [[282.15740785, 286.21591172, 279.85464686, 285.96992707],\n",
+ " [290.88477194, 281.37684085, 281.49092035, 282.16621324],\n",
+ " [283.85810564, 285.68428321, 277.78787953, 285.17050016]]])\n",
+ "Dimensions without coordinates: dim_0, dim_1, dim_2"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "temp = xr.DataArray(data)\n",
+ "temp"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Note two things:\n",
+ "\n",
+ "1. Xarray generates some basic dimension names for us (`dim_0`, `dim_1`, `dim_2`). We'll improve this with better names in the next example.\n",
+ "2. Wrapping the numpy array in a `DataArray` gives us a rich display in the notebook! (Try clicking the array symbol to expand or collapse the view)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Assign dimension names\n",
+ "\n",
+ "Much of the power of Xarray comes from making use of named dimensions. So let's add some more useful names! We can do that by passing an ordered list of names using the keyword argument `dims`:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray (time: 5, lat: 3, lon: 4)>\n",
+ "array([[[286.27956776, 277.95199244, 282.03019204, 289.72997186],\n",
+ " [291.40837238, 280.71852405, 288.30962373, 278.38771859],\n",
+ " [283.54050134, 281.50088874, 283.67147977, 282.69508194]],\n",
+ "\n",
+ " [[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]],\n",
+ "\n",
+ " [[276.37392534, 285.66779544, 275.7531373 , 285.74384742],\n",
+ " [285.6877712 , 283.67698247, 281.84754872, 276.55362898],\n",
+ " [285.59721942, 276.05622785, 286.45987133, 289.96323162]],\n",
+ "\n",
+ " [[270.92446753, 282.98749258, 284.09955379, 284.50343734],\n",
+ " [277.34994456, 278.27143906, 277.69850219, 284.11487834],\n",
+ " [275.94418059, 283.27421098, 269.83904741, 276.73236976]],\n",
+ "\n",
+ " [[282.15740785, 286.21591172, 279.85464686, 285.96992707],\n",
+ " [290.88477194, 281.37684085, 281.49092035, 282.16621324],\n",
+ " [283.85810564, 285.68428321, 277.78787953, 285.17050016]]])\n",
+ "Dimensions without coordinates: time, lat, lon 286.3 278.0 282.0 289.7 291.4 280.7 ... 282.2 283.9 285.7 277.8 285.2
array([[[286.27956776, 277.95199244, 282.03019204, 289.72997186],\n",
+ " [291.40837238, 280.71852405, 288.30962373, 278.38771859],\n",
+ " [283.54050134, 281.50088874, 283.67147977, 282.69508194]],\n",
+ "\n",
+ " [[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]],\n",
+ "\n",
+ " [[276.37392534, 285.66779544, 275.7531373 , 285.74384742],\n",
+ " [285.6877712 , 283.67698247, 281.84754872, 276.55362898],\n",
+ " [285.59721942, 276.05622785, 286.45987133, 289.96323162]],\n",
+ "\n",
+ " [[270.92446753, 282.98749258, 284.09955379, 284.50343734],\n",
+ " [277.34994456, 278.27143906, 277.69850219, 284.11487834],\n",
+ " [275.94418059, 283.27421098, 269.83904741, 276.73236976]],\n",
+ "\n",
+ " [[282.15740785, 286.21591172, 279.85464686, 285.96992707],\n",
+ " [290.88477194, 281.37684085, 281.49092035, 282.16621324],\n",
+ " [283.85810564, 285.68428321, 277.78787953, 285.17050016]]]) Coordinates: (0)
Indexes: (0)
Attributes: (0)
"
+ ],
+ "text/plain": [
+ "\n",
+ "array([[[286.27956776, 277.95199244, 282.03019204, 289.72997186],\n",
+ " [291.40837238, 280.71852405, 288.30962373, 278.38771859],\n",
+ " [283.54050134, 281.50088874, 283.67147977, 282.69508194]],\n",
+ "\n",
+ " [[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]],\n",
+ "\n",
+ " [[276.37392534, 285.66779544, 275.7531373 , 285.74384742],\n",
+ " [285.6877712 , 283.67698247, 281.84754872, 276.55362898],\n",
+ " [285.59721942, 276.05622785, 286.45987133, 289.96323162]],\n",
+ "\n",
+ " [[270.92446753, 282.98749258, 284.09955379, 284.50343734],\n",
+ " [277.34994456, 278.27143906, 277.69850219, 284.11487834],\n",
+ " [275.94418059, 283.27421098, 269.83904741, 276.73236976]],\n",
+ "\n",
+ " [[282.15740785, 286.21591172, 279.85464686, 285.96992707],\n",
+ " [290.88477194, 281.37684085, 281.49092035, 282.16621324],\n",
+ " [283.85810564, 285.68428321, 277.78787953, 285.17050016]]])\n",
+ "Dimensions without coordinates: time, lat, lon"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "temp = xr.DataArray(data, dims=['time', 'lat', 'lon'])\n",
+ "temp"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This is already improved upon from a NumPy array, because we have names for each of the dimensions (or axes in NumPy parlance). Even better, we can take arrays representing the values for the coordinates for each of these dimensions and associate them with the data when we create the `DataArray`. We'll see this in the next example."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Create a `DataArray` with named Coordinates\n",
+ "\n",
+ "#### Make time and space coordinates\n",
+ "\n",
+ "Here we will use [Pandas](../pandas) to create an array of [datetime data](../datetime), which we will then use to create a `DataArray` with a named coordinate `time`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',\n",
+ " '2018-01-05'],\n",
+ " dtype='datetime64[ns]', freq='D')"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "times = pd.date_range('2018-01-01', periods=5)\n",
+ "times"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We'll also create arrays to represent sample longitude and latitude:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "lons = np.linspace(-120, -60, 4)\n",
+ "lats = np.linspace(25, 55, 3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Initialize the `DataArray` with complete coordinate info\n",
+ "\n",
+ "When we create the `DataArray` instance, we pass in the arrays we just created:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray (time: 5, lat: 3, lon: 4)>\n",
+ "array([[[286.27956776, 277.95199244, 282.03019204, 289.72997186],\n",
+ " [291.40837238, 280.71852405, 288.30962373, 278.38771859],\n",
+ " [283.54050134, 281.50088874, 283.67147977, 282.69508194]],\n",
+ "\n",
+ " [[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]],\n",
+ "\n",
+ " [[276.37392534, 285.66779544, 275.7531373 , 285.74384742],\n",
+ " [285.6877712 , 283.67698247, 281.84754872, 276.55362898],\n",
+ " [285.59721942, 276.05622785, 286.45987133, 289.96323162]],\n",
+ "\n",
+ " [[270.92446753, 282.98749258, 284.09955379, 284.50343734],\n",
+ " [277.34994456, 278.27143906, 277.69850219, 284.11487834],\n",
+ " [275.94418059, 283.27421098, 269.83904741, 276.73236976]],\n",
+ "\n",
+ " [[282.15740785, 286.21591172, 279.85464686, 285.96992707],\n",
+ " [290.88477194, 281.37684085, 281.49092035, 282.16621324],\n",
+ " [283.85810564, 285.68428321, 277.78787953, 285.17050016]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 ... 2018-01-05\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0 286.3 278.0 282.0 289.7 291.4 280.7 ... 282.2 283.9 285.7 277.8 285.2
array([[[286.27956776, 277.95199244, 282.03019204, 289.72997186],\n",
+ " [291.40837238, 280.71852405, 288.30962373, 278.38771859],\n",
+ " [283.54050134, 281.50088874, 283.67147977, 282.69508194]],\n",
+ "\n",
+ " [[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]],\n",
+ "\n",
+ " [[276.37392534, 285.66779544, 275.7531373 , 285.74384742],\n",
+ " [285.6877712 , 283.67698247, 281.84754872, 276.55362898],\n",
+ " [285.59721942, 276.05622785, 286.45987133, 289.96323162]],\n",
+ "\n",
+ " [[270.92446753, 282.98749258, 284.09955379, 284.50343734],\n",
+ " [277.34994456, 278.27143906, 277.69850219, 284.11487834],\n",
+ " [275.94418059, 283.27421098, 269.83904741, 276.73236976]],\n",
+ "\n",
+ " [[282.15740785, 286.21591172, 279.85464686, 285.96992707],\n",
+ " [290.88477194, 281.37684085, 281.49092035, 282.16621324],\n",
+ " [283.85810564, 285.68428321, 277.78787953, 285.17050016]]]) Coordinates: (3)
Indexes: (3)
PandasIndex
PandasIndex(DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',\n",
+ " '2018-01-05'],\n",
+ " dtype='datetime64[ns]', name='time', freq='D')) PandasIndex
PandasIndex(Index([25.0, 40.0, 55.0], dtype='float64', name='lat')) PandasIndex
PandasIndex(Index([-120.0, -100.0, -80.0, -60.0], dtype='float64', name='lon')) Attributes: (0)
"
+ ],
+ "text/plain": [
+ "\n",
+ "array([[[286.27956776, 277.95199244, 282.03019204, 289.72997186],\n",
+ " [291.40837238, 280.71852405, 288.30962373, 278.38771859],\n",
+ " [283.54050134, 281.50088874, 283.67147977, 282.69508194]],\n",
+ "\n",
+ " [[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]],\n",
+ "\n",
+ " [[276.37392534, 285.66779544, 275.7531373 , 285.74384742],\n",
+ " [285.6877712 , 283.67698247, 281.84754872, 276.55362898],\n",
+ " [285.59721942, 276.05622785, 286.45987133, 289.96323162]],\n",
+ "\n",
+ " [[270.92446753, 282.98749258, 284.09955379, 284.50343734],\n",
+ " [277.34994456, 278.27143906, 277.69850219, 284.11487834],\n",
+ " [275.94418059, 283.27421098, 269.83904741, 276.73236976]],\n",
+ "\n",
+ " [[282.15740785, 286.21591172, 279.85464686, 285.96992707],\n",
+ " [290.88477194, 281.37684085, 281.49092035, 282.16621324],\n",
+ " [283.85810564, 285.68428321, 277.78787953, 285.17050016]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 ... 2018-01-05\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "temp = xr.DataArray(data, coords=[times, lats, lons], dims=['time', 'lat', 'lon'])\n",
+ "temp"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Set useful attributes\n",
+ "\n",
+ "...and while we're at it, we can also set some attribute metadata:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray (time: 5, lat: 3, lon: 4)>\n",
+ "array([[[286.27956776, 277.95199244, 282.03019204, 289.72997186],\n",
+ " [291.40837238, 280.71852405, 288.30962373, 278.38771859],\n",
+ " [283.54050134, 281.50088874, 283.67147977, 282.69508194]],\n",
+ "\n",
+ " [[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]],\n",
+ "\n",
+ " [[276.37392534, 285.66779544, 275.7531373 , 285.74384742],\n",
+ " [285.6877712 , 283.67698247, 281.84754872, 276.55362898],\n",
+ " [285.59721942, 276.05622785, 286.45987133, 289.96323162]],\n",
+ "\n",
+ " [[270.92446753, 282.98749258, 284.09955379, 284.50343734],\n",
+ " [277.34994456, 278.27143906, 277.69850219, 284.11487834],\n",
+ " [275.94418059, 283.27421098, 269.83904741, 276.73236976]],\n",
+ "\n",
+ " [[282.15740785, 286.21591172, 279.85464686, 285.96992707],\n",
+ " [290.88477194, 281.37684085, 281.49092035, 282.16621324],\n",
+ " [283.85810564, 285.68428321, 277.78787953, 285.17050016]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 ... 2018-01-05\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature 286.3 278.0 282.0 289.7 291.4 280.7 ... 282.2 283.9 285.7 277.8 285.2
array([[[286.27956776, 277.95199244, 282.03019204, 289.72997186],\n",
+ " [291.40837238, 280.71852405, 288.30962373, 278.38771859],\n",
+ " [283.54050134, 281.50088874, 283.67147977, 282.69508194]],\n",
+ "\n",
+ " [[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]],\n",
+ "\n",
+ " [[276.37392534, 285.66779544, 275.7531373 , 285.74384742],\n",
+ " [285.6877712 , 283.67698247, 281.84754872, 276.55362898],\n",
+ " [285.59721942, 276.05622785, 286.45987133, 289.96323162]],\n",
+ "\n",
+ " [[270.92446753, 282.98749258, 284.09955379, 284.50343734],\n",
+ " [277.34994456, 278.27143906, 277.69850219, 284.11487834],\n",
+ " [275.94418059, 283.27421098, 269.83904741, 276.73236976]],\n",
+ "\n",
+ " [[282.15740785, 286.21591172, 279.85464686, 285.96992707],\n",
+ " [290.88477194, 281.37684085, 281.49092035, 282.16621324],\n",
+ " [283.85810564, 285.68428321, 277.78787953, 285.17050016]]]) Coordinates: (3)
Indexes: (3)
PandasIndex
PandasIndex(DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',\n",
+ " '2018-01-05'],\n",
+ " dtype='datetime64[ns]', name='time', freq='D')) PandasIndex
PandasIndex(Index([25.0, 40.0, 55.0], dtype='float64', name='lat')) PandasIndex
PandasIndex(Index([-120.0, -100.0, -80.0, -60.0], dtype='float64', name='lon')) Attributes: (2)
units : kelvin standard_name : air_temperature "
+ ],
+ "text/plain": [
+ "\n",
+ "array([[[286.27956776, 277.95199244, 282.03019204, 289.72997186],\n",
+ " [291.40837238, 280.71852405, 288.30962373, 278.38771859],\n",
+ " [283.54050134, 281.50088874, 283.67147977, 282.69508194]],\n",
+ "\n",
+ " [[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]],\n",
+ "\n",
+ " [[276.37392534, 285.66779544, 275.7531373 , 285.74384742],\n",
+ " [285.6877712 , 283.67698247, 281.84754872, 276.55362898],\n",
+ " [285.59721942, 276.05622785, 286.45987133, 289.96323162]],\n",
+ "\n",
+ " [[270.92446753, 282.98749258, 284.09955379, 284.50343734],\n",
+ " [277.34994456, 278.27143906, 277.69850219, 284.11487834],\n",
+ " [275.94418059, 283.27421098, 269.83904741, 276.73236976]],\n",
+ "\n",
+ " [[282.15740785, 286.21591172, 279.85464686, 285.96992707],\n",
+ " [290.88477194, 281.37684085, 281.49092035, 282.16621324],\n",
+ " [283.85810564, 285.68428321, 277.78787953, 285.17050016]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 ... 2018-01-05\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "temp.attrs['units'] = 'kelvin'\n",
+ "temp.attrs['standard_name'] = 'air_temperature'\n",
+ "\n",
+ "temp"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Attributes are not preserved by default!\n",
+ "\n",
+ "Notice what happens if we perform a mathematical operaton with the `DataArray`: the coordinate values persist, but the attributes are lost. This is done because it is very challenging to know if the attribute metadata is still correct or appropriate after arbitrary arithmetic operations.\n",
+ "\n",
+ "To illustrate this, we'll do a simple unit conversion from Kelvin to Celsius:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray (time: 5, lat: 3, lon: 4)>\n",
+ "array([[[13.12956776, 4.80199244, 8.88019204, 16.57997186],\n",
+ " [18.25837238, 7.56852405, 15.15962373, 5.23771859],\n",
+ " [10.39050134, 8.35088874, 10.52147977, 9.54508194]],\n",
+ "\n",
+ " [[ 2.38284611, 12.22426651, 2.73078048, 12.46579451],\n",
+ " [17.42368097, 7.66104924, 2.71434679, 7.63811485],\n",
+ " [ 4.92454137, 17.36130363, 18.2745341 , 11.40193302]],\n",
+ "\n",
+ " [[ 3.22392534, 12.51779544, 2.6031373 , 12.59384742],\n",
+ " [12.5377712 , 10.52698247, 8.69754872, 3.40362898],\n",
+ " [12.44721942, 2.90622785, 13.30987133, 16.81323162]],\n",
+ "\n",
+ " [[-2.22553247, 9.83749258, 10.94955379, 11.35343734],\n",
+ " [ 4.19994456, 5.12143906, 4.54850219, 10.96487834],\n",
+ " [ 2.79418059, 10.12421098, -3.31095259, 3.58236976]],\n",
+ "\n",
+ " [[ 9.00740785, 13.06591172, 6.70464686, 12.81992707],\n",
+ " [17.73477194, 8.22684085, 8.34092035, 9.01621324],\n",
+ " [10.70810564, 12.53428321, 4.63787953, 12.02050016]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 ... 2018-01-05\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0 13.13 4.802 8.88 16.58 18.26 7.569 ... 9.016 10.71 12.53 4.638 12.02
array([[[13.12956776, 4.80199244, 8.88019204, 16.57997186],\n",
+ " [18.25837238, 7.56852405, 15.15962373, 5.23771859],\n",
+ " [10.39050134, 8.35088874, 10.52147977, 9.54508194]],\n",
+ "\n",
+ " [[ 2.38284611, 12.22426651, 2.73078048, 12.46579451],\n",
+ " [17.42368097, 7.66104924, 2.71434679, 7.63811485],\n",
+ " [ 4.92454137, 17.36130363, 18.2745341 , 11.40193302]],\n",
+ "\n",
+ " [[ 3.22392534, 12.51779544, 2.6031373 , 12.59384742],\n",
+ " [12.5377712 , 10.52698247, 8.69754872, 3.40362898],\n",
+ " [12.44721942, 2.90622785, 13.30987133, 16.81323162]],\n",
+ "\n",
+ " [[-2.22553247, 9.83749258, 10.94955379, 11.35343734],\n",
+ " [ 4.19994456, 5.12143906, 4.54850219, 10.96487834],\n",
+ " [ 2.79418059, 10.12421098, -3.31095259, 3.58236976]],\n",
+ "\n",
+ " [[ 9.00740785, 13.06591172, 6.70464686, 12.81992707],\n",
+ " [17.73477194, 8.22684085, 8.34092035, 9.01621324],\n",
+ " [10.70810564, 12.53428321, 4.63787953, 12.02050016]]]) Coordinates: (3)
Indexes: (3)
PandasIndex
PandasIndex(DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',\n",
+ " '2018-01-05'],\n",
+ " dtype='datetime64[ns]', name='time', freq='D')) PandasIndex
PandasIndex(Index([25.0, 40.0, 55.0], dtype='float64', name='lat')) PandasIndex
PandasIndex(Index([-120.0, -100.0, -80.0, -60.0], dtype='float64', name='lon')) Attributes: (0)
"
+ ],
+ "text/plain": [
+ "\n",
+ "array([[[13.12956776, 4.80199244, 8.88019204, 16.57997186],\n",
+ " [18.25837238, 7.56852405, 15.15962373, 5.23771859],\n",
+ " [10.39050134, 8.35088874, 10.52147977, 9.54508194]],\n",
+ "\n",
+ " [[ 2.38284611, 12.22426651, 2.73078048, 12.46579451],\n",
+ " [17.42368097, 7.66104924, 2.71434679, 7.63811485],\n",
+ " [ 4.92454137, 17.36130363, 18.2745341 , 11.40193302]],\n",
+ "\n",
+ " [[ 3.22392534, 12.51779544, 2.6031373 , 12.59384742],\n",
+ " [12.5377712 , 10.52698247, 8.69754872, 3.40362898],\n",
+ " [12.44721942, 2.90622785, 13.30987133, 16.81323162]],\n",
+ "\n",
+ " [[-2.22553247, 9.83749258, 10.94955379, 11.35343734],\n",
+ " [ 4.19994456, 5.12143906, 4.54850219, 10.96487834],\n",
+ " [ 2.79418059, 10.12421098, -3.31095259, 3.58236976]],\n",
+ "\n",
+ " [[ 9.00740785, 13.06591172, 6.70464686, 12.81992707],\n",
+ " [17.73477194, 8.22684085, 8.34092035, 9.01621324],\n",
+ " [10.70810564, 12.53428321, 4.63787953, 12.02050016]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 ... 2018-01-05\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "temp_in_celsius = temp - 273.15\n",
+ "temp_in_celsius"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "For an in-depth discussion of how Xarray handles metadata, start in the Xarray docs [here](http://xarray.pydata.org/en/stable/getting-started-guide/faq.html#approach-to-metadata)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### The `Dataset`: a container for `DataArray`s with shared coordinates\n",
+ "\n",
+ "Along with `DataArray`, the other key object type in Xarray is the `Dataset`: a dictionary-like container that holds one or more `DataArray`s, which can also optionally share coordinates (see docs [here](http://xarray.pydata.org/en/stable/user-guide/data-structures.html#dataset)).\n",
+ "\n",
+ "The most common way to create a `Dataset` object is to load data from a file (see [below](#Opening-netCDF-data)). Here, instead, we will create another `DataArray` and combine it with our `temp` data.\n",
+ "\n",
+ "This will illustrate how the information about common coordinate axes is used."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Create a pressure `DataArray` using the same coordinates\n",
+ "\n",
+ "This code mirrors how we created the `temp` object above."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray (time: 5, lat: 3, lon: 4)>\n",
+ "array([[[1005.05571071, 998.67408668, 1001.85491828, 999.99501785],\n",
+ " [ 996.81174133, 995.06550614, 996.54887557, 989.41861085],\n",
+ " [ 998.68289785, 999.86581097, 993.35017815, 995.99831292]],\n",
+ "\n",
+ " [[1005.37069912, 1001.30163196, 998.05054019, 1002.61271621],\n",
+ " [1013.4637283 , 998.84022211, 1008.84084354, 993.56564126],\n",
+ " [1002.35863839, 996.69653153, 999.91980332, 1004.05676696]],\n",
+ "\n",
+ " [[1005.07957861, 1002.09057836, 993.66390693, 1005.6377031 ],\n",
+ " [1007.59204379, 993.88379343, 1001.49171864, 1004.62483834],\n",
+ " [ 998.88185953, 1001.46440885, 997.64747222, 1000.48411621]],\n",
+ "\n",
+ " [[1007.30801298, 994.24746615, 997.87905011, 995.70877316],\n",
+ " [1002.79183763, 998.97089689, 1002.69288926, 990.14776207],\n",
+ " [1003.11722496, 996.77092633, 1006.55499493, 994.97546952]],\n",
+ "\n",
+ " [[ 998.53322629, 1000.72005963, 1002.44015237, 998.87443103],\n",
+ " [ 996.45341758, 995.35614117, 993.71282397, 1004.19693488],\n",
+ " [ 999.98792167, 995.77165323, 998.37830536, 998.17638198]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 ... 2018-01-05\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Attributes:\n",
+ " units: hPa\n",
+ " standard_name: air_pressure 1.005e+03 998.7 1.002e+03 1e+03 996.8 ... 1e+03 995.8 998.4 998.2
array([[[1005.05571071, 998.67408668, 1001.85491828, 999.99501785],\n",
+ " [ 996.81174133, 995.06550614, 996.54887557, 989.41861085],\n",
+ " [ 998.68289785, 999.86581097, 993.35017815, 995.99831292]],\n",
+ "\n",
+ " [[1005.37069912, 1001.30163196, 998.05054019, 1002.61271621],\n",
+ " [1013.4637283 , 998.84022211, 1008.84084354, 993.56564126],\n",
+ " [1002.35863839, 996.69653153, 999.91980332, 1004.05676696]],\n",
+ "\n",
+ " [[1005.07957861, 1002.09057836, 993.66390693, 1005.6377031 ],\n",
+ " [1007.59204379, 993.88379343, 1001.49171864, 1004.62483834],\n",
+ " [ 998.88185953, 1001.46440885, 997.64747222, 1000.48411621]],\n",
+ "\n",
+ " [[1007.30801298, 994.24746615, 997.87905011, 995.70877316],\n",
+ " [1002.79183763, 998.97089689, 1002.69288926, 990.14776207],\n",
+ " [1003.11722496, 996.77092633, 1006.55499493, 994.97546952]],\n",
+ "\n",
+ " [[ 998.53322629, 1000.72005963, 1002.44015237, 998.87443103],\n",
+ " [ 996.45341758, 995.35614117, 993.71282397, 1004.19693488],\n",
+ " [ 999.98792167, 995.77165323, 998.37830536, 998.17638198]]]) Coordinates: (3)
Indexes: (3)
PandasIndex
PandasIndex(DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',\n",
+ " '2018-01-05'],\n",
+ " dtype='datetime64[ns]', name='time', freq='D')) PandasIndex
PandasIndex(Index([25.0, 40.0, 55.0], dtype='float64', name='lat')) PandasIndex
PandasIndex(Index([-120.0, -100.0, -80.0, -60.0], dtype='float64', name='lon')) Attributes: (2)
units : hPa standard_name : air_pressure "
+ ],
+ "text/plain": [
+ "\n",
+ "array([[[1005.05571071, 998.67408668, 1001.85491828, 999.99501785],\n",
+ " [ 996.81174133, 995.06550614, 996.54887557, 989.41861085],\n",
+ " [ 998.68289785, 999.86581097, 993.35017815, 995.99831292]],\n",
+ "\n",
+ " [[1005.37069912, 1001.30163196, 998.05054019, 1002.61271621],\n",
+ " [1013.4637283 , 998.84022211, 1008.84084354, 993.56564126],\n",
+ " [1002.35863839, 996.69653153, 999.91980332, 1004.05676696]],\n",
+ "\n",
+ " [[1005.07957861, 1002.09057836, 993.66390693, 1005.6377031 ],\n",
+ " [1007.59204379, 993.88379343, 1001.49171864, 1004.62483834],\n",
+ " [ 998.88185953, 1001.46440885, 997.64747222, 1000.48411621]],\n",
+ "\n",
+ " [[1007.30801298, 994.24746615, 997.87905011, 995.70877316],\n",
+ " [1002.79183763, 998.97089689, 1002.69288926, 990.14776207],\n",
+ " [1003.11722496, 996.77092633, 1006.55499493, 994.97546952]],\n",
+ "\n",
+ " [[ 998.53322629, 1000.72005963, 1002.44015237, 998.87443103],\n",
+ " [ 996.45341758, 995.35614117, 993.71282397, 1004.19693488],\n",
+ " [ 999.98792167, 995.77165323, 998.37830536, 998.17638198]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 ... 2018-01-05\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Attributes:\n",
+ " units: hPa\n",
+ " standard_name: air_pressure"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pressure_data = 1000.0 + 5 * np.random.randn(5, 3, 4)\n",
+ "pressure = xr.DataArray(\n",
+ " pressure_data, coords=[times, lats, lons], dims=['time', 'lat', 'lon']\n",
+ ")\n",
+ "pressure.attrs['units'] = 'hPa'\n",
+ "pressure.attrs['standard_name'] = 'air_pressure'\n",
+ "\n",
+ "pressure"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Create a `Dataset` object\n",
+ "\n",
+ "Each `DataArray` in our `Dataset` needs a name! \n",
+ "\n",
+ "The most straightforward way to create a `Dataset` with our `temp` and `pressure` arrays is to pass a dictionary using the keyword argument `data_vars`:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.Dataset>\n",
+ "Dimensions: (time: 5, lat: 3, lon: 4)\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 ... 2018-01-05\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Data variables:\n",
+ " Temperature (time, lat, lon) float64 286.3 278.0 282.0 ... 277.8 285.2\n",
+ " Pressure (time, lat, lon) float64 1.005e+03 998.7 ... 998.4 998.2 Dimensions:
Coordinates: (3)
Data variables: (2)
Indexes: (3)
PandasIndex
PandasIndex(DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',\n",
+ " '2018-01-05'],\n",
+ " dtype='datetime64[ns]', name='time', freq='D')) PandasIndex
PandasIndex(Index([25.0, 40.0, 55.0], dtype='float64', name='lat')) PandasIndex
PandasIndex(Index([-120.0, -100.0, -80.0, -60.0], dtype='float64', name='lon')) Attributes: (0)
"
+ ],
+ "text/plain": [
+ "\n",
+ "Dimensions: (time: 5, lat: 3, lon: 4)\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 ... 2018-01-05\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Data variables:\n",
+ " Temperature (time, lat, lon) float64 286.3 278.0 282.0 ... 277.8 285.2\n",
+ " Pressure (time, lat, lon) float64 1.005e+03 998.7 ... 998.4 998.2"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ds = xr.Dataset(data_vars={'Temperature': temp, 'Pressure': pressure})\n",
+ "ds"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Notice that the `Dataset` object `ds` is aware that both data arrays sit on the same coordinate axes."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Access Data variables and Coordinates in a `Dataset`\n",
+ "\n",
+ "We can pull out any of the individual `DataArray` objects in a few different ways.\n",
+ "\n",
+ "Using the \"dot\" notation:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray 'Pressure' (time: 5, lat: 3, lon: 4)>\n",
+ "array([[[1005.05571071, 998.67408668, 1001.85491828, 999.99501785],\n",
+ " [ 996.81174133, 995.06550614, 996.54887557, 989.41861085],\n",
+ " [ 998.68289785, 999.86581097, 993.35017815, 995.99831292]],\n",
+ "\n",
+ " [[1005.37069912, 1001.30163196, 998.05054019, 1002.61271621],\n",
+ " [1013.4637283 , 998.84022211, 1008.84084354, 993.56564126],\n",
+ " [1002.35863839, 996.69653153, 999.91980332, 1004.05676696]],\n",
+ "\n",
+ " [[1005.07957861, 1002.09057836, 993.66390693, 1005.6377031 ],\n",
+ " [1007.59204379, 993.88379343, 1001.49171864, 1004.62483834],\n",
+ " [ 998.88185953, 1001.46440885, 997.64747222, 1000.48411621]],\n",
+ "\n",
+ " [[1007.30801298, 994.24746615, 997.87905011, 995.70877316],\n",
+ " [1002.79183763, 998.97089689, 1002.69288926, 990.14776207],\n",
+ " [1003.11722496, 996.77092633, 1006.55499493, 994.97546952]],\n",
+ "\n",
+ " [[ 998.53322629, 1000.72005963, 1002.44015237, 998.87443103],\n",
+ " [ 996.45341758, 995.35614117, 993.71282397, 1004.19693488],\n",
+ " [ 999.98792167, 995.77165323, 998.37830536, 998.17638198]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 ... 2018-01-05\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Attributes:\n",
+ " units: hPa\n",
+ " standard_name: air_pressure 1.005e+03 998.7 1.002e+03 1e+03 996.8 ... 1e+03 995.8 998.4 998.2
array([[[1005.05571071, 998.67408668, 1001.85491828, 999.99501785],\n",
+ " [ 996.81174133, 995.06550614, 996.54887557, 989.41861085],\n",
+ " [ 998.68289785, 999.86581097, 993.35017815, 995.99831292]],\n",
+ "\n",
+ " [[1005.37069912, 1001.30163196, 998.05054019, 1002.61271621],\n",
+ " [1013.4637283 , 998.84022211, 1008.84084354, 993.56564126],\n",
+ " [1002.35863839, 996.69653153, 999.91980332, 1004.05676696]],\n",
+ "\n",
+ " [[1005.07957861, 1002.09057836, 993.66390693, 1005.6377031 ],\n",
+ " [1007.59204379, 993.88379343, 1001.49171864, 1004.62483834],\n",
+ " [ 998.88185953, 1001.46440885, 997.64747222, 1000.48411621]],\n",
+ "\n",
+ " [[1007.30801298, 994.24746615, 997.87905011, 995.70877316],\n",
+ " [1002.79183763, 998.97089689, 1002.69288926, 990.14776207],\n",
+ " [1003.11722496, 996.77092633, 1006.55499493, 994.97546952]],\n",
+ "\n",
+ " [[ 998.53322629, 1000.72005963, 1002.44015237, 998.87443103],\n",
+ " [ 996.45341758, 995.35614117, 993.71282397, 1004.19693488],\n",
+ " [ 999.98792167, 995.77165323, 998.37830536, 998.17638198]]]) Coordinates: (3)
Indexes: (3)
PandasIndex
PandasIndex(DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',\n",
+ " '2018-01-05'],\n",
+ " dtype='datetime64[ns]', name='time', freq='D')) PandasIndex
PandasIndex(Index([25.0, 40.0, 55.0], dtype='float64', name='lat')) PandasIndex
PandasIndex(Index([-120.0, -100.0, -80.0, -60.0], dtype='float64', name='lon')) Attributes: (2)
units : hPa standard_name : air_pressure "
+ ],
+ "text/plain": [
+ "\n",
+ "array([[[1005.05571071, 998.67408668, 1001.85491828, 999.99501785],\n",
+ " [ 996.81174133, 995.06550614, 996.54887557, 989.41861085],\n",
+ " [ 998.68289785, 999.86581097, 993.35017815, 995.99831292]],\n",
+ "\n",
+ " [[1005.37069912, 1001.30163196, 998.05054019, 1002.61271621],\n",
+ " [1013.4637283 , 998.84022211, 1008.84084354, 993.56564126],\n",
+ " [1002.35863839, 996.69653153, 999.91980332, 1004.05676696]],\n",
+ "\n",
+ " [[1005.07957861, 1002.09057836, 993.66390693, 1005.6377031 ],\n",
+ " [1007.59204379, 993.88379343, 1001.49171864, 1004.62483834],\n",
+ " [ 998.88185953, 1001.46440885, 997.64747222, 1000.48411621]],\n",
+ "\n",
+ " [[1007.30801298, 994.24746615, 997.87905011, 995.70877316],\n",
+ " [1002.79183763, 998.97089689, 1002.69288926, 990.14776207],\n",
+ " [1003.11722496, 996.77092633, 1006.55499493, 994.97546952]],\n",
+ "\n",
+ " [[ 998.53322629, 1000.72005963, 1002.44015237, 998.87443103],\n",
+ " [ 996.45341758, 995.35614117, 993.71282397, 1004.19693488],\n",
+ " [ 999.98792167, 995.77165323, 998.37830536, 998.17638198]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 ... 2018-01-05\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Attributes:\n",
+ " units: hPa\n",
+ " standard_name: air_pressure"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ds.Pressure"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "... or using dictionary access like this:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray 'Pressure' (time: 5, lat: 3, lon: 4)>\n",
+ "array([[[1005.05571071, 998.67408668, 1001.85491828, 999.99501785],\n",
+ " [ 996.81174133, 995.06550614, 996.54887557, 989.41861085],\n",
+ " [ 998.68289785, 999.86581097, 993.35017815, 995.99831292]],\n",
+ "\n",
+ " [[1005.37069912, 1001.30163196, 998.05054019, 1002.61271621],\n",
+ " [1013.4637283 , 998.84022211, 1008.84084354, 993.56564126],\n",
+ " [1002.35863839, 996.69653153, 999.91980332, 1004.05676696]],\n",
+ "\n",
+ " [[1005.07957861, 1002.09057836, 993.66390693, 1005.6377031 ],\n",
+ " [1007.59204379, 993.88379343, 1001.49171864, 1004.62483834],\n",
+ " [ 998.88185953, 1001.46440885, 997.64747222, 1000.48411621]],\n",
+ "\n",
+ " [[1007.30801298, 994.24746615, 997.87905011, 995.70877316],\n",
+ " [1002.79183763, 998.97089689, 1002.69288926, 990.14776207],\n",
+ " [1003.11722496, 996.77092633, 1006.55499493, 994.97546952]],\n",
+ "\n",
+ " [[ 998.53322629, 1000.72005963, 1002.44015237, 998.87443103],\n",
+ " [ 996.45341758, 995.35614117, 993.71282397, 1004.19693488],\n",
+ " [ 999.98792167, 995.77165323, 998.37830536, 998.17638198]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 ... 2018-01-05\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Attributes:\n",
+ " units: hPa\n",
+ " standard_name: air_pressure 1.005e+03 998.7 1.002e+03 1e+03 996.8 ... 1e+03 995.8 998.4 998.2
array([[[1005.05571071, 998.67408668, 1001.85491828, 999.99501785],\n",
+ " [ 996.81174133, 995.06550614, 996.54887557, 989.41861085],\n",
+ " [ 998.68289785, 999.86581097, 993.35017815, 995.99831292]],\n",
+ "\n",
+ " [[1005.37069912, 1001.30163196, 998.05054019, 1002.61271621],\n",
+ " [1013.4637283 , 998.84022211, 1008.84084354, 993.56564126],\n",
+ " [1002.35863839, 996.69653153, 999.91980332, 1004.05676696]],\n",
+ "\n",
+ " [[1005.07957861, 1002.09057836, 993.66390693, 1005.6377031 ],\n",
+ " [1007.59204379, 993.88379343, 1001.49171864, 1004.62483834],\n",
+ " [ 998.88185953, 1001.46440885, 997.64747222, 1000.48411621]],\n",
+ "\n",
+ " [[1007.30801298, 994.24746615, 997.87905011, 995.70877316],\n",
+ " [1002.79183763, 998.97089689, 1002.69288926, 990.14776207],\n",
+ " [1003.11722496, 996.77092633, 1006.55499493, 994.97546952]],\n",
+ "\n",
+ " [[ 998.53322629, 1000.72005963, 1002.44015237, 998.87443103],\n",
+ " [ 996.45341758, 995.35614117, 993.71282397, 1004.19693488],\n",
+ " [ 999.98792167, 995.77165323, 998.37830536, 998.17638198]]]) Coordinates: (3)
Indexes: (3)
PandasIndex
PandasIndex(DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',\n",
+ " '2018-01-05'],\n",
+ " dtype='datetime64[ns]', name='time', freq='D')) PandasIndex
PandasIndex(Index([25.0, 40.0, 55.0], dtype='float64', name='lat')) PandasIndex
PandasIndex(Index([-120.0, -100.0, -80.0, -60.0], dtype='float64', name='lon')) Attributes: (2)
units : hPa standard_name : air_pressure "
+ ],
+ "text/plain": [
+ "\n",
+ "array([[[1005.05571071, 998.67408668, 1001.85491828, 999.99501785],\n",
+ " [ 996.81174133, 995.06550614, 996.54887557, 989.41861085],\n",
+ " [ 998.68289785, 999.86581097, 993.35017815, 995.99831292]],\n",
+ "\n",
+ " [[1005.37069912, 1001.30163196, 998.05054019, 1002.61271621],\n",
+ " [1013.4637283 , 998.84022211, 1008.84084354, 993.56564126],\n",
+ " [1002.35863839, 996.69653153, 999.91980332, 1004.05676696]],\n",
+ "\n",
+ " [[1005.07957861, 1002.09057836, 993.66390693, 1005.6377031 ],\n",
+ " [1007.59204379, 993.88379343, 1001.49171864, 1004.62483834],\n",
+ " [ 998.88185953, 1001.46440885, 997.64747222, 1000.48411621]],\n",
+ "\n",
+ " [[1007.30801298, 994.24746615, 997.87905011, 995.70877316],\n",
+ " [1002.79183763, 998.97089689, 1002.69288926, 990.14776207],\n",
+ " [1003.11722496, 996.77092633, 1006.55499493, 994.97546952]],\n",
+ "\n",
+ " [[ 998.53322629, 1000.72005963, 1002.44015237, 998.87443103],\n",
+ " [ 996.45341758, 995.35614117, 993.71282397, 1004.19693488],\n",
+ " [ 999.98792167, 995.77165323, 998.37830536, 998.17638198]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 ... 2018-01-05\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Attributes:\n",
+ " units: hPa\n",
+ " standard_name: air_pressure"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ds['Pressure']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We'll return to the `Dataset` object when we start loading data from files."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Subsetting and selection by coordinate values\n",
+ "\n",
+ "Much of the power of labeled coordinates comes from the ability to select data based on coordinate names and values, rather than array indices. We'll explore this briefly here.\n",
+ "\n",
+ "### NumPy-like selection\n",
+ "\n",
+ "Suppose we want to extract all the spatial data for one single date: January 2, 2018. It's possible to achieve that with NumPy-like index selection:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray (lat: 3, lon: 4)>\n",
+ "array([[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]])\n",
+ "Coordinates:\n",
+ " time datetime64[ns] 2018-01-02\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature 275.5 285.4 275.9 285.6 290.6 280.8 ... 280.8 278.1 290.5 291.4 284.6
array([[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]]) Coordinates: (3)
Indexes: (2)
Attributes: (2)
units : kelvin standard_name : air_temperature "
+ ],
+ "text/plain": [
+ "\n",
+ "array([[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]])\n",
+ "Coordinates:\n",
+ " time datetime64[ns] 2018-01-02\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "indexed_selection = temp[1, :, :] # Index 1 along axis 0 is the time slice we want...\n",
+ "indexed_selection"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "HOWEVER, notice that this requires us (the user / programmer) to have **detailed knowledge** of the order of the axes and the meaning of the indices along those axes!\n",
+ "\n",
+ "_**Named coordinates free us from this burden...**_"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Selecting with `.sel()`\n",
+ "\n",
+ "We can instead select data based on coordinate values using the `.sel()` method, which takes one or more named coordinate(s) as keyword argument:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray (lat: 3, lon: 4)>\n",
+ "array([[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]])\n",
+ "Coordinates:\n",
+ " time datetime64[ns] 2018-01-02\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature 275.5 285.4 275.9 285.6 290.6 280.8 ... 280.8 278.1 290.5 291.4 284.6
array([[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]]) Coordinates: (3)
Indexes: (2)
Attributes: (2)
units : kelvin standard_name : air_temperature "
+ ],
+ "text/plain": [
+ "\n",
+ "array([[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]])\n",
+ "Coordinates:\n",
+ " time datetime64[ns] 2018-01-02\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "named_selection = temp.sel(time='2018-01-02')\n",
+ "named_selection"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We got the same result, but \n",
+ "- we didn't have to know anything about how the array was created or stored\n",
+ "- our code is agnostic about how many dimensions we are dealing with\n",
+ "- the intended meaning of our code is much clearer!"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Approximate selection and interpolation\n",
+ "\n",
+ "With time and space data, we frequently want to sample \"near\" the coordinate points in our dataset. Here are a few simple ways to achieve that.\n",
+ "\n",
+ "#### Nearest-neighbor sampling\n",
+ "\n",
+ "Suppose we want to sample the nearest datapoint within 2 days of date `2018-01-07`. Since the last day on our `time` axis is `2018-01-05`, this is well-posed.\n",
+ "\n",
+ "`.sel` has the flexibility to perform nearest neighbor sampling, taking an optional tolerance:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray (lat: 3, lon: 4)>\n",
+ "array([[282.15740785, 286.21591172, 279.85464686, 285.96992707],\n",
+ " [290.88477194, 281.37684085, 281.49092035, 282.16621324],\n",
+ " [283.85810564, 285.68428321, 277.78787953, 285.17050016]])\n",
+ "Coordinates:\n",
+ " time datetime64[ns] 2018-01-05\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature 282.2 286.2 279.9 286.0 290.9 281.4 ... 282.2 283.9 285.7 277.8 285.2
array([[282.15740785, 286.21591172, 279.85464686, 285.96992707],\n",
+ " [290.88477194, 281.37684085, 281.49092035, 282.16621324],\n",
+ " [283.85810564, 285.68428321, 277.78787953, 285.17050016]]) Coordinates: (3)
Indexes: (2)
Attributes: (2)
units : kelvin standard_name : air_temperature "
+ ],
+ "text/plain": [
+ "\n",
+ "array([[282.15740785, 286.21591172, 279.85464686, 285.96992707],\n",
+ " [290.88477194, 281.37684085, 281.49092035, 282.16621324],\n",
+ " [283.85810564, 285.68428321, 277.78787953, 285.17050016]])\n",
+ "Coordinates:\n",
+ " time datetime64[ns] 2018-01-05\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "temp.sel(time='2018-01-07', method='nearest', tolerance=timedelta(days=2))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "where we see that `.sel` indeed pulled out the data for date `2018-01-05`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Interpolation\n",
+ "\n",
+ "Suppose we want to extract a timeseries for Boulder (40°N, 105°W). Since `lon=-105` is _not_ a point on our longitude axis, this requires interpolation between data points.\n",
+ "\n",
+ "The `.interp()` method (see the docs [here](http://xarray.pydata.org/en/stable/interpolation.html)) works similarly to `.sel()`. Using `.interp()`, we can interpolate to any latitude/longitude location:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray (time: 5)>\n",
+ "array([283.39098613, 283.25170717, 284.17967965, 278.04106544,\n",
+ " 283.75382362])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 ... 2018-01-05\n",
+ " lon int64 -105\n",
+ " lat int64 40\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature "
+ ],
+ "text/plain": [
+ "\n",
+ "array([283.39098613, 283.25170717, 284.17967965, 278.04106544,\n",
+ " 283.75382362])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 ... 2018-01-05\n",
+ " lon int64 -105\n",
+ " lat int64 40\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "temp.interp(lon=-105, lat=40)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "
Info
\n",
+ " Xarray's interpolation functionality requires the
SciPy package!\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Slicing along coordinates\n",
+ "\n",
+ "Frequently we want to select a range (or _slice_) along one or more coordinate(s). We can achieve this by passing a Python [slice](https://docs.python.org/3/library/functions.html#slice) object to `.sel()`, as follows:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray (time: 3, lat: 2, lon: 2)>\n",
+ "array([[[277.95199244, 282.03019204],\n",
+ " [280.71852405, 288.30962373]],\n",
+ "\n",
+ " [[285.37426651, 275.88078048],\n",
+ " [280.81104924, 275.86434679]],\n",
+ "\n",
+ " [[285.66779544, 275.7531373 ],\n",
+ " [283.67698247, 281.84754872]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 2018-01-03\n",
+ " * lat (lat) float64 25.0 40.0\n",
+ " * lon (lon) float64 -100.0 -80.0\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature 278.0 282.0 280.7 288.3 285.4 275.9 ... 275.9 285.7 275.8 283.7 281.8
array([[[277.95199244, 282.03019204],\n",
+ " [280.71852405, 288.30962373]],\n",
+ "\n",
+ " [[285.37426651, 275.88078048],\n",
+ " [280.81104924, 275.86434679]],\n",
+ "\n",
+ " [[285.66779544, 275.7531373 ],\n",
+ " [283.67698247, 281.84754872]]]) Coordinates: (3)
Indexes: (3)
PandasIndex
PandasIndex(DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03'], dtype='datetime64[ns]', name='time', freq='D')) PandasIndex
PandasIndex(Index([25.0, 40.0], dtype='float64', name='lat')) PandasIndex
PandasIndex(Index([-100.0, -80.0], dtype='float64', name='lon')) Attributes: (2)
units : kelvin standard_name : air_temperature "
+ ],
+ "text/plain": [
+ "\n",
+ "array([[[277.95199244, 282.03019204],\n",
+ " [280.71852405, 288.30962373]],\n",
+ "\n",
+ " [[285.37426651, 275.88078048],\n",
+ " [280.81104924, 275.86434679]],\n",
+ "\n",
+ " [[285.66779544, 275.7531373 ],\n",
+ " [283.67698247, 281.84754872]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 2018-01-03\n",
+ " * lat (lat) float64 25.0 40.0\n",
+ " * lon (lon) float64 -100.0 -80.0\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "temp.sel(\n",
+ " time=slice('2018-01-01', '2018-01-03'), lon=slice(-110, -70), lat=slice(25, 45)\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "
Info
\n",
+ " The calling sequence for
slice
always looks like
slice(start, stop[, step])
, where
step
is optional.\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Notice how the length of each coordinate axis has changed due to our slicing."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### One more selection method: `.loc`\n",
+ "\n",
+ "All of these operations can also be done within square brackets on the `.loc` attribute of the `DataArray`:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray (lat: 3, lon: 4)>\n",
+ "array([[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]])\n",
+ "Coordinates:\n",
+ " time datetime64[ns] 2018-01-02\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature 275.5 285.4 275.9 285.6 290.6 280.8 ... 280.8 278.1 290.5 291.4 284.6
array([[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]]) Coordinates: (3)
Indexes: (2)
Attributes: (2)
units : kelvin standard_name : air_temperature "
+ ],
+ "text/plain": [
+ "\n",
+ "array([[275.53284611, 285.37426651, 275.88078048, 285.61579451],\n",
+ " [290.57368097, 280.81104924, 275.86434679, 280.78811485],\n",
+ " [278.07454137, 290.51130363, 291.4245341 , 284.55193302]])\n",
+ "Coordinates:\n",
+ " time datetime64[ns] 2018-01-02\n",
+ " * lat (lat) float64 25.0 40.0 55.0\n",
+ " * lon (lon) float64 -120.0 -100.0 -80.0 -60.0\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "temp.loc['2018-01-02']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This is sort of in between the NumPy-style selection\n",
+ "```\n",
+ "temp[1,:,:]\n",
+ "```\n",
+ "and the fully label-based selection using `.sel()`\n",
+ "\n",
+ "With `.loc`, we make use of the coordinate *values*, but lose the ability to specify the *names* of the various dimensions. Instead, the slicing must be done in the correct order:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray (time: 3, lat: 2, lon: 2)>\n",
+ "array([[[277.95199244, 282.03019204],\n",
+ " [280.71852405, 288.30962373]],\n",
+ "\n",
+ " [[285.37426651, 275.88078048],\n",
+ " [280.81104924, 275.86434679]],\n",
+ "\n",
+ " [[285.66779544, 275.7531373 ],\n",
+ " [283.67698247, 281.84754872]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 2018-01-03\n",
+ " * lat (lat) float64 25.0 40.0\n",
+ " * lon (lon) float64 -100.0 -80.0\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature 278.0 282.0 280.7 288.3 285.4 275.9 ... 275.9 285.7 275.8 283.7 281.8
array([[[277.95199244, 282.03019204],\n",
+ " [280.71852405, 288.30962373]],\n",
+ "\n",
+ " [[285.37426651, 275.88078048],\n",
+ " [280.81104924, 275.86434679]],\n",
+ "\n",
+ " [[285.66779544, 275.7531373 ],\n",
+ " [283.67698247, 281.84754872]]]) Coordinates: (3)
Indexes: (3)
PandasIndex
PandasIndex(DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03'], dtype='datetime64[ns]', name='time', freq='D')) PandasIndex
PandasIndex(Index([25.0, 40.0], dtype='float64', name='lat')) PandasIndex
PandasIndex(Index([-100.0, -80.0], dtype='float64', name='lon')) Attributes: (2)
units : kelvin standard_name : air_temperature "
+ ],
+ "text/plain": [
+ "\n",
+ "array([[[277.95199244, 282.03019204],\n",
+ " [280.71852405, 288.30962373]],\n",
+ "\n",
+ " [[285.37426651, 275.88078048],\n",
+ " [280.81104924, 275.86434679]],\n",
+ "\n",
+ " [[285.66779544, 275.7531373 ],\n",
+ " [283.67698247, 281.84754872]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 2018-01-03\n",
+ " * lat (lat) float64 25.0 40.0\n",
+ " * lon (lon) float64 -100.0 -80.0\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "temp.loc['2018-01-01':'2018-01-03', 25:45, -110:-70]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "One advantage of using `.loc` is that we can use NumPy-style slice notation like `25:45`, rather than the more verbose `slice(25,45)`. But of course that also works:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray (time: 3, lat: 2, lon: 2)>\n",
+ "array([[[277.95199244, 282.03019204],\n",
+ " [280.71852405, 288.30962373]],\n",
+ "\n",
+ " [[285.37426651, 275.88078048],\n",
+ " [280.81104924, 275.86434679]],\n",
+ "\n",
+ " [[285.66779544, 275.7531373 ],\n",
+ " [283.67698247, 281.84754872]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 2018-01-03\n",
+ " * lat (lat) float64 25.0 40.0\n",
+ " * lon (lon) float64 -100.0 -80.0\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature 278.0 282.0 280.7 288.3 285.4 275.9 ... 275.9 285.7 275.8 283.7 281.8
array([[[277.95199244, 282.03019204],\n",
+ " [280.71852405, 288.30962373]],\n",
+ "\n",
+ " [[285.37426651, 275.88078048],\n",
+ " [280.81104924, 275.86434679]],\n",
+ "\n",
+ " [[285.66779544, 275.7531373 ],\n",
+ " [283.67698247, 281.84754872]]]) Coordinates: (3)
Indexes: (3)
PandasIndex
PandasIndex(DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03'], dtype='datetime64[ns]', name='time', freq='D')) PandasIndex
PandasIndex(Index([25.0, 40.0], dtype='float64', name='lat')) PandasIndex
PandasIndex(Index([-100.0, -80.0], dtype='float64', name='lon')) Attributes: (2)
units : kelvin standard_name : air_temperature "
+ ],
+ "text/plain": [
+ "\n",
+ "array([[[277.95199244, 282.03019204],\n",
+ " [280.71852405, 288.30962373]],\n",
+ "\n",
+ " [[285.37426651, 275.88078048],\n",
+ " [280.81104924, 275.86434679]],\n",
+ "\n",
+ " [[285.66779544, 275.7531373 ],\n",
+ " [283.67698247, 281.84754872]]])\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2018-01-01 2018-01-02 2018-01-03\n",
+ " * lat (lat) float64 25.0 40.0\n",
+ " * lon (lon) float64 -100.0 -80.0\n",
+ "Attributes:\n",
+ " units: kelvin\n",
+ " standard_name: air_temperature"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "temp.loc['2018-01-01':'2018-01-03', slice(25, 45), -110:-70]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "What *doesn't* work is passing the slices in a different order:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# This will generate an error\n",
+ "# temp.loc[-110:-70, 25:45,'2018-01-01':'2018-01-03']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Opening netCDF data\n",
+ "\n",
+ "With its close ties to the netCDF data model, Xarray also supports netCDF as a first-class file format. This means it has easy support for opening netCDF datasets, so long as they conform to some of Xarray's limitations (such as 1-dimensional coordinates).\n",
+ "\n",
+ "### Access netCDF data with `xr.open_dataset`"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Once we have a valid path to a data file that Xarray knows how to read, we can open it like this:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.Dataset>\n",
+ "Dimensions: (time: 1737, range: 600, frequency: 1,\n",
+ " sweep: 1, r_calib: 1)\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2020-03-12T00:0...\n",
+ " * frequency (frequency) float32 3.489e+10\n",
+ " * range (range) float32 100.7 ... 1.806e+04\n",
+ " azimuth (time) float32 0.0 0.0 0.0 ... 0.0 0.0\n",
+ " elevation (time) float32 90.0 90.0 ... 90.0 90.0\n",
+ "Dimensions without coordinates: sweep, r_calib\n",
+ "Data variables: (12/38)\n",
+ " base_time datetime64[ns] 2020-03-12\n",
+ " time_offset (time) datetime64[ns] 2020-03-12T00:0...\n",
+ " linear_depolarization_ratio (time, range) float32 52.99 ... 19.53\n",
+ " mean_doppler_velocity (time, range) float32 -0.5536 ... -2.209\n",
+ " mean_doppler_velocity_crosspolar_v (time, range) float32 nan nan ... nan\n",
+ " reflectivity (time, range) float32 -52.99 ... -19.53\n",
+ " ... ...\n",
+ " longitude float32 15.68\n",
+ " altitude float32 2.0\n",
+ " altitude_agl float32 nan\n",
+ " lat float32 69.14\n",
+ " lon float32 15.68\n",
+ " alt float32 2.0\n",
+ "Attributes: (12/33)\n",
+ " command_line: kazrcfrqc -D 2 -s anx -f M1 -R -n kazrcfrgeqc -...\n",
+ " Conventions: ARM-1.2 CF/Radial-1.4 instrument_parameters rad...\n",
+ " process_version: ingest-kazrcfrqc-0.0-0.dev0.dirty.4.12.14-197.7...\n",
+ " dod_version: kazrcfrgeqc-b1-1.0\n",
+ " input_source: /data/collection/anx/anxkazrM1.00/KAZR_MOMENTS_...\n",
+ " site_id: anx\n",
+ " ... ...\n",
+ " scan_name: \n",
+ " software_version: 1.7.6 (Wed Mar 23 17:10:35 UTC 2016 leachman\n",
+ " title: ARM KAZR Moments B1\n",
+ " transform_history: Variable 'censor_mask' set as a bit mask. SNR ...\n",
+ " doi: 10.5439/1478370\n",
+ " history: created by user schuman on machine cirrus16.ccs... Dimensions: time : 1737range : 600frequency : 1sweep : 1r_calib : 1
Coordinates: (5)
time
(time)
datetime64[ns]
2020-03-12T00:00:00.835386 ... 2...
long_name : Time offset from midnight standard_name : time array(['2020-03-12T00:00:00.835386000', '2020-03-12T00:00:02.908968000',\n",
+ " '2020-03-12T00:00:04.982561000', ..., '2020-03-12T00:59:56.457473000',\n",
+ " '2020-03-12T00:59:58.531066000', '2020-03-12T01:00:00.604677000'],\n",
+ " dtype='datetime64[ns]') frequency
(frequency)
float32
3.489e+10
long_name : Transmit center frequency units : Hz standard_name : radiation_frequency meta_group : instrument_parameters array([3.489e+10], dtype=float32) range
(range)
float32
100.7 130.7 ... 1.803e+04 1.806e+04
long_name : Range to measurement volume units : m meters_between_gates : 29.979246 meters_to_center_of_first_gate : 100.679245 spacing_is_constant : True standard_name : projection_range_coordinate axis : radial_range_coordinate array([ 100.679245, 130.6585 , 160.63774 , ..., 17998.29 ,\n",
+ " 18028.268 , 18058.248 ], dtype=float32) azimuth
(time)
float32
0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
long_name : Azimuth angle from true north units : degree standard_name : sensor_to_target_azimuth_angle axis : radial_azimuth_coordinate array([0., 0., 0., ..., 0., 0., 0.], dtype=float32) elevation
(time)
float32
90.0 90.0 90.0 ... 90.0 90.0 90.0
long_name : Elevation angle from horizontal plane units : degree standard_name : sensor_to_target_elevation_angle axis : radial_elevation_coordinate array([90., 90., 90., ..., 90., 90., 90.], dtype=float32) Data variables: (38)
base_time
()
datetime64[ns]
2020-03-12
string : 2020-03-12 00:00:00 0:00 long_name : Base time in Epoch ancillary_variables : time_offset array('2020-03-12T00:00:00.000000000', dtype='datetime64[ns]') time_offset
(time)
datetime64[ns]
2020-03-12T00:00:00.835386 ... 2...
long_name : Time offset from base_time ancillary_variables : base_time array(['2020-03-12T00:00:00.835386000', '2020-03-12T00:00:02.908968000',\n",
+ " '2020-03-12T00:00:04.982561000', ...,\n",
+ " '2020-03-12T00:59:56.457473000', '2020-03-12T00:59:58.531066000',\n",
+ " '2020-03-12T01:00:00.604677000'], dtype='datetime64[ns]') linear_depolarization_ratio
(time, range)
float32
52.99 33.44 22.7 ... 18.83 19.53
long_name : Linear depolarization ratio, channel unspecified units : dB standard_name : radar_linear_depolarization_ratio array([[52.98858 , 33.44188 , 22.70005 , ..., 20.438488 , 18.394522 ,\n",
+ " 18.08537 ],\n",
+ " [54.271557 , 37.595207 , 24.503832 , ..., 18.23519 , 18.427814 ,\n",
+ " 18.343391 ],\n",
+ " [57.0884 , 35.749813 , 23.610859 , ..., 19.081789 , 20.370712 ,\n",
+ " 19.395697 ],\n",
+ " ...,\n",
+ " [54.239452 , 15.923687 , 4.929783 , ..., 18.02235 , 19.29225 ,\n",
+ " 18.966452 ],\n",
+ " [54.03137 , 13.457609 , 3.1402721, ..., 18.539585 , 20.430164 ,\n",
+ " 19.91412 ],\n",
+ " [53.768593 , 13.796487 , 3.124815 , ..., 17.681095 , 18.827333 ,\n",
+ " 19.52887 ]], dtype=float32) mean_doppler_velocity
(time, range)
float32
-0.5536 -0.05167 ... -1.932 -2.209
long_name : Radial mean Doppler velocity, positive for motion away from the instrument units : m/s standard_name : radial_velocity_of_scatterers_away_from_instrument array([[-0.5536006 , -0.05167331, -0.19001885, ..., 7.4954395 ,\n",
+ " -4.546204 , 6.5347877 ],\n",
+ " [-0.14778705, 0.6839852 , 0.21919268, ..., 1.2145524 ,\n",
+ " 5.692579 , 4.4639735 ],\n",
+ " [-0.04973162, -0.24098825, -0.3225393 , ..., 2.0404994 ,\n",
+ " -2.4127705 , 1.221591 ],\n",
+ " ...,\n",
+ " [ 0.06846887, -0.4324876 , -0.32860708, ..., -6.2284374 ,\n",
+ " 5.573165 , 5.2984157 ],\n",
+ " [ 0.06045939, -0.62107444, -0.63685066, ..., 4.5826592 ,\n",
+ " -5.204195 , 1.744877 ],\n",
+ " [-0.3307915 , -0.98538435, -0.87203807, ..., 4.2273297 ,\n",
+ " -1.9322017 , -2.2091355 ]], dtype=float32) mean_doppler_velocity_crosspolar_v
(time, range)
float32
nan nan nan nan ... nan nan nan nan
long_name : Doppler velocity, crosspolar for vertical channel units : m/s standard_name : radial_velocity_of_scatterers_away_from_instrument array([[nan, nan, nan, ..., nan, nan, nan],\n",
+ " [nan, nan, nan, ..., nan, nan, nan],\n",
+ " [nan, nan, nan, ..., nan, nan, nan],\n",
+ " ...,\n",
+ " [nan, nan, nan, ..., nan, nan, nan],\n",
+ " [nan, nan, nan, ..., nan, nan, nan],\n",
+ " [nan, nan, nan, ..., nan, nan, nan]], dtype=float32) reflectivity
(time, range)
float32
-52.99 -33.44 ... -18.83 -19.53
long_name : Equivalent reflectivity factor units : dBZ standard_name : equivalent_reflectivity_factor applied_bias_correction : [] array([[-52.98858 , -33.44188 , -22.70005 , ..., -20.438488 ,\n",
+ " -18.394522 , -18.08537 ],\n",
+ " [-54.271557 , -37.595207 , -24.503832 , ..., -18.23519 ,\n",
+ " -18.427814 , -18.343391 ],\n",
+ " [-57.0884 , -35.749813 , -23.610859 , ..., -19.081789 ,\n",
+ " -20.370712 , -19.395697 ],\n",
+ " ...,\n",
+ " [-54.239452 , -15.923687 , -4.929783 , ..., -18.02235 ,\n",
+ " -19.29225 , -18.966452 ],\n",
+ " [-54.03137 , -13.457609 , -3.1402721, ..., -18.539585 ,\n",
+ " -20.430164 , -19.91412 ],\n",
+ " [-53.768593 , -13.796487 , -3.124815 , ..., -17.681095 ,\n",
+ " -18.827333 , -19.52887 ]], dtype=float32) reflectivity_crosspolar_v
(time, range)
float32
nan nan nan nan ... nan nan nan nan
long_name : Equivalent reflectivity factor, crosspolar for vertical channel units : dBZ standard_name : equivalent_reflectivity_factor array([[nan, nan, nan, ..., nan, nan, nan],\n",
+ " [nan, nan, nan, ..., nan, nan, nan],\n",
+ " [nan, nan, nan, ..., nan, nan, nan],\n",
+ " ...,\n",
+ " [nan, nan, nan, ..., nan, nan, nan],\n",
+ " [nan, nan, nan, ..., nan, nan, nan],\n",
+ " [nan, nan, nan, ..., nan, nan, nan]], dtype=float32) signal_to_noise_ratio_copolar_h
(time, range)
float32
-14.15 3.137 ... -25.04 -25.76
long_name : Signal-to-noise ratio, horizontal channel units : dB standard_name : radar_signal_to_noise_ratio_copolar_h array([[-14.147067 , 3.1371129, 12.08338 , ..., -26.642456 ,\n",
+ " -24.610779 , -24.316933 ],\n",
+ " [-15.4315 , -1.016921 , 10.27668 , ..., -24.436306 ,\n",
+ " -24.645214 , -24.575195 ],\n",
+ " [-18.246002 , 0.8276582, 11.169699 , ..., -25.284561 ,\n",
+ " -26.588509 , -25.626617 ],\n",
+ " ...,\n",
+ " [-15.3982115, 20.655453 , 29.853096 , ..., -24.225105 ,\n",
+ " -25.507244 , -25.196178 ],\n",
+ " [-15.188157 , 23.119865 , 31.642578 , ..., -24.74163 ,\n",
+ " -26.647049 , -26.145443 ],\n",
+ " [-14.92645 , 22.780106 , 31.65865 , ..., -23.884197 ,\n",
+ " -25.043514 , -25.759766 ]], dtype=float32) signal_to_noise_ratio_crosspolar_v
(time, range)
float32
43.25 40.99 39.19 ... -1.81 -1.824
long_name : Signal-to-noise ratio, Cross-polar for vertical channel units : dB standard_name : radar_signal_to_noise_ratio_crosspolar_v array([[43.25048 , 40.986153 , 39.191612 , ..., -1.7953453, -1.8097897,\n",
+ " -1.824234 ],\n",
+ " [43.25048 , 40.986153 , 39.191612 , ..., -1.7953453, -1.8097897,\n",
+ " -1.824234 ],\n",
+ " [43.25048 , 40.986153 , 39.191612 , ..., -1.7953453, -1.8097897,\n",
+ " -1.824234 ],\n",
+ " ...,\n",
+ " [43.25048 , 40.986153 , 39.191612 , ..., -1.7953453, -1.8097897,\n",
+ " -1.824234 ],\n",
+ " [43.25048 , 40.986153 , 39.191612 , ..., -1.7953453, -1.8097897,\n",
+ " -1.824234 ],\n",
+ " [43.25048 , 40.986153 , 39.191612 , ..., -1.7953453, -1.8097897,\n",
+ " -1.824234 ]], dtype=float32) spectral_width
(time, range)
float32
0.403 0.5096 ... 0.02819 0.03595
long_name : Spectral width units : m/s standard_name : radar_doppler_spectrum_width array([[0.40295827, 0.509601 , 0.3605517 , ..., 0.0184083 , 0.02766061,\n",
+ " 0.03527451],\n",
+ " [0.16871047, 0.4841571 , 0.4368353 , ..., 0.04799652, 0.05363464,\n",
+ " 0.03493726],\n",
+ " [0.07107913, 0.6268935 , 0.5239613 , ..., 0.01739633, 0.03074479,\n",
+ " 0.01893842],\n",
+ " ...,\n",
+ " [0.21521306, 0.3755386 , 0.31390452, ..., 0.05247808, 0.02115512,\n",
+ " 0.04597259],\n",
+ " [0.22080302, 0.40931916, 0.34831166, ..., 0.05874264, 0.03912961,\n",
+ " 0.01874566],\n",
+ " [0.372599 , 0.21439385, 0.21733344, ..., 0.06100762, 0.02819073,\n",
+ " 0.03594923]], dtype=float32) spectral_width_crosspolar_v
(time, range)
float32
nan nan nan nan ... nan nan nan nan
long_name : Spectral Width, Crosspolar for Vertical Channel units : m/s standard_name : radar_doppler_spectrum_width array([[nan, nan, nan, ..., nan, nan, nan],\n",
+ " [nan, nan, nan, ..., nan, nan, nan],\n",
+ " [nan, nan, nan, ..., nan, nan, nan],\n",
+ " ...,\n",
+ " [nan, nan, nan, ..., nan, nan, nan],\n",
+ " [nan, nan, nan, ..., nan, nan, nan],\n",
+ " [nan, nan, nan, ..., nan, nan, nan]], dtype=float32) fixed_angle
(sweep)
float32
90.0
long_name : Ray target fixed angle units : degree array([90.], dtype=float32) n_samples
(time)
float64
15.0 15.0 15.0 ... 15.0 15.0 15.0
long_name : Number of Samples used to compute moments units : 1 meta_group : instrument_parameters standard_name : number_of_samples_used_to_compute_moments array([15., 15., 15., ..., 15., 15., 15.]) noise_figure
(time)
float32
-67.02 -67.02 ... -67.02 -67.02
long_name : Receiver noise figure estimated from noise source using y-factor method units : dB array([-67.0182, -67.0182, -67.0182, ..., -67.0182, -67.0182, -67.0182],\n",
+ " dtype=float32) nyquist_velocity
(time)
float32
7.968 7.968 7.968 ... 7.968 7.968
long_name : Unambiguous doppler velocity units : m/s meta_group : instrument_parameters array([7.9682517, 7.9682517, 7.9682517, ..., 7.9682517, 7.9682517,\n",
+ " 7.9682517], dtype=float32) prt
(time)
float32
0.00027 0.00027 ... 0.00027 0.00027
long_name : Pulse repetition time units : s array([0.00027005, 0.00027005, 0.00027005, ..., 0.00027005, 0.00027005,\n",
+ " 0.00027005], dtype=float32) pulse_width
(time)
float32
3e-07 3e-07 3e-07 ... 3e-07 3e-07
long_name : Transmitter pulse width units : s meta_group : instrument_parameters array([3.e-07, 3.e-07, 3.e-07, ..., 3.e-07, 3.e-07, 3.e-07], dtype=float32) r_calib_radar_constant_copol
(r_calib)
float32
-11.88
long_name : Calibrated radar constant copolar units : dB meta_group : radar_calibration standard_name : calibrated_radar_constant_h_channel array([-11.881999], dtype=float32) r_calib_radar_constant_crosspol
(r_calib)
float32
-16.29
long_name : Calibrated radar constant crosspolar units : dB meta_group : radar_calibration standard_name : calibrated_radar_constant_h_channel array([-16.291077], dtype=float32) r_calib_two_way_radome_loss_h
(r_calib)
float32
2.0
long_name : Radar calibration two way radome loss horizontal channel units : dB standard_name : radar_calibration_two_way_radome_loss_h_channel array([2.], dtype=float32) radar_beam_width_h
()
float32
0.19
long_name : Half power radar beam width horizontal channel units : degree array(0.19, dtype=float32) radar_beam_width_v
()
float32
0.19
long_name : Half power radar beam width vertical channel units : degree array(0.19, dtype=float32) radar_measured_sky_noise_h
(time)
float32
-68.74 -68.76 ... -68.7 -68.73
long_name : Measured sky noise, horizontal channel units : dBm array([-68.74112 , -68.75721 , -68.749275, ..., -68.71582 , -68.70131 ,\n",
+ " -68.72572 ], dtype=float32) radar_measured_sky_noise_v
(time)
float32
nan nan nan nan ... nan nan nan nan
long_name : Measured sky noise, vertical channel units : dBm array([nan, nan, nan, ..., nan, nan, nan], dtype=float32) radar_measured_transmit_power
(time)
float32
50.24 50.24 50.24 ... 50.24 50.24
long_name : Radar measured transmit peak power units : dBm meta_group : instrument_parameters standard_name : radar_transmit_power array([50.2447, 50.2447, 50.2447, ..., 50.2447, 50.2447, 50.2447],\n",
+ " dtype=float32) receiver_gain_copol
(time)
float32
39.65 39.65 39.65 ... 39.65 39.65
long_name : Receiver gain copol units : 1 array([39.6501, 39.6501, 39.6501, ..., 39.6501, 39.6501, 39.6501],\n",
+ " dtype=float32) sweep_end_ray_index
(sweep)
float64
1.736e+03
long_name : Index of last ray in sweep units : 1 sweep_mode
(sweep)
|S22
b'vertical pointing '
long_name : Scan mode for sweep units : 1 array([b'vertical pointing '], dtype='|S22') sweep_number
(sweep)
float64
0.0
long_name : Sweep index number 0 based units : 1 sweep_start_ray_index
(sweep)
float64
0.0
long_name : Index of first ray in sweep units : 1 unambiguous_range
(time)
float32
3.07e+04 3.07e+04 ... 3.07e+04
long_name : Unambiguous Range units : m meta_group : instrument_parameters standard_name : unambiguous_range array([30698.748, 30698.748, 30698.748, ..., 30698.748, 30698.748,\n",
+ " 30698.748], dtype=float32) latitude
()
float32
69.14
long_name : Latitude units : degree_N standard_name : latitude valid_min : -90.0 valid_max : 90.0 array(69.14128, dtype=float32) longitude
()
float32
15.68
long_name : Longitude units : degree_E standard_name : longitude valid_min : -180.0 valid_max : 180.0 array(15.684167, dtype=float32) altitude
()
float32
2.0
long_name : Altitude units : m standard_name : altitude altitude_agl
()
float32
nan
long_name : Altitude above ground level units : m standard_name : height array(nan, dtype=float32) lat
()
float32
69.14
long_name : North latitude units : degree_N standard_name : latitude valid_min : -90.0 valid_max : 90.0 array(69.14128, dtype=float32) lon
()
float32
15.68
long_name : East longitude units : degree_E standard_name : longitude valid_min : -180.0 valid_max : 180.0 array(15.684167, dtype=float32) alt
()
float32
2.0
long_name : Altitude above mean sea level units : m standard_name : altitude Indexes: (3)
PandasIndex
PandasIndex(DatetimeIndex(['2020-03-12 00:00:00.835386', '2020-03-12 00:00:02.908968',\n",
+ " '2020-03-12 00:00:04.982561', '2020-03-12 00:00:07.056160',\n",
+ " '2020-03-12 00:00:09.129764', '2020-03-12 00:00:11.203356',\n",
+ " '2020-03-12 00:00:13.276968', '2020-03-12 00:00:15.350554',\n",
+ " '2020-03-12 00:00:17.424174', '2020-03-12 00:00:19.497757',\n",
+ " ...\n",
+ " '2020-03-12 00:59:41.942290', '2020-03-12 00:59:44.015871',\n",
+ " '2020-03-12 00:59:46.089474', '2020-03-12 00:59:48.163067',\n",
+ " '2020-03-12 00:59:50.236666', '2020-03-12 00:59:52.310262',\n",
+ " '2020-03-12 00:59:54.383867', '2020-03-12 00:59:56.457473',\n",
+ " '2020-03-12 00:59:58.531066', '2020-03-12 01:00:00.604677'],\n",
+ " dtype='datetime64[ns]', name='time', length=1737, freq=None)) PandasIndex
PandasIndex(Index([34890000000.0], dtype='float32', name='frequency')) PandasIndex
PandasIndex(Index([100.67924499511719, 130.6584930419922, 160.6377410888672,\n",
+ " 190.6169891357422, 220.59622192382812, 250.57546997070312,\n",
+ " 280.5547180175781, 310.5339660644531, 340.5132141113281,\n",
+ " 370.4924621582031,\n",
+ " ...\n",
+ " 17788.43359375, 17818.4140625, 17848.392578125,\n",
+ " 17878.37109375, 17908.3515625, 17938.330078125,\n",
+ " 17968.310546875, 17998.2890625, 18028.267578125,\n",
+ " 18058.248046875],\n",
+ " dtype='float32', name='range', length=600)) Attributes: (33)
command_line : kazrcfrqc -D 2 -s anx -f M1 -R -n kazrcfrgeqc --asynchronous --disable-email -b 20200311.235959 -e 20200312.000009 Conventions : ARM-1.2 CF/Radial-1.4 instrument_parameters radar_parameters radar_calibration process_version : ingest-kazrcfrqc-0.0-0.dev0.dirty.4.12.14-197.7_5.0.95-cray_ari_s dod_version : kazrcfrgeqc-b1-1.0 input_source : /data/collection/anx/anxkazrM1.00/KAZR_MOMENTS_20200312-000003.dat site_id : anx platform_id : kazrcfrgeqc facility_id : M1 data_level : b1 location_description : Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE), Andoy, Norway datastream : anxkazrcfrgeqcM1.b1 antenna_altitude : 3 m antenna_diameter : 2 m comment : compression_details : 2-dimensional fields of type short can be uncompressed as follows: multiply compressed values by scale_factor field attribute, then add the add_offset field attribute. digital_rx_dec : 24 dualpol : [] fft_len : 512 filter_length : 106 institution : Department of Energy Atmospheric Radiation Measurement Program n_gates : 1024 num_spectral_averages : 15 pulse_compression_ratio : 13.3 range_gate_spacing_m : 29.979246 range_offset_ch1 : -1.4 m range_offset_ch2 : 70.7 m scan_mode : scan_name : software_version : 1.7.6 (Wed Mar 23 17:10:35 UTC 2016 leachman title : ARM KAZR Moments B1 transform_history : Variable 'censor_mask' set as a bit mask. SNR threshold of 0.0 applied based on variable 'signal_to_noise_ratio_copolar_h', mask value is 1. doi : 10.5439/1478370 history : created by user schuman on machine cirrus16.ccs.ornl.gov at 2022-06-23 20:43:27, using ingest-kazrcfrqc-0.0-0.dev0.dirty.4.12.14-197.7_5.0.95-cray_ari_s "
+ ],
+ "text/plain": [
+ "\n",
+ "Dimensions: (time: 1737, range: 600, frequency: 1,\n",
+ " sweep: 1, r_calib: 1)\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2020-03-12T00:0...\n",
+ " * frequency (frequency) float32 3.489e+10\n",
+ " * range (range) float32 100.7 ... 1.806e+04\n",
+ " azimuth (time) float32 0.0 0.0 0.0 ... 0.0 0.0\n",
+ " elevation (time) float32 90.0 90.0 ... 90.0 90.0\n",
+ "Dimensions without coordinates: sweep, r_calib\n",
+ "Data variables: (12/38)\n",
+ " base_time datetime64[ns] 2020-03-12\n",
+ " time_offset (time) datetime64[ns] 2020-03-12T00:0...\n",
+ " linear_depolarization_ratio (time, range) float32 52.99 ... 19.53\n",
+ " mean_doppler_velocity (time, range) float32 -0.5536 ... -2.209\n",
+ " mean_doppler_velocity_crosspolar_v (time, range) float32 nan nan ... nan\n",
+ " reflectivity (time, range) float32 -52.99 ... -19.53\n",
+ " ... ...\n",
+ " longitude float32 15.68\n",
+ " altitude float32 2.0\n",
+ " altitude_agl float32 nan\n",
+ " lat float32 69.14\n",
+ " lon float32 15.68\n",
+ " alt float32 2.0\n",
+ "Attributes: (12/33)\n",
+ " command_line: kazrcfrqc -D 2 -s anx -f M1 -R -n kazrcfrgeqc -...\n",
+ " Conventions: ARM-1.2 CF/Radial-1.4 instrument_parameters rad...\n",
+ " process_version: ingest-kazrcfrqc-0.0-0.dev0.dirty.4.12.14-197.7...\n",
+ " dod_version: kazrcfrgeqc-b1-1.0\n",
+ " input_source: /data/collection/anx/anxkazrM1.00/KAZR_MOMENTS_...\n",
+ " site_id: anx\n",
+ " ... ...\n",
+ " scan_name: \n",
+ " software_version: 1.7.6 (Wed Mar 23 17:10:35 UTC 2016 leachman\n",
+ " title: ARM KAZR Moments B1\n",
+ " transform_history: Variable 'censor_mask' set as a bit mask. SNR ...\n",
+ " doi: 10.5439/1478370\n",
+ " history: created by user schuman on machine cirrus16.ccs..."
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ds = xr.open_dataset(\"../data/comble/radar/anxkazrcfrgeqcM1.b1.20200312.000000.nc\").compute()\n",
+ "ds"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Read in Multiple Files Using `open_mfdataset`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "files = sorted(glob.glob(\"../data/comble/radar/*\"))\n",
+ "ds = xr.open_mfdataset(files).compute()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Subsetting the `Dataset`\n",
+ "\n",
+ "Our call to `xr.open_dataset()` above returned a `Dataset` object that we've decided to call `ds`. We can then pull out individual fields:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray 'reflectivity' (time: 83334, range: 600)>\n",
+ "array([[-52.98858 , -33.44188 , -22.70005 , ..., -20.438488 ,\n",
+ " -18.394522 , -18.08537 ],\n",
+ " [-54.271557 , -37.595207 , -24.503832 , ..., -18.23519 ,\n",
+ " -18.427814 , -18.343391 ],\n",
+ " [-57.0884 , -35.749813 , -23.610859 , ..., -19.081789 ,\n",
+ " -20.370712 , -19.395697 ],\n",
+ " ...,\n",
+ " [-54.291916 , -10.5314 , 0.06862259, ..., -19.969387 ,\n",
+ " -16.157347 , -20.416422 ],\n",
+ " [-54.820114 , -10.11786 , 0.45381927, ..., -19.670504 ,\n",
+ " -21.49987 , -20.728188 ],\n",
+ " [-53.631023 , -8.151935 , 1.9688454 , ..., -19.870188 ,\n",
+ " -17.26012 , -21.931446 ]], dtype=float32)\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2020-03-12T00:00:00.835386 ... 2020-03-1...\n",
+ " * range (range) float32 100.7 130.7 160.6 ... 1.8e+04 1.803e+04 1.806e+04\n",
+ " azimuth (time) float32 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
+ " elevation (time) float32 90.0 90.0 90.0 90.0 90.0 ... 90.0 90.0 90.0 90.0\n",
+ "Attributes:\n",
+ " long_name: Equivalent reflectivity factor\n",
+ " units: dBZ\n",
+ " standard_name: equivalent_reflectivity_factor\n",
+ " applied_bias_correction: [] -52.99 -33.44 -22.7 -19.34 -11.32 ... -18.52 -19.87 -17.26 -21.93
array([[-52.98858 , -33.44188 , -22.70005 , ..., -20.438488 ,\n",
+ " -18.394522 , -18.08537 ],\n",
+ " [-54.271557 , -37.595207 , -24.503832 , ..., -18.23519 ,\n",
+ " -18.427814 , -18.343391 ],\n",
+ " [-57.0884 , -35.749813 , -23.610859 , ..., -19.081789 ,\n",
+ " -20.370712 , -19.395697 ],\n",
+ " ...,\n",
+ " [-54.291916 , -10.5314 , 0.06862259, ..., -19.969387 ,\n",
+ " -16.157347 , -20.416422 ],\n",
+ " [-54.820114 , -10.11786 , 0.45381927, ..., -19.670504 ,\n",
+ " -21.49987 , -20.728188 ],\n",
+ " [-53.631023 , -8.151935 , 1.9688454 , ..., -19.870188 ,\n",
+ " -17.26012 , -21.931446 ]], dtype=float32) Coordinates: (4)
time
(time)
datetime64[ns]
2020-03-12T00:00:00.835386 ... 2...
long_name : Time offset from midnight standard_name : time array(['2020-03-12T00:00:00.835386000', '2020-03-12T00:00:02.908968000',\n",
+ " '2020-03-12T00:00:04.982561000', ..., '2020-03-13T23:59:55.982886000',\n",
+ " '2020-03-13T23:59:58.056505000', '2020-03-14T00:00:00.130073000'],\n",
+ " dtype='datetime64[ns]') range
(range)
float32
100.7 130.7 ... 1.803e+04 1.806e+04
long_name : Range to measurement volume units : m meters_between_gates : 29.979246 meters_to_center_of_first_gate : 100.679245 spacing_is_constant : True standard_name : projection_range_coordinate axis : radial_range_coordinate array([ 100.679245, 130.6585 , 160.63774 , ..., 17998.29 ,\n",
+ " 18028.268 , 18058.248 ], dtype=float32) azimuth
(time)
float32
0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
long_name : Azimuth angle from true north units : degree standard_name : sensor_to_target_azimuth_angle axis : radial_azimuth_coordinate array([0., 0., 0., ..., 0., 0., 0.], dtype=float32) elevation
(time)
float32
90.0 90.0 90.0 ... 90.0 90.0 90.0
long_name : Elevation angle from horizontal plane units : degree standard_name : sensor_to_target_elevation_angle axis : radial_elevation_coordinate array([90., 90., 90., ..., 90., 90., 90.], dtype=float32) Indexes: (2)
PandasIndex
PandasIndex(DatetimeIndex(['2020-03-12 00:00:00.835386', '2020-03-12 00:00:02.908968',\n",
+ " '2020-03-12 00:00:04.982561', '2020-03-12 00:00:07.056160',\n",
+ " '2020-03-12 00:00:09.129764', '2020-03-12 00:00:11.203356',\n",
+ " '2020-03-12 00:00:13.276968', '2020-03-12 00:00:15.350554',\n",
+ " '2020-03-12 00:00:17.424174', '2020-03-12 00:00:19.497757',\n",
+ " ...\n",
+ " '2020-03-13 23:59:41.467673', '2020-03-13 23:59:43.541296',\n",
+ " '2020-03-13 23:59:45.614876', '2020-03-13 23:59:47.688486',\n",
+ " '2020-03-13 23:59:49.762073', '2020-03-13 23:59:51.835683',\n",
+ " '2020-03-13 23:59:53.909306', '2020-03-13 23:59:55.982886',\n",
+ " '2020-03-13 23:59:58.056505', '2020-03-14 00:00:00.130073'],\n",
+ " dtype='datetime64[ns]', name='time', length=83334, freq=None)) PandasIndex
PandasIndex(Index([100.67924499511719, 130.6584930419922, 160.6377410888672,\n",
+ " 190.6169891357422, 220.59622192382812, 250.57546997070312,\n",
+ " 280.5547180175781, 310.5339660644531, 340.5132141113281,\n",
+ " 370.4924621582031,\n",
+ " ...\n",
+ " 17788.43359375, 17818.4140625, 17848.392578125,\n",
+ " 17878.37109375, 17908.3515625, 17938.330078125,\n",
+ " 17968.310546875, 17998.2890625, 18028.267578125,\n",
+ " 18058.248046875],\n",
+ " dtype='float32', name='range', length=600)) Attributes: (4)
long_name : Equivalent reflectivity factor units : dBZ standard_name : equivalent_reflectivity_factor applied_bias_correction : [] "
+ ],
+ "text/plain": [
+ "\n",
+ "array([[-52.98858 , -33.44188 , -22.70005 , ..., -20.438488 ,\n",
+ " -18.394522 , -18.08537 ],\n",
+ " [-54.271557 , -37.595207 , -24.503832 , ..., -18.23519 ,\n",
+ " -18.427814 , -18.343391 ],\n",
+ " [-57.0884 , -35.749813 , -23.610859 , ..., -19.081789 ,\n",
+ " -20.370712 , -19.395697 ],\n",
+ " ...,\n",
+ " [-54.291916 , -10.5314 , 0.06862259, ..., -19.969387 ,\n",
+ " -16.157347 , -20.416422 ],\n",
+ " [-54.820114 , -10.11786 , 0.45381927, ..., -19.670504 ,\n",
+ " -21.49987 , -20.728188 ],\n",
+ " [-53.631023 , -8.151935 , 1.9688454 , ..., -19.870188 ,\n",
+ " -17.26012 , -21.931446 ]], dtype=float32)\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2020-03-12T00:00:00.835386 ... 2020-03-1...\n",
+ " * range (range) float32 100.7 130.7 160.6 ... 1.8e+04 1.803e+04 1.806e+04\n",
+ " azimuth (time) float32 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
+ " elevation (time) float32 90.0 90.0 90.0 90.0 90.0 ... 90.0 90.0 90.0 90.0\n",
+ "Attributes:\n",
+ " long_name: Equivalent reflectivity factor\n",
+ " units: dBZ\n",
+ " standard_name: equivalent_reflectivity_factor\n",
+ " applied_bias_correction: []"
+ ]
+ },
+ "execution_count": 40,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ds.reflectivity"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "(recall that we can also use dictionary syntax like `ds['isobaric1']` to do the same thing)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Aggregation operations\n",
+ "\n",
+ "Not only can you use the named dimensions for manual slicing and indexing of data, but you can also use it to control aggregation operations, like `std` (standard deviation):"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray 'reflectivity' (time: 83334)>\n",
+ "array([ 9.987671, 10.009455, 9.983448, ..., 12.624017, 12.583106,\n",
+ " 12.608554], dtype=float32)\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2020-03-12T00:00:00.835386 ... 2020-03-1...\n",
+ " azimuth (time) float32 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
+ " elevation (time) float32 90.0 90.0 90.0 90.0 90.0 ... 90.0 90.0 90.0 90.0 Coordinates: (3)
time
(time)
datetime64[ns]
2020-03-12T00:00:00.835386 ... 2...
long_name : Time offset from midnight standard_name : time array(['2020-03-12T00:00:00.835386000', '2020-03-12T00:00:02.908968000',\n",
+ " '2020-03-12T00:00:04.982561000', ..., '2020-03-13T23:59:55.982886000',\n",
+ " '2020-03-13T23:59:58.056505000', '2020-03-14T00:00:00.130073000'],\n",
+ " dtype='datetime64[ns]') azimuth
(time)
float32
0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
long_name : Azimuth angle from true north units : degree standard_name : sensor_to_target_azimuth_angle axis : radial_azimuth_coordinate array([0., 0., 0., ..., 0., 0., 0.], dtype=float32) elevation
(time)
float32
90.0 90.0 90.0 ... 90.0 90.0 90.0
long_name : Elevation angle from horizontal plane units : degree standard_name : sensor_to_target_elevation_angle axis : radial_elevation_coordinate array([90., 90., 90., ..., 90., 90., 90.], dtype=float32) Indexes: (1)
PandasIndex
PandasIndex(DatetimeIndex(['2020-03-12 00:00:00.835386', '2020-03-12 00:00:02.908968',\n",
+ " '2020-03-12 00:00:04.982561', '2020-03-12 00:00:07.056160',\n",
+ " '2020-03-12 00:00:09.129764', '2020-03-12 00:00:11.203356',\n",
+ " '2020-03-12 00:00:13.276968', '2020-03-12 00:00:15.350554',\n",
+ " '2020-03-12 00:00:17.424174', '2020-03-12 00:00:19.497757',\n",
+ " ...\n",
+ " '2020-03-13 23:59:41.467673', '2020-03-13 23:59:43.541296',\n",
+ " '2020-03-13 23:59:45.614876', '2020-03-13 23:59:47.688486',\n",
+ " '2020-03-13 23:59:49.762073', '2020-03-13 23:59:51.835683',\n",
+ " '2020-03-13 23:59:53.909306', '2020-03-13 23:59:55.982886',\n",
+ " '2020-03-13 23:59:58.056505', '2020-03-14 00:00:00.130073'],\n",
+ " dtype='datetime64[ns]', name='time', length=83334, freq=None)) Attributes: (0)
"
+ ],
+ "text/plain": [
+ "\n",
+ "array([ 9.987671, 10.009455, 9.983448, ..., 12.624017, 12.583106,\n",
+ " 12.608554], dtype=float32)\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2020-03-12T00:00:00.835386 ... 2020-03-1...\n",
+ " azimuth (time) float32 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
+ " elevation (time) float32 90.0 90.0 90.0 90.0 90.0 ... 90.0 90.0 90.0 90.0"
+ ]
+ },
+ "execution_count": 41,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "reflectivity = ds['reflectivity']\n",
+ "reflectivity.std(dim=['range'])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "
Info
\n",
+ " Aggregation methods for Xarray objects operate over the named coordinate dimension(s) specified by keyword argument
dim
. Compare to NumPy, where aggregations operate over specified numbered
axes
.\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Using the sample dataset, we can calculate the temperature profile across our time period!\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.DataArray 'reflectivity' (range: 164)>\n",
+ "array([-54.97283 , -27.448778 , -20.162565 , -19.562199 , -18.778477 ,\n",
+ " -18.119287 , -17.527794 , -16.988394 , -16.463007 , -15.967142 ,\n",
+ " -15.499426 , -15.051485 , -14.6151285, -14.180205 , -13.741215 ,\n",
+ " -13.314495 , -12.919496 , -12.519125 , -12.125657 , -11.793983 ,\n",
+ " -11.46346 , -11.136843 , -10.837575 , -10.579378 , -10.352728 ,\n",
+ " -10.121803 , -9.91838 , -9.727786 , -9.562 , -9.403213 ,\n",
+ " -9.278362 , -9.164416 , -9.043377 , -8.949946 , -8.87279 ,\n",
+ " -8.785539 , -8.714188 , -8.660834 , -8.63176 , -8.631797 ,\n",
+ " -8.655435 , -8.736296 , -8.838785 , -8.97232 , -9.109644 ,\n",
+ " -9.261291 , -9.415421 , -9.583023 , -9.780044 , -9.9863405,\n",
+ " -10.229948 , -10.498003 , -10.806079 , -11.150559 , -11.517881 ,\n",
+ " -11.883155 , -12.284343 , -12.71636 , -13.150287 , -13.612416 ,\n",
+ " -14.078413 , -14.548593 , -14.97536 , -15.353441 , -15.719428 ,\n",
+ " -16.105438 , -16.462404 , -16.75374 , -17.007557 , -17.256771 ,\n",
+ " -17.526138 , -17.760715 , -18.019426 , -18.311287 , -18.61053 ,\n",
+ " -18.948696 , -19.272732 , -19.578465 , -19.825418 , -19.968918 ,\n",
+ " -20.109495 , -20.227057 , -20.284681 , -20.295177 , -20.303745 ,\n",
+ " -20.319271 , -20.342592 , -20.358269 , -20.396446 , -20.431572 ,\n",
+ " -20.457926 , -20.460478 , -20.448437 , -20.43627 , -20.421385 ,\n",
+ " -20.403185 , -20.37756 , -20.353485 , -20.315321 , -20.319935 ,\n",
+ " -20.34569 , -20.38963 , -20.437658 , -20.493881 , -20.569586 ,\n",
+ " -20.660471 , -20.765326 , -20.883121 , -21.032913 , -21.195692 ,\n",
+ " -21.407215 , -21.640852 , -21.891891 , -22.179762 , -22.432667 ,\n",
+ " -22.704782 , -22.983511 , -23.225466 , -23.498125 , -23.770803 ,\n",
+ " -24.01657 , -24.269527 , -24.522238 , -24.75132 , -24.98275 ,\n",
+ " -25.208271 , -25.422485 , -25.658016 , -25.903503 , -26.134922 ,\n",
+ " -26.398083 , -26.624973 , -26.863201 , -27.099102 , -27.301062 ,\n",
+ " -27.483305 , -27.609858 , -27.728413 , -27.851976 , -27.962738 ,\n",
+ " -28.049582 , -28.13378 , -28.235912 , -28.341232 , -28.436846 ,\n",
+ " -28.519205 , -28.613474 , -28.704872 , -28.763172 , -28.83498 ,\n",
+ " -28.902283 , -28.941643 , -28.963448 , -28.980585 , -29.02627 ,\n",
+ " -29.050957 , -29.09152 , -29.152311 , -29.214195 , -29.281126 ,\n",
+ " -29.355896 , -29.426785 , -29.483341 , -29.53072 ], dtype=float32)\n",
+ "Coordinates:\n",
+ " * range (range) float32 100.7 130.7 160.6 ... 4.927e+03 4.957e+03 4.987e+03 -54.97 -27.45 -20.16 -19.56 -18.78 ... -29.36 -29.43 -29.48 -29.53
array([-54.97283 , -27.448778 , -20.162565 , -19.562199 , -18.778477 ,\n",
+ " -18.119287 , -17.527794 , -16.988394 , -16.463007 , -15.967142 ,\n",
+ " -15.499426 , -15.051485 , -14.6151285, -14.180205 , -13.741215 ,\n",
+ " -13.314495 , -12.919496 , -12.519125 , -12.125657 , -11.793983 ,\n",
+ " -11.46346 , -11.136843 , -10.837575 , -10.579378 , -10.352728 ,\n",
+ " -10.121803 , -9.91838 , -9.727786 , -9.562 , -9.403213 ,\n",
+ " -9.278362 , -9.164416 , -9.043377 , -8.949946 , -8.87279 ,\n",
+ " -8.785539 , -8.714188 , -8.660834 , -8.63176 , -8.631797 ,\n",
+ " -8.655435 , -8.736296 , -8.838785 , -8.97232 , -9.109644 ,\n",
+ " -9.261291 , -9.415421 , -9.583023 , -9.780044 , -9.9863405,\n",
+ " -10.229948 , -10.498003 , -10.806079 , -11.150559 , -11.517881 ,\n",
+ " -11.883155 , -12.284343 , -12.71636 , -13.150287 , -13.612416 ,\n",
+ " -14.078413 , -14.548593 , -14.97536 , -15.353441 , -15.719428 ,\n",
+ " -16.105438 , -16.462404 , -16.75374 , -17.007557 , -17.256771 ,\n",
+ " -17.526138 , -17.760715 , -18.019426 , -18.311287 , -18.61053 ,\n",
+ " -18.948696 , -19.272732 , -19.578465 , -19.825418 , -19.968918 ,\n",
+ " -20.109495 , -20.227057 , -20.284681 , -20.295177 , -20.303745 ,\n",
+ " -20.319271 , -20.342592 , -20.358269 , -20.396446 , -20.431572 ,\n",
+ " -20.457926 , -20.460478 , -20.448437 , -20.43627 , -20.421385 ,\n",
+ " -20.403185 , -20.37756 , -20.353485 , -20.315321 , -20.319935 ,\n",
+ " -20.34569 , -20.38963 , -20.437658 , -20.493881 , -20.569586 ,\n",
+ " -20.660471 , -20.765326 , -20.883121 , -21.032913 , -21.195692 ,\n",
+ " -21.407215 , -21.640852 , -21.891891 , -22.179762 , -22.432667 ,\n",
+ " -22.704782 , -22.983511 , -23.225466 , -23.498125 , -23.770803 ,\n",
+ " -24.01657 , -24.269527 , -24.522238 , -24.75132 , -24.98275 ,\n",
+ " -25.208271 , -25.422485 , -25.658016 , -25.903503 , -26.134922 ,\n",
+ " -26.398083 , -26.624973 , -26.863201 , -27.099102 , -27.301062 ,\n",
+ " -27.483305 , -27.609858 , -27.728413 , -27.851976 , -27.962738 ,\n",
+ " -28.049582 , -28.13378 , -28.235912 , -28.341232 , -28.436846 ,\n",
+ " -28.519205 , -28.613474 , -28.704872 , -28.763172 , -28.83498 ,\n",
+ " -28.902283 , -28.941643 , -28.963448 , -28.980585 , -29.02627 ,\n",
+ " -29.050957 , -29.09152 , -29.152311 , -29.214195 , -29.281126 ,\n",
+ " -29.355896 , -29.426785 , -29.483341 , -29.53072 ], dtype=float32) Coordinates: (1)
Indexes: (1)
PandasIndex
PandasIndex(Index([100.67924499511719, 130.6584930419922, 160.6377410888672,\n",
+ " 190.6169891357422, 220.59622192382812, 250.57546997070312,\n",
+ " 280.5547180175781, 310.5339660644531, 340.5132141113281,\n",
+ " 370.4924621582031,\n",
+ " ...\n",
+ " 4717.48291015625, 4747.46240234375, 4777.44140625,\n",
+ " 4807.4208984375, 4837.39990234375, 4867.37939453125,\n",
+ " 4897.3583984375, 4927.337890625, 4957.31689453125,\n",
+ " 4987.29638671875],\n",
+ " dtype='float32', name='range', length=164)) Attributes: (0)
"
+ ],
+ "text/plain": [
+ "\n",
+ "array([-54.97283 , -27.448778 , -20.162565 , -19.562199 , -18.778477 ,\n",
+ " -18.119287 , -17.527794 , -16.988394 , -16.463007 , -15.967142 ,\n",
+ " -15.499426 , -15.051485 , -14.6151285, -14.180205 , -13.741215 ,\n",
+ " -13.314495 , -12.919496 , -12.519125 , -12.125657 , -11.793983 ,\n",
+ " -11.46346 , -11.136843 , -10.837575 , -10.579378 , -10.352728 ,\n",
+ " -10.121803 , -9.91838 , -9.727786 , -9.562 , -9.403213 ,\n",
+ " -9.278362 , -9.164416 , -9.043377 , -8.949946 , -8.87279 ,\n",
+ " -8.785539 , -8.714188 , -8.660834 , -8.63176 , -8.631797 ,\n",
+ " -8.655435 , -8.736296 , -8.838785 , -8.97232 , -9.109644 ,\n",
+ " -9.261291 , -9.415421 , -9.583023 , -9.780044 , -9.9863405,\n",
+ " -10.229948 , -10.498003 , -10.806079 , -11.150559 , -11.517881 ,\n",
+ " -11.883155 , -12.284343 , -12.71636 , -13.150287 , -13.612416 ,\n",
+ " -14.078413 , -14.548593 , -14.97536 , -15.353441 , -15.719428 ,\n",
+ " -16.105438 , -16.462404 , -16.75374 , -17.007557 , -17.256771 ,\n",
+ " -17.526138 , -17.760715 , -18.019426 , -18.311287 , -18.61053 ,\n",
+ " -18.948696 , -19.272732 , -19.578465 , -19.825418 , -19.968918 ,\n",
+ " -20.109495 , -20.227057 , -20.284681 , -20.295177 , -20.303745 ,\n",
+ " -20.319271 , -20.342592 , -20.358269 , -20.396446 , -20.431572 ,\n",
+ " -20.457926 , -20.460478 , -20.448437 , -20.43627 , -20.421385 ,\n",
+ " -20.403185 , -20.37756 , -20.353485 , -20.315321 , -20.319935 ,\n",
+ " -20.34569 , -20.38963 , -20.437658 , -20.493881 , -20.569586 ,\n",
+ " -20.660471 , -20.765326 , -20.883121 , -21.032913 , -21.195692 ,\n",
+ " -21.407215 , -21.640852 , -21.891891 , -22.179762 , -22.432667 ,\n",
+ " -22.704782 , -22.983511 , -23.225466 , -23.498125 , -23.770803 ,\n",
+ " -24.01657 , -24.269527 , -24.522238 , -24.75132 , -24.98275 ,\n",
+ " -25.208271 , -25.422485 , -25.658016 , -25.903503 , -26.134922 ,\n",
+ " -26.398083 , -26.624973 , -26.863201 , -27.099102 , -27.301062 ,\n",
+ " -27.483305 , -27.609858 , -27.728413 , -27.851976 , -27.962738 ,\n",
+ " -28.049582 , -28.13378 , -28.235912 , -28.341232 , -28.436846 ,\n",
+ " -28.519205 , -28.613474 , -28.704872 , -28.763172 , -28.83498 ,\n",
+ " -28.902283 , -28.941643 , -28.963448 , -28.980585 , -29.02627 ,\n",
+ " -29.050957 , -29.09152 , -29.152311 , -29.214195 , -29.281126 ,\n",
+ " -29.355896 , -29.426785 , -29.483341 , -29.53072 ], dtype=float32)\n",
+ "Coordinates:\n",
+ " * range (range) float32 100.7 130.7 160.6 ... 4.927e+03 4.957e+03 4.987e+03"
+ ]
+ },
+ "execution_count": 42,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ref = ds.reflectivity\n",
+ "ref_lowest_5000m = ref.sel(range=slice(0., 5000))\n",
+ "prof = ref_lowest_5000m.mean(dim=\"time\")\n",
+ "prof"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Plotting with Xarray\n",
+ "\n",
+ "Another major benefit of using labeled data structures is that they enable automated plotting with sensible axis labels. \n",
+ "\n",
+ "### Simple visualization with `.plot()`\n",
+ "\n",
+ "Much like we saw in [Pandas](../pandas/pandas), Xarray includes an interface to [Matplotlib](../matplotlib) that we can access through the `.plot()` method of every `DataArray`.\n",
+ "\n",
+ "For quick and easy data exploration, we can just call `.plot()` without any modifiers:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHBCAYAAABpHrH9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABVAklEQVR4nO3dd3xTVf8H8E+SNulK071oS0vZlNkyCgiULUMBB0sEH0QRGQo48KeCKKIPOPFRGYqoaEVxoAjUwaasUvYepYW2lM50Jm1yfn+UBmIBS0lz2+Tzfr3yorn35vab00I+nHvOuTIhhAARERGRHZBLXQARERGRtTD4EBERkd1g8CEiIiK7weBDREREdoPBh4iIiOwGgw8RERHZDQYfIiIishsMPkRERGQ3HKQuoK4xGo1IS0uDWq2GTCaTuhwiIiKqBiEECgoKEBQUBLn81v06DD7/kJaWhpCQEKnLICIiohpITU1FcHDwLfcz+PyDWq0GUNFw7u7uEldDRERE1aHVahESEmL6HL8VBp9/qLy85e7uzuBDRERUz/zbMBUObiYiIiK7weBDREREdoPBh4iIiOwGgw8RERHZDQYfIiIishsMPkRERGQ3GHyIiIjIbjD4EBERkd1g8CEiIiK7weBDREREdoPBh4iIiOwGgw8RERHZDd6klOya0SiQWaBDdpEOecVlKCgtM+1zVMjh7uwIdydHBHs6w1XFvy5ERPUd/yUnu5FbpMfhy/k4cikPRy7n4/zVIlzMKYa+3Pivr5XLgCZ+arQL8UDnRl7o3tgHfu5OVqiaiIgsicGHbFKhrhxHL+fj8KU8HLqUjyOX8pGSU3zTYxVyGTxdlPBydYSbygFymQwAoDcYUVBajrxiPXKLy3DqSgFOXSnAd/tTAQDN/NUY3CYQ97cLQkNvV6u9NyIiqjmZEEJIXURdotVqodFokJ+fD3d3d6nLoWoq1pdjx5ks7D6fgz0XsnE8XYub/WaHebugTbAH2gRr0CxAjTBvVwRqnOCguP1wt0xtKQ5dykfixVzsPJuFo2n5ZudvF+KBYe2CMKRtEHzcVBZ+d0RE9G+q+/nN4PMPDD71R06RHn+duIJNx65g+5mr0P3jklWQxgmtgzVoE+yBtsEeaN1AA42Lo0W+d26RHn+dzMQvBy9j59ksGK/9LVLIZejZ1BejO4UitpnvvwYqIiKyDAafGmLwqdsu5RYj/tgVxB/PwN4LOabAAQAhXs7o0cQXnRt5o3O4F/ytNAYns6AUvx1Kxy8HL+PQpXzT9gB3J4zsGIKRHUMQ5OFslVqIiOwVg08NMfjUPQWlZfgh8RJ+SLyEY2las30tA93Rv5U/BrQKQPMANWTXxudI5dzVQny3LxU/JF5CTpEeQMXA6NhmfhjfNQz3NPGRvEYiIltkc8FnwYIFWL9+PQ4ePAilUom8vLwqx6SkpODpp5/G33//DWdnZ4wZMwaLFy+GUqms9vdh8Kk7zmYW4suEZKxNvIQivQFARYjoGOaF/q0C0L+lP0K8XCSu8uZ05QZsOnYF3+5JQcL5bNP2Jn5umNg9HCM6BEPpwMtgRESWUt3P73ozq0uv1+Ohhx5CTEwMPvvssyr7DQYDBg8eDF9fX+zYsQPZ2dkYP348hBBYsmSJBBVTTQghsPlUJlbuTMb2M1mm7Y393DA+piEGtQ6Edz0YPKxyUOC+tkG4r20Qzl8txFe7L2LNvlScySzEiz8ewcdbzmFmv6a4r20Q5HL2ABERWUu96fGp9MUXX+CZZ56p0uOzYcMGDBkyBKmpqQgKCgIAxMXFYcKECcjMzKx27w17fKQhhMD2M1l4J/6UaZyMTAb0beGPCV3D0DXCu95fItKWluG7valYuu08sgp1AIDmAWo8N6AZejf3q/fvj4hISjbX4/NvEhISEBkZaQo9ADBgwADodDokJiYiNjZWwurodvacz8Y78aexNzkHAODsqMAjXULxaExYnb2UVRPuTo6Y1KMRxnYJxcqdyfh06zmczCjAxFX7Ed3QEy8NboEOoZ5Sl0lEZNNsJvhkZGTA39/fbJunpyeUSiUyMjJu+TqdTgedTmd6rtVqb3ksWdaxtHy8teGk6ZKW0kGORzo3xFO9IuCrrvuXs2rKRemAp2MbY2znUHyy9Ry+2JmM/Rdz8cAnu/Bol4Z4bmBzuPH2GEREtULS0ZXz5s2DTCa77WP//v3VPt/NLhUIIW57CWHhwoXQaDSmR0hISI3eC1VffnEZXv3lKIYu2YHtZ7LgIJdhbOdQbH2uF14d2tKmQ8+NPFyUmHNvC2x7PhYPdAiGEMCqhIvo9+5WbD19VeryiIhskqT/rZw6dSpGjRp122PCwsKqda6AgADs2bPHbFtubi7Kysqq9ATdaM6cOZg5c6bpuVarZfipJUajwA8HLuHtDSeRfW2q95A2gXhhYHObuqR1p/zdnfDOw20xvH0DvPTTEaTkFGP853sxoWsYXry3OZwcFVKXSERkMyQNPj4+PvDx8bHIuWJiYrBgwQKkp6cjMDAQABAfHw+VSoWoqKhbvk6lUkGlso8eBikdvZyPV345iqSUPAAVs7Tm398KXSMs8/O3Bd2b+GDTMz3w1oYTWJVwEV/sSsbOs1n45JEOaOynlro8IiKbUG8GEqSkpCAnJwcpKSkwGAw4ePAgAKBx48Zwc3ND//790bJlS4wbNw6LFi1CTk4OZs+ejUmTJnF2loR05QZ88OcZfLr1HIwCcFUq8EzfppjQLQyOvJ1DFc5KBV67PxK9mvvh+R8O40xmIYb9bxfeH9kOfVveuueSiIiqp95MZ58wYQJWrVpVZfvmzZvRq1cvABXhaMqUKVUWMLyTHh1OZ7ecY2n5mLXmEE5mFAAABrcJxCuDWyJAY51bSdR3WYU6TFl9AHsvVMx2m9WvKab2bsxp70REN2FzKzdbC4OPZcTtTcGrvxyD3mCEt6sSC4ZHYmBkoNRl1TtlBiNe/+04vky4CAAY3SkEr98fyZufEhH9g92t40N1Q2mZAXN/OYbv9qcCAPq28MNbD7SBTz1YbbkuclTIMf/+SDT1V+PVX47i272puFqgx0dj2nPQMxFRDfC/jWQxWYU6jF6+G9/tT4VMBjw3oBmWjYtm6LGAR7o0xMdjo6B0kOPPE1fw6Gd7UVBaJnVZRET1DoMPWcTZzEIM/3gnklLyoHF2xKrHOuHp2Ma8D5UFDYwMwNcTO0Pt5IC9yTl4ZMUe5BXrpS6LiKheYfChu7b7fDYe+GQXUnNKEOrlgh+ndEWPpr5Sl2WTOoV74dtJXeDp4ohDl/Ixevke032/iIjo3zH40F35KekSxn22B/klZWgf6oGfpnRFhK+b1GXZtMgGGsQ9EQMfNxVOpGsxatluXNGWSl0WEVG9wOBDNSKEwAd/nsGz3x1CmUFgUOsAfDupC7w5nscqmgWosebJLgjUOOFsZiEeXpqAS7nFUpdFRFTnMfjQHdOXGzH7+8N478/TAIAnezbCR6M7cJaRlTXydcOaJ2MQ4uWMi9nFePjTBKRkM/wQEd0Ogw/dkfziMoz/fC/WHrgEhVyGBcMjMefeFhzELJEQLxd8/2RXNPJ1RVp+KcZ+thsZ+bzsRUR0Kww+VG1ZhTo8tHQXEs5nw1WpwGfjozG2c0Opy7J7ARonxE3qgjBvF6TmlGDsit0c8ExEdAsMPlQtecV6PLJiD05fKYS/uwrfT+6KXs38pC6LrvFzd8LXj3dGkMYJ564WYdxne6HlOj9ERFUw+NC/0paW4dHP9+JkRgF81SrEPRGDlkG8nUddE+zpgtWTuphmez31dSL05UapyyIiqlMYfOi2inTleGzlPhy+lA8vVyVWP94Z4T6uUpdFtxDu44ovHusIV6UCO89m44W1h8Hb8RERXcfgQ7dUWmbA46v2I/FiLtydHPDlfzqhqb9a6rLoX0Q20ODjR6KgkMvwU9JlLI4/JXVJRER1BoMP3ZSu3IAnv0pEwvlsuKkcsOo/nRDZQCN1WVRNPZv6YuGI1gCA/20+h9V7LkpcERFR3cDgQ1WUGYyY9k0Stp6+CidHOT6f0BHtQz2lLovu0MPRIXimbxMAwCs/H8VfJ65IXBERkfQYfMiMwSgwc80hxB+/AqWDHCse7YhO4V5Sl0U1NKNPEzwcHQyjAKZ+k4RDqXlSl0REJCkGHzIxGgVeWHsYvx5Kg6NChk8f6YDuTXykLovugkwmw4LhrdGjqS9Kygx4/Mv9SMsrkbosIiLJMPiQyVsbT+KHxIoVmT8c1R69m/tLXRJZgKNCjo/HdkDzADWuFujw+Kr9KNaXS10WEZEkGHwIALBqVzKWbTsPAPjvA21wb+tAiSsiS3JTOWDF+Gj4uClxPF2LZ787CKOR09yJyP4w+BA2HcvAvF+PAQCeG9AMD0QFS1wR1YZgTxcsHRcFpUKOTceucJo7EdklBh87dyAlF9O/TYIQwOhOoZjSK0LqkqgWRTX0wlsPVExz/3jLOfx44JLEFRERWReDjx1LzirC46v2Q1duRO/mfnj9/laQyXiXdVs3okOwKeC+uPYIEi/mSFwREZH1MPjYqexCHcav3IucIj1aN9Bgyej2cFDw18FezO7fDANa+UNvMOKJLxNxKbdY6pKIiKyCn3R2qERvwMRV+3ExuxjBns74bEI0XFUOUpdFViSXy/DeyHZoGeiO7CI9Hl+1H4U6zvQiItvH4GNnDEaB6XFJOJiaB42zI754rBP81E5Sl0UScFFWzPTyVatwMqMAM75NgoEzvYjIxjH42BEhBOb/egx/VK7KPD4ajf3cpC6LJBTk4Yzlj0ZD5SDHXycz8d+NJ6UuiYioVjH42JHl289jVcJFyGTAew+3Q8cw3oqCgHYhHlj0UFsAwNJt57Fmf6rEFRER1R4GHzvx66E0vPl7xf/m/29QCwxuwwUK6br72gZhep+KG5r+309HsPcCZ3oRkW1i8LEDe85nY9aaQwCACV3DMLF7uMQVUV30TJ8mGNw6EGUGgSe/2o+UbM70IiLbw+Bj485mFmLSl/uhNxgxoJU/XhnSkmv10E3J5TIsfqgtWjfQILe4DOM+38MbmhKRzWHwsWF5xXo8vmoftKXl6BDqgQ9GtYdCztBDt+asVGD5o9EI9XLBxexijFyWwDV+iMimMPjYqDKDEVNWH0BydjEaeDhj2aPRcHJUSF0W1QMBGifEPdEFDb1dkJpTglHLdiM1h+GHiGwDg48NEkJg7rpj2HUuG65KBT6bEA0fN5XUZVE9EuThjO+eiEG4jysu5VaEH475ISJbwOBjg1btSsY3e1IgkwEfjm6P5gHuUpdE9VBlz08jX1dczivByGUJSM4qkrosIqK7wuBjY7advor5vx0HALw4sDn6tPCXuCKqz/zdnRA3qQsifF2Rnl+KUct24wLDDxHVYww+NuRsZiGe/uYAjAJ4oEMwnujRSOqSyAb4uTsh7okYNPFzQ4a2FCOXJuDc1UKpyyIiqhEGHxuhLS3DpC/3o6C0HNENPfHmiEhOWyeL8VWr8O0TXdA8QI3MAh1GLt2Ns5kFUpdFRHTHGHxsgBACz39/GBeyihCkccKn46KgcuAMLrIsHzcVvplUEX6yCnUYtWw3jqXlS10WEdEdYfCxASu2X8DGYxlwVMjw8SNRnMFFtcbLVYlvJ3VBqyB3ZBXqMWrZbuxP5u0tiKj+YPCp5/Yl5+Cta3fUfnVIS7QL8ZC2ILJ5nq5KfPtEF3QM80RBaTke+WwPNp/MlLosIqJqYfCpx/KK9Zj+bRIMRoH72wXhkS4NpS6J7IS7kyO+/E9n9Gzqi9IyI/6zah/e//M0DEYhdWlERLfF4FNPCSEw58cjSM8vRbiPK94c3pqDmcmqKm9vMbpTCIQA3v/zDCas3IusQp3UpRER3RKDTz21Zn8qNhytGNfz4aj2cFU5SF0S2SGlgxwLR7TBOw+1hZOjHNvPZKH/e9vw66E0CMHeHyKqexh86qFzVwsxb13FIoWz+jdD62CNxBWRvXsgKhi/PN0dzQPUyCnSY9q3SXjq6wO4WsDeHyKqWxh86hl9uREz4pJQUmZA1whvPHEPFymkuqFZgBrrpnbHjD5N4CCXYeOxDPR7byt+OXiZvT9EVGcw+NQz78SfwtHLWni4OOLdh9tBLue4Hqo7lA5yPNuvKX6Z2g0tA92RV1yGGXEH8cRXicjUlkpdHhERg099suNMFpZuOw8AePuBNgjQOElcEdHNtQrS4Jep3TCzX1M4KmT44/gV9HtvG35KusTeHyKSFINPPZFXrMfMNQcBAGM6h2JAqwBpCyL6F44KOab3aYJ1U7sjsoE78kvK8Ox3hzDpy/24wt4fIpIIg0898fpvJ5BZoEOEryteGdxS6nKIqq1FoDt+mtINs/tX9P78eSIT/d7dirWJ7P0hIutj8KkHtp6+irUHLkEmA/77YFs4K3kfLqpfHBVyTO3dBL9NuwetG2igLS3HrO8PYeKq/cjIZ+8PEVkPg08dV6Qrx0s/HgEAjI8JQ1RDT4krIqq5ZgFq/DSlK54f2AxKhRx/n8xEv/e2Ys3+VPb+EJFVMPjUcYvjT+FyXgkaeDjjuQHNpC6H6K45KOSY0qsx1k/vjrYhHigoLcfzPxzGtG+TUKQrl7o8IrJxDD512PE0LVbtSgYAvDmiNVdnJpvSxF+NtZNj8MLA5nCQy/Db4XTc/7+dOJtZIHVpRGTDGHzqKCEE5v92DEYBDG4diJ5NfaUuicjiHBRyPNUrAnFPdIG/uwpnMwtx/0c78dvhNKlLIyIbxeBTR204moHd53OgcpBjzqDmUpdDVKuiw7zw27R7ENPIG0V6A6Z+k4T5vx5HmcEodWlEZGMYfOqg0jIDFqw/AQCY3DMCwZ4uEldEVPt81Sp8NbETnuoVAQD4fOcFjF2+B7lFeokrIyJbwuBTBy3fdh6X80oQqHHC5J4RUpdDZDUOCjleGNgcy8ZFQa1ywN7kHIz4ZBcuZhdJXRoR2QgGnzomv6QMy67dluLFe5tzzR6yS/1bBWDtlK5o4OGMC1lFGP7xLiRezJW6LCKyAQw+dcyqXcko0JWjqb8bhrYJkrocIsk09Vfjp6e7onUDDXKK9BizfDc2HEmXuiwiqucYfOqQQl05Pt95AQDwdGxj3nmd7J6f2gnfPdkFfVv4QVduxJRvDmDZtnNc7JCIaozBpw75evdF5BWXoZGPK4awt4cIAOCidMDScdEYH9MQQgBv/n4SL6w9DF25QerSiKgeYvCpI0r0BqzYXjG2Z0psYyjY20NkopDLMO++Vnh5cAvIZcCa/Zcwculu3ueLiO5YvQg+ycnJmDhxIsLDw+Hs7IyIiAjMnTsXer35NNeUlBQMHToUrq6u8PHxwfTp06scU1d9mZCMrEI9gj2dcX879vYQ/ZNMJsPj9zTCF491gsbZEQdT8zBkyQ5sOpYhdWlEVI/Ui3sgnDx5EkajEUuXLkXjxo1x9OhRTJo0CUVFRVi8eDEAwGAwYPDgwfD19cWOHTuQnZ2N8ePHQwiBJUuWSPwObi81pxjv/3kGADC9TxM4KupFHiWSRI+mvlg3tRue/CoRJzMK8ORXiRjUOgDz7msFP7WT1OURUR0nE/V0lOCiRYvwySef4Pz5istDGzZswJAhQ5CamoqgoIoek7i4OEyYMAGZmZlwd3ev1nm1Wi00Gg3y8/Or/Zq7IYTAY1/sw5ZTV9Ep3Atxk7pwUDNRNZSWGfDhX2ewdNt5GIwCSgc5+rXwx4NRwbiniQ8c+B8IIrtS3c/vetHjczP5+fnw8vIyPU9ISEBkZKQp9ADAgAEDoNPpkJiYiNjY2JueR6fTQafTmZ5rtdraK/omfj2cji2nrkKpkOPN4a0ZeoiqyclRgecHNseg1oH4v5+P4lBqHtYfScf6I+nwVaswrF0QHogKRvOA2v8PDBHVH/Uy+Jw7dw5LlizBO++8Y9qWkZEBf39/s+M8PT2hVCqRkXHrMQALFy7Ea6+9Vmu13k5+SRnm/3oMQMX09cZ+bpLUQVSfRTbQ4OcpXXEsTYsfEi9h3aE0XC3QYfn2C1i+/QIa+bqiX0t/xDbzQzN/NTxdlVKXTEQSkjT4zJs3719Dx759+xAdHW16npaWhoEDB+Khhx7C448/bnasTFa1t0QIcdPtlebMmYOZM2eanmu1WoSEhFT3LdyV3eezkVWoR4iXs+n+RER052QyGSIbaBDZQIOXBrXAllOZWHvgEv4+mYnzV4uwdOt5LN1acVncw8URAe5OUDnIoXJQQOUoh1Ihh8rx2nMHOZwcFXB3coDGRQmNsyM0zo7wcHE0fa1xdoSTo+VWVS8zGJFXXIbcYj1yivTIK9Yjp+j68yJdOWQyGRRywMlBYarHV+2EYE9nNPBwhoeL423/rSOiCpIGn6lTp2LUqFG3PSYsLMz0dVpaGmJjYxETE4Nly5aZHRcQEIA9e/aYbcvNzUVZWVmVnqAbqVQqqFSqOy/eArQlZQCACF83KB04HoHIEpQOcvRvFYD+rQKgLS3D1lNX8cfxK9ifnIO0/FLkFZchr7jsrr+Pi1IBTxclvN2UFX+6KuGqcoBBCBiNAgajMH1dWmZESZkBJWUGlJYZUKw3oERf8XXJteeWqCfIwxnBns4I83ZFI19XNPZzQ5tgD7ip6mXnPlGtkPRvg4+PD3x8fKp17OXLlxEbG4uoqCisXLkScrl5UIiJicGCBQuQnp6OwMBAAEB8fDxUKhWioqIsXrslFOrKAQCu/EeJqFa4OzliaNsgDG1bMfavWF+OC1lFyCnSQ19uhK7cCF254frXZRXPS8oMyC8pQ35JecWfxfprzyseRgEU6w0o1pfgcl6JRWqVyQCNsyO8XJTwdK0IU54ujvByVcJN5QABwGAUKL1WW26xHhlaHS7nliCrUIdivQFnMwtxNrMQwFWz8zb1U6N9qMe1hyca+7pxPCHZrXrxiZuWloZevXohNDQUixcvxtWr1/9SBwQEAAD69++Pli1bYty4cVi0aBFycnIwe/ZsTJo0ySqzs2qi6FrwcVPWix8DUb3nonRAqyDNXZ3DaBQo0JUjr1iP7CI9cgr1yLl2SapYVw65XAYHuQxyuQwKmQwKuQwqRwWcrz1clAo4OSrgrLy+zVWlgIeLssYLl5aWGZCWVxHCUnNKkJxdhPNXi3AiXYvLeSU4daUAp64UIG5fKgDAV61Cr6a+6N3cD92b+EDt5HhXbUJUn9SLT9z4+HicPXsWZ8+eRXBwsNm+ytn4CoUC69evx5QpU9CtWzc4OztjzJgxpnV+6qJCXUX3tptTvfgxEBEAuVxmGufT0NtV6nIAVMxwa+Trhka+VSdIZGpLkZSah6SUPCSl5OLQpTxcLdDh+8RL+D7xEhwVMnQM80LfFv4Y3r4BB3+Tzau36/jUFmuu4/Pyz0fw9e4UTO/TBDP7Na3V70VEBAC6cgP2XsjB5pNXsflUJi5kFZn2KR3kGNI6EGO7NESHUA8OlqZ6xebX8bEFRdd6fNQc40NEVqJyUOCeJr64p4kvXh3aEheyivD3yUz8eOASjqVp8WPSZfyYdBktAt3xSJdQDG/fAC68HE82hFOJJFRQysHNRCStcB9XTOwejt+mdcfPT3fDg1HBUDnIcSJdi//76Sh6LtqCuL0pMBh5cYBsA4OPhIpMs7ostx4IEVFNyGQytAvxwOKH2mLPS33w8uAWCPFyxtUCHV788QgGfbAdu89nS10m0V1j8JFQ5XR2NQc3E1Ed4uGixOP3NMKfM3vilSEtoXF2xKkrBRi1bDde+OEw8i2wDhKRVBh8JGTq8eH1cyKqg1QOCkzsHo5tz8VibOdQAMB3+1PR592t+PVQGjg3huojBh8JVfb4cDo7EdVlGhdHLBjeGt9PjkFjPzdkFeow7dskTFy132ILOBJZC4OPhEzBh4Obiage6BjmhfXTu+OZvk3gqJDh75OZGPDeNqw/nC51aUTVxuAjEYNRmO7Pw+BDRPWFykGBZ/o2xYYZ96BDqAcKdeV4+psDmPvLUejK7/6eY0S1jcFHIkX6ctPXnM5ORPVNYz811jwZg8k9IwAAqxIuYtj/duFYWr7ElRHdHoOPRCoHNjvIZVDxzuxEVA85KOR48d7m+HxCNDxdHHEiXYv7P9qJd/84DX25UeryiG6Kn7gSKbphYDOXhSei+qx3c3/EP9sTA1sFoNwo8OFfZ/DAJ7tw/mqh1KURVcHgIxHTqs2cyk5ENsBXrcInj3TAR2Paw8PFEUcu52PIkh1Ysz+V096pTmHwkYjpPl2cyk5ENkImk2FImyBsmHEPujTyQrHegOd/OIxp3yYhv4SLHlLdwOAjkUJdxT8CHNhMRLYmUOOM1Y93wXMDmkEhl+G3w+kY9MF2JF7Mkbo0IgYfqRTqOJWdiGyXQi7D07GN8cPkGIR4OeNyXgke+jQBr/16zDTGkUgKDD4SKSyt6PFh8CEiW9Y+1BO/T78HIzo0gFEAK3cmo/9727DlVKbUpZGdYvCRSNG1xQt5Z3YisnVqJ0e8+3A7rPpPJwR7VvT+TFi5D/PWHUNpGRc9JOti8JHI9dtVOEpcCRGRdfRs6ov4Z3tgQtcwAMAXu5Jx/0c7cTJDK21hZFcYfCRSWFoZfNjjQ0T2w0XpgHn3tcIXj3WEj5sKp64U4L6PdmLlzguc9k5WweAjkSLemZ2I7FivZn7Y+Mw96N3cD/pyI1779Tge+2IfrmhLpS6NbByDj0QKrgUfTmcnInvl46bCZ+OjMf/+VlA5yLHl1FX0fWcrvt59EUYje3+odjD4SMTU48PgQ0R2TCaT4dGYMPw6rTvahnigQFeOl38+ioeXJuDMlQKpyyMbxOAjEQYfIqLrmvqr8eNTXTFvaEu4KhXYfzEXgz7cjvf+OA1dOWd+keUw+EiEl7qIiMwp5DJM6BaOP2b2RJ/mfigzCHzw1xkM+mA79l7gqs9kGQw+EmGPDxHRzQV5OGPF+Gh8NKY9fNxUOHe1CA8vTcCcH4/wnl901xh8JHJ9OjuDDxHRP1Xe8PSvmT0xqmMIAODbvSno9+5WbDiSzqnvVGMMPhIwGoVp5WZOZyciujWNiyPeeqAN4p7ogkY+rsgs0OGp1Qcw6ctEpOeXSF0e1UMMPhIo0l+/QR97fIiI/l2XRt74fcY9mNa7MRzkMvx54gr6vbsNq3Ylw8Cp73QHGHwkUHTtzuwKuQwqB/4IiIiqw8lRgVn9m2H99HvQIdQDhbpyzF13DA9+ugtHL+dLXR7VE/zUlUDhDQObZTKZxNUQEdUvzQLU+GFyV8y/vxXcVA5ISsnD0I924P9+OoLcIr3U5VEdx+AjgULO6CIiuityecXCh3/M7IGhbYMgBLB6Twpi39mCr3Zf5OUvuiUGHwlwKjsRkWUEapyxZHR7xD3RBc0D1MgrLsMrPx/F0CU7sC+Za/9QVQw+EigorVy8kHdmJyKyhC6NvPHbtO547b5WcHdywPF0LR76NAHPxCXxxqdkhsFHAkVctZmIyOIcFHKM7xqGzbN7YXSnEMhkwM8H09B78Ras2H6el78IAIOPJCqns6u5hg8RkcV5u6mwcEQb/PJ0N7QP9UCR3oA31p/A8I93cvYXMfhIwXSpS8ngQ0RUW9oEe2Dt5K5YOKI11E4OOHwpH/f/bycW/n4CJXre+NReMfhIwDS4mT0+RES1Si6XYXSnUPw1sycGtwmEwSiwdNt59H9/K7advip1eSQBBh8JcDo7EZF1+bk74X9jOmDFo9EI0jghNacEj36+F89+dxDZhTqpyyMrYvCRAIMPEZE0+rb0R/zMnnisWxhkMuCnpMvo8+5W/JB4iTc+tRMMPhIoLOWsLiIiqbipHDB3aCv8NKUbWgS6I6+4DLO/P4SxK/YgOatI6vKoljH4SKByVhd7fIiIpNMuxAPrpnbDi/c2h8pBjl3nsjHg/W343+az0JcbpS6PagmDjwQKr92klMGHiEhajgo5JveMQPyzPdC9sQ905UYs2nQKgz/cjr0XuPKzLWLwkUBhaRkAXuoiIqorGnq74quJnfDeyLbwdlXiTGYhHl6agOd/OMQbn9oYBh8JFF3r8eEChkREdYdMJsPw9sH4a1ZPjO4UAgBYs/8S+ry7Fd/vT4WRKz/bBAYfCRTylhVERHWWh4sSC0e0wQ+TY9DMX42cIj2e++EwBn24HX+duMLZX/VcjYLPhAkTsG3bNkvXYheEEBzcTERUD0SHeeG36d0x597mUDs54GRGASau2o8Rn+xiAKrHahR8CgoK0L9/fzRp0gRvvvkmLl++bOm6bFax3oDKvysMPkREdZujQo4ne0Zg+/OxmNwzAioHOZJS8jBx1X7c+8F2fJWQzLu/1zMyUcPImp2dja+//hpffPEFjh49ir59+2LixIm4//774ejoaOk6rUar1UKj0SA/Px/u7u4WP39WoQ7Rb/wJALiwcBBkMpnFvwcREdWOzIJSfLbjAr5OuIiiG+73FdXQEwNbBWBgZABCvFwkrNB+Vffzu8bB50ZJSUn4/PPPsWLFCri5ueGRRx7BlClT0KRJk7s9tdXVdvC5oi1F5zf/gkIuw7k3B1n8/EREVPvyi8uwZn8qNhxNx4GUPLN9rYLcTSGoib9amgLtUHU/v+/6Wkt6ejri4+MRHx8PhUKBQYMG4dixY2jZsiX++9//4tlnn73bb2FTDNdmBSjY00NEVG9pXBwxqUcjTOrRCBn5pYg/noENRzKw50I2jqVpcSxNi3f+OI1wH1fENvND7+Z+iA7zhJOjQurS7V6NenzKysqwbt06rFy5EvHx8WjTpg0ef/xxjB07Fmp1RbqNi4vDU089hdzcXIsXXZtqu8cnNacY9/x3M5wdFTjx+kCLn5+IiKSTXajDnyeuYMPRDOw8m4Uyw/WPWKVCjjbBGnQM90KnMC9EhXnC3an+Dg2pa2q1xycwMBBGoxGjR4/G3r170a5duyrHDBgwAB4eHjU5vU2r7PFxkLPHh4jI1ni7qTCyYyhGdgyFtrQMO89kYfOpTGw5dRWZBTrsv5iL/Rdz8QnOQSYDmge4o1OYZ0UYCveCn9pJ6rdg82oUfN577z089NBDcHK69Q/I09MTFy5cqHFhtqr8WvCRM/gQEdk0dydH3Ns6EPe2DoQQAhezi7E3OQd7L+RgX3IOLmYX40S6FifStViVcBEA0NTfDd0a+6BbhA86N/KCmj1CFlej4LN582YMGzasSvApKirCtGnT8Pnnn1ukOFtkFOzxISKyNzKZDGE+rgjzccXD0RWrQmdqS7E3OQf7LuRgz4UcnMwowOkrhTh9pRArdyZDIZehbbAGncK9Ed3QE1ENPeHpqpT4ndR/NRrjo1AokJ6eDj8/P7PtWVlZCAgIQHl5ucUKtLbaHuNzPE2LQR9uh69ahX3/19fi5yciovopp0iPhHPZ2HkuCzvPZuFidnGVYyJ8XdExzAtRDT3ROdwbIV7OXBblmloZ46PVaiGEgBACBQUFZj0+BoMBv//+e5UwRObY40NERDfj5arE4DaBGNwmEEDFZJiE89lITM7Fvos5OH+1COeuPeL2pQIA/N1VaBvsgab+ajQNUKOZvxrhPq5QOvCOVLdyR8HHw8MDMpkMMpkMTZs2rbJfJpPhtddes1hxtsg0xocJnYiIbiPEywUhXi6mS2M5RXokXszF/uSKMUJHLufjilaH+ONXEH/8iul1DnIZwn1c0SxAjeYBajT2c4O/uxP83Z3g5aqEykFu171EdxR8Nm/eDCEEevfujbVr18LLy8u0T6lUomHDhggKCrJ4kbbEYDQCABwU9vtLR0REd87LVYl+Lf3Rr6U/AKBEb8DB1DyczNDi9JUCnMoowJkrhSjQleNMZiHOZBbit8PpVc6jkMvgqlTATeUANycHqJ0cEaBxQrCHM/zdnaBxdoS7syO8XJUI0DjBT62Co8J2epDuKPj07NkTAHDhwgWEhobadWKsKUNF7uEChkREdFeclQrERHgjJsLbtE0IgfT8UpzKKMDJjAKcytDiYk4xruSXIrNAh3KjgMEooC0th7a0HMj/9+8jkwHBns5o6qdGY383NPVTo4m/Gxr7ucFFWf/uOVntig8fPozIyEjI5XLk5+fjyJEjtzy2TZs2FinOFpVf6/FRcIwPERFZmEwmQ5CHM4I8nBHb3HzMrdEoUKQvR5HOgEJdOYquPfJLypCWX4rLuSXILChFfkkZtCVlyCrU44q2FOVGgdScEqTmlOCvk5lm5wz2dEYTPzc0C3BHyyB3tApyR7i3a51esqXawaddu3bIyMiAn58f2rVrB5lMhptNCJPJZDAYDDc5AwGAsbLHpw7/UhARke2Ry2VQOzne0dpARqNAVqEO564W4WxmxXT7M5kFOJtZiKxCPS7lluBSbgk2n7pqeo2LUoEWge5oGeiOcB9XNPR2QUNvFwR7utSJW3ZUO/hcuHABvr6+pq+t7b777sPBgweRmZkJT09P9O3bF2+//bbZmKKUlBQ8/fTT+Pvvv+Hs7IwxY8Zg8eLFUCrrzroH7PEhIqL6Qi6Xwc/dCX7uTmaX1ICKwdZnrhTgdGYhTqZX3J/sZIYWxXoDEi/mIvGi+S2rZDIgwN0JoV4uWDA8Eo39pLmBa7WDT8OGDU1f+/r6wsXFpVYKupXY2Fi89NJLCAwMxOXLlzF79mw8+OCD2LVrF4CK6fSDBw+Gr68vduzYgezsbIwfPx5CCCxZssSqtd4Op7MTEZEt8HJVonMjb3RudD0QlRuMuJBVhGNpWpzI0OJiVjEu5hQjJbsIRXoD0vNLkZ5fCpWDdD0/NRqV5Ofnh2HDhmHcuHHo168f5PLaH+19413eGzZsiBdffBHDhg1DWVkZHB0dER8fj+PHjyM1NdXUC/TOO+9gwoQJWLBgQa0sRlgT5QbesoKIiGyTg0KOJv5qNPFXYxgamLYLIZBdpMfF7GKk5BQhyMNZshprlFi+/PJL6HQ6DB8+HEFBQZgxYwb27dtn6dpuKScnB6tXr0bXrl3h6FhxrTIhIQGRkZFml74GDBgAnU6HxMREq9X2b9jjQ0RE9kYmk8HHTYWohp4Y3j5Y0uEeNQo+I0aMwPfff48rV65g4cKFOHHiBLp27YqmTZti/vz5lq7R5IUXXoCrqyu8vb2RkpKCX375xbQvIyMD/v7+Zsd7enpCqVQiIyPjlufU6XTQarVmj9rEBQyJiIikc1fXqNRqNR577DHEx8fj0KFDcHV1vaOVm+fNm2daCfpWj/3795uOf+6555CUlIT4+HgoFAo8+uijZjPLbraukBDitusNLVy4EBqNxvQICQmpdv01YbgWfLiAIRERkfXd1cpDpaWlWLduHb755hts3LgRfn5+mD17drVfP3XqVIwaNeq2x4SFhZm+9vHxgY+PD5o2bYoWLVogJCQEu3fvRkxMDAICArBnzx6z1+bm5qKsrKxKT9CN5syZg5kzZ5qea7XaWg0/Bvb4EBERSaZGwSc+Ph6rV6/Gzz//DIVCgQcffBCbNm0yrexcXZVBpiYqe3p0Oh0AICYmBgsWLEB6ejoCAwNNdapUKkRFRd3yPCqVCiqVqkY11ETlpS6O8SEiIrK+GgWfYcOGYfDgwVi1ahUGDx5sGmBcW/bu3Yu9e/eie/fu8PT0xPnz5/Hqq68iIiICMTExAID+/fujZcuWGDduHBYtWoScnBzMnj0bkyZNqjMzuoCKxaAAruNDREQkhRoFn4yMDKuGCWdnZ/z444+YO3cuioqKEBgYiIEDByIuLs7UW6NQKLB+/XpMmTIF3bp1M1vAsC4pZ/AhIiKSTLWDj1arNQs7t5v9ZOlQ1Lp1a/z999//elxoaCh+++03i35vS6uczs7gQ0REZH3VDj6enp5IT0+Hn58fPDw8bjuDivfqurXKBQwVVlj0kYiIiMxVO/j8/fff8PLyAgBs3ry51gqydVzAkIiISDrVDj43ztgKDw9HSEhIlV4fIQRSU1MtV50N4gKGRERE0qnR9Zbw8HBcvXq1yvacnByEh4ffdVG2zMDp7ERERJKpUfC51WrIhYWFcHJyuuuibJlpAUMGHyIiIqu7o+nslSscy2QyvPLKK3BxcTHtMxgM2LNnD9q1a2fRAm0NFzAkIiKSzh0Fn6SkJAAVPT5HjhyBUqk07VMqlWjbtu0d3bLCHnEBQyIiIuncUfCpnM312GOP4YMPPqhTKyLXF1zAkIiISDo1GuPz/vvvo7y8vMr2nJyc2y5sSFzAkIiISEo1Cj6jRo1CXFxcle1r1qz517ut27vrCxgy+BAREVlbjYLPnj17EBsbW2V7r169sGfPnrsuypaZeny4jg8REZHV1Sj46HS6m17qKisrQ0lJyV0XZcvKjUYA7PEhIiKSQo2CT8eOHbFs2bIq2z/99FNERUXddVG2zFCRezidnYiISAJ3NKur0oIFC9C3b18cOnQIffr0AQD89ddf2LdvH+Lj4y1aoK0xXOvx4QKGRERE1lejHp9u3bohISEBwcHBWLNmDX799Vc0btwYhw8fxj333GPpGm0Ke3yIiIikU6MeHwBo164dvvnmG0vWYhcMHONDREQkmRr1+ADAuXPn8PLLL2PMmDHIzMwEAGzcuBHHjh2zWHG2iAsYEhERSadGwWfr1q1o3bo19uzZg7Vr16KwsBAAcPjwYcydO9eiBdoaLmBIREQknRoFnxdffBFvvPEG/vjjD7P7dcXGxiIhIcFixdkiLmBIREQknRoFnyNHjmD48OFVtvv6+iI7O/uui7JlXMCQiIhIOjUKPh4eHkhPT6+yPSkpCQ0aNLjromwZx/gQERFJp0bBZ8yYMXjhhReQkZEBmUwGo9GInTt3Yvbs2Xj00UctXaNNMTD4EBERSaZGwWfBggUIDQ1FgwYNUFhYiJYtW6JHjx7o2rUrXn75ZUvXaFMYfIiIiKRTo3V8HB0dsXr1asyfPx9JSUkwGo1o3749mjRpYun6bE5l8HGQ13glASIiIqqhGi9gCAARERGIiIiwVC124XqPj8SFEBER2aFqB5+ZM2dW+6TvvvtujYqxB9cHNzP5EBERWVu1g09SUlK1jpNxmvZtXV/AUOJCiIiI7FC1g88HH3yAVq1aQaFQ1GY9Nu/6AoZMPkRERNZW7U/f9u3bIycnBwDQqFEjLlRYQ1zAkIiISDrVDj4eHh44f/48ACA5ORnGa3cZpzvDBQyJiIikU+1LXQ888AB69uyJwMBAyGQyREdH3/KyV2VAoqqMDD5ERESSqXbwWbZsGUaMGIGzZ89i+vTpmDRpEtRqdW3WZpPY40NERCSdO1rHZ+DAgQCAxMREzJgxg8GnBrhyMxERkXRqNLVo5cqVUKvVOHv2LDZt2oSSkhIAgLg2cJdu7frKzQw+RERE1laj4JOTk4M+ffqgadOmGDRokOlO7Y8//jhmzZpl0QJtjeFaOJRzVhcREZHV1Sj4PPPMM3B0dERKSgpcXFxM20eOHImNGzdarDhbZOrxUTD4EBERWVuN7tUVHx+PTZs2ITg42Gx7kyZNcPHiRYsUZqvKDRXLAHCMDxERkfXVqMenqKjIrKenUlZWFlQq1V0XZcuudfhwAUMiIiIJ1Cj49OjRA19++aXpuUwmg9FoxKJFixAbG2ux4mxRuZE9PkRERFKp0aWuxYsXo2fPnti/fz/0ej2ef/55HDt2DDk5Odi5c6ela7QplQteM/gQERFZ3x33+JSVlWHKlClYt24dOnXqhH79+qGoqAgjRoxAUlISIiIiaqNOm1HZ48Pp7ERERNZ3xz0+jo6OOHr0KLy9vfHaa6/VRk02SwhhGuMjZ/AhIiKyuhqN8Xn00Ufx2WefWboWm1c5lR1gjw8REZEUajTGR6/XY8WKFfjjjz8QHR0NV1dXs/3vvvuuRYqzNYYbVrZmjw8REZH11Sj4HD16FB06dAAAnD592myfjNO0b4k9PkRERNKqUfDZvHmzpeuwCzcGH96ygoiIyPpqNMaHaoY9PkRERNJi8LGi8huCD9fxISIisj4GHysyGivvzM6xUERERFJg8LGiyh4fBzmbnYiISAr8BLaiyjE+zD1ERETS4EewFRnY40NERCQpfgJbUeUChhzXTEREJA0GHysy9fgo2OxERERS4CewFZnG+HBGFxERkSQYfKzo+hgfBh8iIiIpMPhYUeV0di5eSEREJA0GHysyMPgQERFJisHHinipi4iISFoMPlZ0fQFDBh8iIiIpMPhYEXt8iIiIpMXgY0XXFzBk8CEiIpJCvQs+Op0O7dq1g0wmw8GDB832paSkYOjQoXB1dYWPjw+mT58OvV4vTaE3YTAaAQAOCgYfIiIiKThIXcCdev755xEUFIRDhw6ZbTcYDBg8eDB8fX2xY8cOZGdnY/z48RBCYMmSJRJVa85QkXvY40NERCSRetXjs2HDBsTHx2Px4sVV9sXHx+P48eP4+uuv0b59e/Tt2xfvvPMOli9fDq1WK0G1VZl6fDjGh4iISBL1JvhcuXIFkyZNwldffQUXF5cq+xMSEhAZGYmgoCDTtgEDBkCn0yExMfGW59XpdNBqtWaP2mLq8WHwISIikkS9CD5CCEyYMAGTJ09GdHT0TY/JyMiAv7+/2TZPT08olUpkZGTc8twLFy6ERqMxPUJCQixa+43K2eNDREQkKUmDz7x58yCTyW772L9/P5YsWQKtVos5c+bc9nyym4ydEULcdHulOXPmID8/3/RITU296/d1K1y5mYiISFqSDm6eOnUqRo0addtjwsLC8MYbb2D37t1QqVRm+6KjozF27FisWrUKAQEB2LNnj9n+3NxclJWVVekJupFKpapy3trC4ENERCQtSYOPj48PfHx8/vW4Dz/8EG+88YbpeVpaGgYMGIDvvvsOnTt3BgDExMRgwYIFSE9PR2BgIICKAc8qlQpRUVG18wbuEBcwJCIikla9mM4eGhpq9tzNzQ0AEBERgeDgYABA//790bJlS4wbNw6LFi1CTk4OZs+ejUmTJsHd3d3qNd8MFzAkIiKSVr0Y3FwdCoUC69evh5OTE7p164aHH34Yw4YNu+nUd6mYeny4gCEREZEk6kWPzz+FhYVBXOs9uVFoaCh+++03CSqqHtNNStnjQ0REJAmb6fGpDzjGh4iISFoMPlZk6vFh8CEiIpIEg48VlbPHh4iISFIMPlbEdXyIiIikxeBjRQw+RERE0mLwsSJT8OGsLiIiIkkw+FhR5QKGCjmbnYiISAr8BLYiLmBIREQkLQYfK+IChkRERNJi8LEiLmBIREQkLQYfK+IChkRERNJi8LEiLmBIREQkLQYfKzJyHR8iIiJJMfhYUTmDDxERkaQYfKzIYDQC4AKGREREUmHwsSJDRYcPe3yIiIgkwuBjRaYeHwYfIiIiSTD4WBFvUkpERCQtBh8r4gKGRERE0mLwsSIuYEhERCQtBh8r4gKGRERE0mLwsSKj4BgfIiIiKTH4WFG5gcGHiIhISgw+VmTq8eEChkRERJJg8LEi3rKCiIhIWgw+VsR1fIiIiKTF4GNFDD5ERETSYvCxIgYfIiIiaTH4WBGDDxERkbQYfKzo+i0r2OxERERS4CewFRlMCxhKXAgREZGd4kewFV1fwJDNTkREJAV+AlsRFzAkIiKSFoOPFXEBQyIiImkx+FgRZ3URERFJi8HHihh8iIiIpMXgY0UMPkRERNJi8LGi6+v4MPgQERFJgcHHiiqDj5zBh4iISBIMPlZUuYAhe3yIiIikweBjJUIIjvEhIiKSGIOPlVzLPAC4gCEREZFUGHyspNxoNH2tUDD4EBERSYHBx0puyD3s8SEiIpIIg4+VmPX4cIwPERGRJBh8rMRwwyAfBh8iIiJpMPhYiVnw4aUuIiIiSTD4WEll8JHJuIAhERGRVBh8rISLFxIREUmPwcdKyg3XblfBy1xERESSYfCxEiN7fIiIiCTH4GMl5bxdBRERkeQYfKzEyOBDREQkOQYfK7ne48MmJyIikgo/ha3k+p3ZJS6EiIjIjvFj2Eoqg48De3yIiIgkw09hK6m81MXcQ0REJB1+DFvJ9ensbHIiIiKp8FPYSq4vYChxIURERHaMwcdK2ONDREQkPX4KW8n1MT7s8iEiIpJKvQk+YWFhkMlkZo8XX3zR7JiUlBQMHToUrq6u8PHxwfTp06HX6yWq2JzRyFtWEBERSc1B6gLuxPz58zFp0iTTczc3N9PXBoMBgwcPhq+vL3bs2IHs7GyMHz8eQggsWbJEinLN8JYVRERE0qtXwUetViMgIOCm++Lj43H8+HGkpqYiKCgIAPDOO+9gwoQJWLBgAdzd3a1ZahUGBh8iIiLJ1ZtLXQDw9ttvw9vbG+3atcOCBQvMLmMlJCQgMjLSFHoAYMCAAdDpdEhMTJSiXDMMPkRERNKrNz0+M2bMQIcOHeDp6Ym9e/dizpw5uHDhAlasWAEAyMjIgL+/v9lrPD09oVQqkZGRccvz6nQ66HQ603OtVlsr9ZcbjQAAhYzBh4iISCqS9vjMmzevyoDlfz72798PAHj22WfRs2dPtGnTBo8//jg+/fRTfPbZZ8jOzjadT3aTUCGEuOn2SgsXLoRGozE9QkJCLP9GccN0dgWDDxERkVQk7fGZOnUqRo0addtjwsLCbrq9S5cuAICzZ8/C29sbAQEB2LNnj9kxubm5KCsrq9ITdKM5c+Zg5syZpudarbZWws/1BQwZfIiIiKQiafDx8fGBj49PjV6blJQEAAgMDAQAxMTEYMGCBUhPTzdti4+Ph0qlQlRU1C3Po1KpoFKpalTDnbi+gCGDDxERkVTqxRifhIQE7N69G7GxsdBoNNi3bx+effZZ3HfffQgNDQUA9O/fHy1btsS4ceOwaNEi5OTkYPbs2Zg0aZLkM7oALmBIRERUF9SL4KNSqfDdd9/htddeg06nQ8OGDTFp0iQ8//zzpmMUCgXWr1+PKVOmoFu3bnB2dsaYMWOwePFiCSu/jgsYEhERSa9eBJ8OHTpg9+7d/3pcaGgofvvtNytUdOfY40NERCS9erWOT31mYI8PERGR5Bh8rMS0gCFndREREUmGwcdKDIIrNxMREUmNwcdKDAYuYEhERCQ1Bh8rMQ1u5qUuIiIiyTD4WAkXMCQiIpIeg4+VcDo7ERGR9Bh8rIQLGBIREUmPwcdK2ONDREQkPQYfK+EChkRERNJj8LESLmBIREQkPQYfK7m+gCGbnIiISCr8FLaSygUMFWxxIiIiyfBj2EoqBzezx4eIiEg6/BS2Ei5gSEREJD0GHyvhdHYiIiLpMfhYCRcwJCIikh6Dj5WUG40A2ONDREQkJQYfKzFU5B72+BAREUmIwcdKDNd6fLiAIRERkXQYfKzk2jI+ULDHh4iISDIMPlZi6vFh8CEiIpIMg4+VmO7VxeBDREQkGQYfK2HwISIikh6Dj5WUM/gQERFJjsHHSriAIRERkfQYfKyEt6wgIiKSHoOPlRjY40NERCQ5Bh8rMQ1u5gKGREREkmHwsRKD4OBmIiIiqTlIXYC9iAzSwMtFCXdnR6lLISIislsMPlby4ej2UpdARERk93ipi4iIiOwGgw8RERHZDQYfIiIishsMPkRERGQ3GHyIiIjIbjD4EBERkd1g8CEiIiK7weBDREREdoPBh4iIiOwGgw8RERHZDQYfIiIishsMPkRERGQ3GHyIiIjIbjD4EBERkd1wkLqAukYIAQDQarUSV0JERETVVfm5Xfk5fisMPv9QUFAAAAgJCZG4EiIiIrpTBQUF0Gg0t9wvE/8WjeyM0WhEWloa1Go1ZDJZtV6j1WoREhKC1NRUuLu713KFxPa2Lra39bHNrYvtbV211d5CCBQUFCAoKAhy+a1H8rDH5x/kcjmCg4Nr9Fp3d3f+pbEitrd1sb2tj21uXWxv66qN9r5dT08lDm4mIiIiu8HgQ0RERHaDwccCVCoV5s6dC5VKJXUpdoHtbV1sb+tjm1sX29u6pG5vDm4mIiIiu8EeHyIiIrIbDD5ERERkNxh8iIiIyG4w+Nyljz/+GOHh4XByckJUVBS2b98udUn1wrZt2zB06FAEBQVBJpPh559/NtsvhMC8efMQFBQEZ2dn9OrVC8eOHTM7RqfTYdq0afDx8YGrqyvuu+8+XLp0yeyY3NxcjBs3DhqNBhqNBuPGjUNeXl4tv7u6Z+HChejYsSPUajX8/PwwbNgwnDp1yuwYtrnlfPLJJ2jTpo1pnZKYmBhs2LDBtJ9tXbsWLlwImUyGZ555xrSNbW5Z8+bNg0wmM3sEBASY9tfp9hZUY3FxccLR0VEsX75cHD9+XMyYMUO4urqKixcvSl1anff777+L//u//xNr164VAMRPP/1ktv+tt94SarVarF27Vhw5ckSMHDlSBAYGCq1Wazpm8uTJokGDBuKPP/4QBw4cELGxsaJt27aivLzcdMzAgQNFZGSk2LVrl9i1a5eIjIwUQ4YMsdbbrDMGDBggVq5cKY4ePSoOHjwoBg8eLEJDQ0VhYaHpGLa55axbt06sX79enDp1Spw6dUq89NJLwtHRURw9elQIwbauTXv37hVhYWGiTZs2YsaMGabtbHPLmjt3rmjVqpVIT083PTIzM03763J7M/jchU6dOonJkyebbWvevLl48cUXJaqofvpn8DEajSIgIEC89dZbpm2lpaVCo9GITz/9VAghRF5ennB0dBRxcXGmYy5fvizkcrnYuHGjEEKI48ePCwBi9+7dpmMSEhIEAHHy5Mlafld1W2ZmpgAgtm7dKoRgm1uDp6enWLFiBdu6FhUUFIgmTZqIP/74Q/Ts2dMUfNjmljd37lzRtm3bm+6r6+3NS101pNfrkZiYiP79+5tt79+/P3bt2iVRVbbhwoULyMjIMGtblUqFnj17mto2MTERZWVlZscEBQUhMjLSdExCQgI0Gg06d+5sOqZLly7QaDR2/zPKz88HAHh5eQFgm9cmg8GAuLg4FBUVISYmhm1di55++mkMHjwYffv2NdvONq8dZ86cQVBQEMLDwzFq1CicP38eQN1vb96rq4aysrJgMBjg7+9vtt3f3x8ZGRkSVWUbKtvvZm178eJF0zFKpRKenp5Vjql8fUZGBvz8/Kqc38/Pz65/RkIIzJw5E927d0dkZCQAtnltOHLkCGJiYlBaWgo3Nzf89NNPaNmypekfbLa1ZcXFxeHAgQPYt29flX38/ba8zp0748svv0TTpk1x5coVvPHGG+jatSuOHTtW59ubwecu/fMO7kKIat/VnW6vJm37z2Nudry9/4ymTp2Kw4cPY8eOHVX2sc0tp1mzZjh48CDy8vKwdu1ajB8/Hlu3bjXtZ1tbTmpqKmbMmIH4+Hg4OTnd8ji2ueXce++9pq9bt26NmJgYREREYNWqVejSpQuAutvevNRVQz4+PlAoFFVSZ2ZmZpWUS3emcmbA7do2ICAAer0eubm5tz3mypUrVc5/9epVu/0ZTZs2DevWrcPmzZsRHBxs2s42tzylUonGjRsjOjoaCxcuRNu2bfHBBx+wrWtBYmIiMjMzERUVBQcHBzg4OGDr1q348MMP4eDgYGoPtnntcXV1RevWrXHmzJk6/zvO4FNDSqUSUVFR+OOPP8y2//HHH+jatatEVdmG8PBwBAQEmLWtXq/H1q1bTW0bFRUFR0dHs2PS09Nx9OhR0zExMTHIz8/H3r17Tcfs2bMH+fn5dvczEkJg6tSp+PHHH/H3338jPDzcbD/bvPYJIaDT6djWtaBPnz44cuQIDh48aHpER0dj7NixOHjwIBo1asQ2r2U6nQ4nTpxAYGBg3f8dr/GwaDJNZ//ss8/E8ePHxTPPPCNcXV1FcnKy1KXVeQUFBSIpKUkkJSUJAOLdd98VSUlJpqUA3nrrLaHRaMSPP/4ojhw5IkaPHn3TqZDBwcHizz//FAcOHBC9e/e+6VTINm3aiISEBJGQkCBat25tl1NPn3rqKaHRaMSWLVvMpp8WFxebjmGbW86cOXPEtm3bxIULF8Thw4fFSy+9JORyuYiPjxdCsK2t4cZZXUKwzS1t1qxZYsuWLeL8+fNi9+7dYsiQIUKtVps+/+pyezP43KX//e9/omHDhkKpVIoOHTqYpgfT7W3evFkAqPIYP368EKJiOuTcuXNFQECAUKlUokePHuLIkSNm5ygpKRFTp04VXl5ewtnZWQwZMkSkpKSYHZOdnS3Gjh0r1Gq1UKvVYuzYsSI3N9dK77LuuFlbAxArV640HcM2t5z//Oc/pn8XfH19RZ8+fUyhRwi2tTX8M/iwzS2rcl0eR0dHERQUJEaMGCGOHTtm2l+X25t3ZyciIiK7wTE+REREZDcYfIiIiMhuMPgQERGR3WDwISIiIrvB4ENERER2g8GHiIiI7AaDDxEREdkNBh8iIiKyGww+RER0S2FhYXj//felLoPIYhh8iO7ChAkTIJPJIJPJ4ODggNDQUDz11FNV7jhcVyUnJ0Mmk+HgwYNSl0J3YN68eWjXrp3UZRDVSww+RHdp4MCBSE9PR3JyMlasWIFff/0VU6ZMkbosqiEhBMrLy6Uug4hqCYMP0V1SqVQICAhAcHAw+vfvj5EjRyI+Pt6032AwYOLEiQgPD4ezszOaNWuGDz74wOwcEyZMwLBhw7B48WIEBgbC29sbTz/9NMrKykzHpKenY/DgwXB2dkZ4eDi++eabKpch8vPz8cQTT8DPzw/u7u7o3bs3Dh06dMvaw8PDAQDt27eHTCZDr169AABGoxHz589HcHAwVCoV2rVrh40bN962HXr16oVp06bhmWeegaenJ/z9/bFs2TIUFRXhscceg1qtRkREBDZs2GD2uuPHj2PQoEFwc3ODv78/xo0bh6ysLNP+jRs3onv37vDw8IC3tzeGDBmCc+fOmfbr9XpMnToVgYGBcHJyQlhYGBYuXAjg5j1aeXl5kMlk2LJlCwBgy5YtkMlk2LRpE6Kjo6FSqbB9+3YIIfDf//4XjRo1grOzM9q2bYsffvjBdJ4bX9e+fXs4Ozujd+/eyMzMxIYNG9CiRQu4u7tj9OjRKC4uNr2uuuf966+/EB0dDRcXF3Tt2hWnTp0CAHzxxRd47bXXcOjQIVNv4xdffFHl57Fp0yY4OTkhLy/PbPv06dPRs2dP0/O1a9eiVatWUKlUCAsLwzvvvHPLn/Gdtqcl24XIYu7qFqdEdm78+PHi/vvvNz0/d+6caNmypfD39zdt0+v14tVXXxV79+4V58+fF19//bVwcXER3333ndl53N3dxeTJk8WJEyfEr7/+KlxcXMSyZctMx/Tt21e0a9dO7N69WyQmJoqePXsKZ2dn8d577wkhKu6G3K1bNzF06FCxb98+cfr0aTFr1izh7e0tsrOzb1r/3r17BQDx559/ivT0dNNx7777rnB3dxfffvutOHnypHj++eeFo6OjOH369C3bomfPnkKtVovXX39dnD59Wrz++utCLpeLe++9VyxbtkycPn1aPPXUU8Lb21sUFRUJIYRIS0sTPj4+Ys6cOeLEiRPiwIEDol+/fiI2NtZ03h9++EGsXbtWnD59WiQlJYmhQ4eK1q1bC4PBIIQQYtGiRSIkJERs27ZNJCcni+3bt4tvvvlGCCHEhQsXBACRlJRkOl9ubq4AIDZv3iyEEGLz5s0CgGjTpo2Ij48XZ8+eFVlZWeKll14SzZs3Fxs3bhTnzp0TK1euFCqVSmzZssXsdV26dBE7duwQBw4cEI0bNxY9e/YU/fv3FwcOHBDbtm0T3t7e4q233jJ9/+qet3PnzmLLli3i2LFj4p577hFdu3YVQghRXFwsZs2aJVq1aiXS09NFenq6KC4urvLzKC8vF/7+/mLFihVVti1dulQIIcT+/fuFXC4X8+fPF6dOnRIrV64Uzs7OYuXKlabXNGzY0PQ7diftael2IbIUBh+iuzB+/HihUCiEq6urcHJyEgAEAPHuu+/e9nVTpkwRDzzwgNl5GjZsKMrLy03bHnroITFy5EghhBAnTpwQAMS+fftM+8+cOSMAmD6U/vrrL+Hu7i5KS0vNvldERITpg+6fbvZBJoQQQUFBYsGCBWbbOnbsKKZMmXLL99SzZ0/RvXt30/Py8nLh6uoqxo0bZ9qWnp4uAIiEhAQhhBCvvPKK6N+/v9l5UlNTBQBx6tSpm36fzMxMAUAcOXJECCHEtGnTRO/evYXRaKzW+7vVB/XPP/9sOqawsFA4OTmJXbt2mZ1v4sSJYvTo0Wav+/PPP037Fy5cKACIc+fOmbY9+eSTYsCAAXd13vXr1wsAoqSkRAghxNy5c0Xbtm1v2j43mj59uujdu7fp+aZNm4RSqRQ5OTlCCCHGjBkj+vXrZ/aa5557TrRs2dL0vKbBx9LtQmQpDtbpVyKyXbGxsfjkk09QXFyMFStW4PTp05g2bZrZMZ9++ilWrFiBixcvoqSkBHq9vsrg1FatWkGhUJieBwYG4siRIwCAU6dOwcHBAR06dDDtb9y4MTw9PU3PExMTUVhYCG9vb7PzlpSUmF0a+jdarRZpaWno1q2b2fZu3brd9rIZALRp08b0tUKhgLe3N1q3bm3a5u/vDwDIzMw01bx582a4ublVOde5c+fQtGlTnDt3Dq+88gp2796NrKwsGI1GAEBKSgoiIyMxYcIE9OvXD82aNcPAgQMxZMgQ9O/fv9rvt1J0dLTp6+PHj6O0tBT9+vUzO0av16N9+/a3fM/+/v5wcXFBo0aNzLbt3bv3rs4bGBgIoKLdQkNDq/2exo4di5iYGKSlpSEoKAirV6/GoEGDTL83J06cwP3332/2mm7duuH999+HwWAw+328U7XVLkR3i8GH6C65urqicePGAIAPP/wQsbGxeO211/D6668DANasWYNnn30W77zzDmJiYqBWq7Fo0SLs2bPH7DyOjo5mz2UymelDXghx0+9943aj0YjAwEDTWIsbeXh43PH7kslkVb7XP7f9083ew43bKl9f+b6MRiOGDh2Kt99+u8q5Kj/shw4dipCQECxfvhxBQUEwGo2IjIyEXq8HAHTo0AEXLlzAhg0b8Oeff+Lhhx9G37598cMPP0Aul5tqr3TjuKkbubq6mr6urG/9+vVo0KCB2XEqleqW7/mf77dy243vt6bnvfH11dWpUydEREQgLi4OTz31FH766SesXLnStP9mP9Nb/a4BuKP2rK12IbpbDD5EFjZ37lzce++9eOqppxAUFITt27eja9euZjO97qQHBgCaN2+O8vJyJCUlISoqCgBw9uxZs4GrHTp0QEZGBhwcHBAWFlat8yqVSgAVA7Arubu7IygoCDt27ECPHj1M23ft2oVOnTrdUd3/pkOHDli7di3CwsLg4FD1n6Ps7GycOHECS5cuxT333AMA2LFjR5Xj3N3dMXLkSIwcORIPPvggBg4ciJycHPj6+gKoGBhe2XNQnan7LVu2hEqlQkpKitlA4LtlqfMqlUqzn9ntjBkzBqtXr0ZwcDDkcjkGDx5sVs8/23PXrl1o2rTpTXt7atqe/6a22pvoZhh8iCysV69eaNWqFd5880189NFHaNy4Mb788kts2rQJ4eHh+Oqrr7Bv3z7TjKrqaN68Ofr27YsnnngCn3zyCRwdHTFr1iw4Ozub/sfet29fxMTEYNiwYXj77bfRrFkzpKWl4ffff8ewYcPMLuVU8vPzg7OzMzZu3Ijg4GA4OTlBo9Hgueeew9y5cxEREYF27dph5cqVOHjwIFavXm2xdgKAp59+GsuXL8fo0aPx3HPPwcfHB2fPnkVcXByWL18OT09PeHt7Y9myZQgMDERKSgpefPFFs3O89957CAwMRLt27SCXy/H9998jICAAHh4ekMvl6NKlC9566y2EhYUhKysLL7/88r/WpVarMXv2bDz77LMwGo3o3r07tFotdu3aBTc3N4wfP75G79dS5w0LC8OFCxdw8OBBBAcHQ61W37JnZOzYsXjttdewYMECPPjgg3BycjLtmzVrFjp27IjXX38dI0eOREJCAj766CN8/PHHNz2Xs7Nzjdrz39RWexPdDKezE9WCmTNnYvny5UhNTcXkyZMxYsQIjBw5Ep07d0Z2dnaN1vn58ssv4e/vjx49emD48OGYNGkS1Gq16YNMJpPh999/R48ePfCf//wHTZs2xahRo5CcnGwaW/NPDg4O+PDDD7F06VIEBQWZxntMnz4ds2bNwqxZs9C6dWts3LgR69atQ5MmTWreKDcRFBSEnTt3wmAwYMCAAYiMjMSMGTOg0Wggl8shl8sRFxeHxMREREZG4tlnn8WiRYvMzuHm5oa3334b0dHR6NixI5KTk/H777+bLst8/vnnKCsrQ3R0NGbMmIE33nijWrW9/vrrePXVV7Fw4UK0aNECAwYMwK+//npHgbW2zvvAAw9g4MCBiI2Nha+vL7799ttbHtukSRN07NgRhw8fxtixY832dejQAWvWrEFcXBwiIyPx6quvYv78+ZgwYcItz1fT9vw3tdXeRP8kE7e7oEtEddalS5cQEhKCP//8E3369JG6HCKieoHBh6ie+Pvvv1FYWIjWrVsjPT0dzz//PC5fvozTp09XGThKREQ3xzE+RPVEWVkZXnrpJZw/fx5qtRpdu3bF6tWrGXqIiO4Ae3yIiIjIbnBwMxEREdkNBh8iqvd69eplumHn3awrM2HCBNN5fv75Z4vVR0R1B4MPEdmESZMmIT09HZGRkTU+xwcffID09HQLVkVEdQ0HNxORTXBxcUFAQMBdnUOj0UCj0VioIiKqi9jjQ0Q2Z8uWLZDJZNi0aRPat28PZ2dn9O7dG5mZmdiwYQNatGgBd3d3jB49GsXFxVKXS0RWxB4fIrJZ8+bNw0cffQQXFxc8/PDDePjhh6FSqfDNN9+gsLAQw4cPx5IlS/DCCy9IXSoRWQmDDxHZrDfeeAPdunUDAEycOBFz5szBuXPn0KhRIwDAgw8+iM2bNzP4ENkRXuoiIpvVpk0b09f+/v5wcXExhZ7KbZmZmVKURkQSYfAhIpt146rWMpmsyirXMpkMRqPR2mURkYQYfIiIiMhuMPgQERGR3WDwISIiIrvB4ENENqdXr14QQsDDw8O0bcKECcjLyzM7bt68eXd1iwsiqn8YfIjIJnz88cdwc3PDkSNHanyOyZMnw83NzYJVEVFdIxNCCKmLICK6G5cvX0ZJSQkAIDQ0FEqlskbnyczMhFarBQAEBgbC1dXVYjUSUd3A4ENERER2g5e6iIiIyG4w+BAREZHdYPAhIiIiu8HgQ0RERHaDwYeIiIjsBoMPERER2Q0GHyIiIrIbDD5ERERkNxh8iIiIyG78P1sCVU9ESC1XAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "prof.plot();"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Here Xarray has generated a line plot of the temperature data against the coordinate variable `isobaric`. Also the metadata are used to auto-generate axis labels and units."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Customizing the plot\n",
+ "\n",
+ "As in Pandas, the `.plot()` method is mostly just a wrapper to Matplotlib, so we can customize our plot in familiar ways.\n",
+ "\n",
+ "In this air temperature profile example, we would like to make two changes:\n",
+ "- swap the axes so that we have isobaric levels on the y (vertical) axis of the figure\n",
+ "- make pressure decrease upward in the figure, so that up is up\n",
+ "\n",
+ "A few keyword arguments to our `.plot()` call will take care of this:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[]"
+ ]
+ },
+ "execution_count": 44,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAGwCAYAAABvpfsgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABa8UlEQVR4nO3deVxU5f4H8M/MAMM+si+KAoor7iiCJe67tJiaGmmZS+ZWei1vt1/WLbdbluYtzUrTNO1mlpqRlisKLgjivoGyyz6AAgMz5/cHOTmCysAMhxk+79drXjDnPOfMdzjV+fSc5zxHIgiCACIiIiKqNanYBRARERGZOgYqIiIiojpioCIiIiKqIwYqIiIiojpioCIiIiKqIwYqIiIiojpioCIiIiKqIwuxC2gsNBoN0tPT4eDgAIlEInY5REREVAOCIKCoqAje3t6QSh/eD8VAVU/S09Ph4+MjdhlERERUCykpKWjWrNlD1zNQ1RMHBwcAlQfE0dFR5GqIiIioJgoLC+Hj46M9jz8MA1U9uXeZz9HRkYGKiIjIxDxuuA4HpRMRERHVEQMVERERUR0xUBERERHVEQMVERERUR0xUBERERHVEQMVERERUR0xUBERERHVEQMVERERUR0xUBERERHVkUkHqsWLF0Mikei8PD09tesFQcDixYvh7e0NGxsb9O3bFxcuXNDZR1lZGWbPng1XV1fY2dkhPDwcqampOm3y8/MREREBhUIBhUKBiIgIFBQU1MdXJCIiIhNg0oEKADp06ICMjAzt69y5c9p1K1aswMqVK7FmzRqcOnUKnp6eGDRoEIqKirRt5s2bh507d2Lbtm2IiopCcXExRo4cCbVarW0zYcIExMfHIzIyEpGRkYiPj0dERES9fk8iIiJquEz+WX4WFhY6vVL3CIKATz/9FG+//TaeffZZAMC3334LDw8PbN26FdOnT4dSqcTXX3+NzZs3Y+DAgQCA7777Dj4+Pvjjjz8wZMgQXLp0CZGRkYiJiUFwcDAAYP369QgJCcGVK1fQpk2b+vuyRERE1CCZfA/VtWvX4O3tDT8/Pzz//PNITEwEACQlJSEzMxODBw/WtpXL5QgLC8Px48cBALGxsSgvL9dp4+3tjcDAQG2b6OhoKBQKbZgCgF69ekGhUGjbVKesrAyFhYU6LyIifZSWqxGXnC92GURUAyYdqIKDg7Fp0yb8/vvvWL9+PTIzMxEaGorc3FxkZmYCADw8PHS28fDw0K7LzMyElZUVnJycHtnG3d29yme7u7tr21Rn6dKl2jFXCoUCPj4+dfquRNS45N9RodPifXj2i+NQlpSLXQ4RPYZJB6phw4Zh9OjR6NixIwYOHIhff/0VQOWlvXskEonONoIgVFn2oAfbVNf+cftZtGgRlEql9pWSklKj70REBABOdlbwbmINQQBib+WJXQ4RPYZJB6oH2dnZoWPHjrh27Zp2XNWDvUhZWVnaXitPT0+oVCrk5+c/ss3t27erfFZ2dnaV3q/7yeVyODo66ryIiPQR7OcCADiRyEBF1NCZVaAqKyvDpUuX4OXlBT8/P3h6emL//v3a9SqVCocPH0ZoaCgAoHv37rC0tNRpk5GRgfPnz2vbhISEQKlU4uTJk9o2J06cgFKp1LYhIjKGYH9nAEBMEgMVUUNn0nf5LViwAKNGjULz5s2RlZWFDz74AIWFhZg0aRIkEgnmzZuHJUuWICAgAAEBAViyZAlsbW0xYcIEAIBCocCUKVMwf/58uLi4wNnZGQsWLNBeQgSAdu3aYejQoZg6dSrWrVsHAJg2bRpGjhzJO/yIyKiC/St7qM6nKVFUWg4Ha0uRKyKihzHpQJWamorx48cjJycHbm5u6NWrF2JiYtCiRQsAwMKFC1FSUoKZM2ciPz8fwcHB2LdvHxwcHLT7+OSTT2BhYYGxY8eipKQEAwYMwMaNGyGTybRttmzZgjlz5mjvBgwPD8eaNWvq98sSUaPTtIkN/FztkJRzBwcuZ+GpLk3FLomIHkIiCIIgdhGNQWFhIRQKBZRKJcdTEVGNfbzvCj47cB0D23ngq0lBYpdD1OjU9PxtVmOoiIjMzajO3gCAw1ezoLzL6ROIGioGKiKiBqy1hwPaeDigXC3g9wsPn/uOiMTFQEVE1MCN6OQFANh3seoULkTUMDBQERE1cAPbVc55F3U9G6Xl6se0JiIxMFARETVw7bwc4K2wRmm5BtE3csUuh4iqwUBFRNTASSQS9G9X+UzRPy7xsh9RQ8RARURkAga0rbzsd+ByFjjbDVHDw0BFRGQCQlq6wNpSigxlKS5lFIldDhE9gIGKiMgEWFvK0LulKwDg+I0ckashogcxUBERmYhOzZoAAC6mF4pbCBFVwUBFRGQi2ntXPvbiym1e8iNqaBioiIhMhI+zDQAgvaBE5EqI6EEMVEREJqJpk8pAlX+3HAV3VSJXQ0T3Y6AiIjIRDtaWaOFiCwA4m6oUuRoiuh8DFRGRCen818D0C+kMVEQNCQMVEZEJaepUedkvq7BM5EqI6H4MVEREJsTVXg4AyC5moCJqSBioiIhMiJtDZaDKKWKgImpIGKiIiEyI2189VLcLS0WuhIjux0BFRGRCWrrbAQCS8+6iRKUWuRoiuoeBiojIhLg7WMPVXg6NAJznnX5EDQYDFRGRiendygUAsO9CpsiVENE9DFRERCZmWKAXAGDvuUwIgiByNUQEMFAREZmcvm3cYGslQ1pBCc6l8bIfUUPAQEVEZGKsLWXo18YdAPDbeV72I2oIGKiIiEzQoPYeAIDDV7JFroSIAAYqIiKT9ESAKwDgYkYhMpWck4pIbAxUREQmyNVejp6+zgCArSduiVwNETFQERGZqEmhvgCALSeSUVbBST6JxMRARURkooZ08ICXwhq5d1T47RwHpxOJiYGKiMhEWcikmNCzOQBgU/RNcYshauQYqIiITNi4nj6wlElwJrkA5zknFZFoGKiIiEyYu4M1hv41czp7qYjEw0BFRGTiJoe2AAD8HJfOKRSIRMJARURk4rq3cEZPX2eo1Bp8dTRR7HKIGiUGKiIiMzCzX0sAlVMo5N9RiVwNUePDQEVEZAbCWruhg7cjSsrV2HD8ptjlEDU6DFRERGZAIpHgtX6tAAAbjyWhuKxC5IqIGhcGKiIiMzGkgyf83exQWFqB72L4OBqi+sRARURkJmRSCWaEVY6l2nT8JtQaQeSKiBoPBioiIjMS3tkbTWwtka4sxeGrWWKXQ9RoMFAREZkRa0sZRndrBgDYeiJZ5GqIGg8GKiIiMzP+r+f7HbichbSCEpGrIWocGKiIiMxMK3d79PJ3hkYA1h/hRJ9E9YGBiojIDM3uHwCg8rJfav5dkashMn8MVEREZqh3K1eEtnSBSq3Bf36/InY5RGaPgYqIyEz9c3g7SCTAL/HpOH0zT+xyiMwaAxURkZkKbKrAuCAfAMB7uy9Cw3mpiIyGgYqIyIwtGNIGDnILnEtT4sfYVLHLITJbDFRERGbM1V6OuQMrB6iv+P0yCkvLRa6IyDwxUBERmbkXQ3zh72aHnGIV1hy4LnY5RGaJgYqIyMxZWUjxzsj2AICvo5Jw5Gq2yBURmR8GKiKiRqBfG3c8260p1BoBM7ecweXMQrFLIjIrDFRERI3E0mc7oqefM4rLKjDpm5NIzuWEn0SGwkBFRNRIyC1k+DKiOwLc7XG7sAwTv45BhpLP+iMyhFoFqqNHj+KFF15ASEgI0tLSAACbN29GVFSUQYsjIiLDamJrhS2vBMPXxRYpeSUYuy4aSTl3xC6LyOTpHah27NiBIUOGwMbGBnFxcSgrKwMAFBUVYcmSJQYvkIiIDMvd0RpbpvZCc+fKUDX6i+OITykQuywik6Z3oPrggw+wdu1arF+/HpaWltrloaGhOHPmjEGLIyIi42jaxAY7Xg1Fp2YK5N1RYfyXMThw+bbYZRGZLL0D1ZUrV9CnT58qyx0dHVFQUGCImmpl6dKlkEgkmDdvnnaZIAhYvHgxvL29YWNjg759++LChQs625WVlWH27NlwdXWFnZ0dwsPDkZqqO5twfn4+IiIioFAooFAoEBERIep3JSIyBDcHOb6f2gthrd1QUq7G1E2x+OFUithlEZkkvQOVl5cXrl+vOjFcVFQU/P39DVKUvk6dOoUvv/wSnTp10lm+YsUKrFy5EmvWrMGpU6fg6emJQYMGoaioSNtm3rx52LlzJ7Zt24aoqCgUFxdj5MiRUKvV2jYTJkxAfHw8IiMjERkZifj4eERERNTb9yMiMhY7uQW+mhSE0d2aQa0RsHBHAj794yoEgc/9I9KLoKfly5cL7du3F2JiYgQHBwfh6NGjwnfffSe4ubkJn332mb67q7OioiIhICBA2L9/vxAWFibMnTtXEARB0Gg0gqenp7Bs2TJt29LSUkGhUAhr164VBEEQCgoKBEtLS2Hbtm3aNmlpaYJUKhUiIyMFQRCEixcvCgCEmJgYbZvo6GgBgHD58uUa16lUKgUAglKprMvXJSIyCo1GI6yIvCS0eHOP0OLNPcKCH+IFVYVa7LKIRFfT87fePVQLFy7E008/jX79+qG4uBh9+vTBK6+8gunTp2PWrFmGznuP9dprr2HEiBEYOHCgzvKkpCRkZmZi8ODB2mVyuRxhYWE4fvw4ACA2Nhbl5eU6bby9vREYGKhtEx0dDYVCgeDgYG2bXr16QaFQaNtUp6ysDIWFhTovIqKGSiKR4B9D2mLJMx0hk0rwv9hUvLzxFIr47D+iGqnVtAkffvghcnJycPLkScTExCA7Oxv//ve/DV3bY23btg1nzpzB0qVLq6zLzMwEAHh4eOgs9/Dw0K7LzMyElZUVnJycHtnG3d29yv7d3d21baqzdOlS7ZgrhUIBHx8f/b4cEZEIJgQ3x1cvBsHWSoaj13IwZm00MpWlYpdF1ODVemJPW1tbBAUFoWfPnrC3tzdkTTWSkpKCuXPn4rvvvoO1tfVD20kkEp33giBUWfagB9tU1/5x+1m0aBGUSqX2lZLCgZ5EZBr6tXXH9mkhcLWX43JmEZ75/BgfVUP0GBb6blBaWorPPvsMBw8eRFZWFjQajc76+po6ITY2FllZWejevbt2mVqtxpEjR7BmzRpcuXIFQGUPk5eXl7ZNVlaWttfK09MTKpUK+fn5Or1UWVlZCA0N1ba5fbvqrcTZ2dlVer/uJ5fLIZfL6/YliYhE0rGZAjtnhmLyhpO4kX0HY76IxtqI7ujdylXs0ogaJL17qF5++WWsWLECLVq0wMiRI/HUU0/pvOrLgAEDcO7cOcTHx2tfQUFBmDhxIuLj4+Hv7w9PT0/s379fu41KpcLhw4e1Yal79+6wtLTUaZORkYHz589r24SEhECpVOLkyZPaNidOnIBSqdS2ISIyRz7Otvjp1d7o6eeMor+e/7cjNvXxGxI1QhJB0O/eWIVCgb1796J3797GqqnW+vbtiy5duuDTTz8FACxfvhxLly7Fhg0bEBAQgCVLluDQoUO4cuUKHBwcAACvvvoq9uzZg40bN8LZ2RkLFixAbm4uYmNjIZPJAADDhg1Deno61q1bBwCYNm0aWrRogd27d9e4tsLCQigUCiiVSjg6Ohr2ixMRGVFZhRoL/peA3WfTAQDzB7XGrP6tHjt8gsgc1PT8rfclv6ZNm2rDSEO3cOFClJSUYObMmcjPz0dwcDD27dunU/8nn3wCCwsLjB07FiUlJRgwYAA2btyoDVMAsGXLFsyZM0d7N2B4eDjWrFlT79+HiEgMcgsZVo3rgqZNbLD28A18vP8q0pUl+ODpyjsCiagWPVS//fYbVq9ejbVr16JFixbGqsvssIeKiMzB5uibeHfXBWgEYGQnL6wc2wVWFrW+v4mowTNaD1VQUBBKS0vh7+8PW1tbnef5AUBeXp7+1RIRkUmICPGFs50c87bHYU9CBu6UVeCLF7rD2lL2+I2JzJjegWr8+PFIS0vDkiVL4OHhwWvoRESNzIhOXrCTyzDju1gcvJKNSd+cxFeTguBgbfn4jYnMlN6X/GxtbREdHY3OnTsbqyazxEt+RGRuTibl4eWNp1BcVoFOzRT49qWecLKzErssIoOq6flb7wvfbdu2RUlJSZ2KIyIi09fTzxnfT+0FJ1tLJKQqMXZdNG4XclZ1apz0DlTLli3D/PnzcejQIeTm5vJ5dUREjVjHZgr8MD0EHo5yXMsqxpi10biVe0fssojqnd6X/KTSygz2sEe6qNVqw1VnRnjJj4jMWUreXUz86gSS8+7Cxc4KX00KQtfmTo/fkKiBM9pdfgcPHqxTYUREZH58nG3x44wQvPztKZxPK8T49TFY9XxXDOngKXZpRPVC7x4qqh32UBFRY3CnrAKztp7BwSvZkEiA/xvZHi/19hO7LKJaq+n5W+9AdeTIkUeu79Onjz67azQYqIiosahQa/B/uy5g64lkAMCUJ/zw9vB2kHJWdTJBRgtU98ZQ6ezkvvFUHENVPQYqImpMBEHA2sOJWB55GQAwtIMnPn2+CycAJZNjtGkT8vPzdV5ZWVmIjIxEjx49sG/fvjoVTURE5kEikeDVvi2x6vkusJJJEXkhExPWxyC3uEzs0oiMwmBjqI4cOYLXX38dsbGxhtid2WEPFRE1VicSczF102kUllbA18UWG1/qCV9XO7HLIqoRo/VQPYybmxuuXLliqN0REZGZCPZ3wU8zQ9HMyQY3c+/i2S+OI/ZWvthlERmU3j1UCQkJOu8FQUBGRgaWLVuG8vJyHDt2zKAFmgv2UBFRY5dVVIopG0/jXJoScgspVj3fBUMDvcQui+iRjDooXSKR4MHNevXqhW+++QZt27atXcVmjoGKiAi4q6rA7K1x+PNyFiQS4O3h7TDlCb8qk0UTNRRGC1S3bt3SeS+VSuHm5gZra+vaVdpIMFAREVWqUGuwePcFfBdTOa3Cs12b4sNnOsLGincAUsNjtEBFtcNARUT0N0EQ8HVUEpb+dhlqjYC2ng5Y+0J3DlanBseggWr16tU1/uA5c+bUuG1jwkBFRFRVTGIuZm09g5xiFRysLbBybBcMau8hdllEWgYNVH5+NXtsgEQiQWJiYs2rbEQYqIiIqne7sBSvbTmD03/d+Tezb0vMH9wGMs6sTg0AL/k1MAxUREQPV67WYMneS9hw7CYAYGA7d6we3xW2VhbiFkaNXr3MQyUIQpW7/YiIiPRlKZPi3VEdsHp8V8gtpPjjUhae/zIG2UWcWZ1MQ60C1aZNm9CxY0fY2NjAxsYGnTp1wubNmw1dGxERNTLhnb2xdWownGwtkZCqRPiaKJxJ5iSg1PDpHahWrlyJV199FcOHD8cPP/yA7du3Y+jQoZgxYwY++eQTY9RIRESNSPcWzvhpZm/4u9ohQ1mKceuisfFYEq+IUIOm9xgqPz8/vPfee3jxxRd1ln/77bdYvHgxkpKSDFqgueAYKiIi/RSVluPNHQnYey4TADCqszeWPdsRdnKOq6L6Y7QxVBkZGQgNDa2yPDQ0FBkZGfrujoiIqFoO1pb474RueGdke1hIJdh9Nh1P/fcYrmcViV0aURV6B6pWrVrhhx9+qLJ8+/btCAgIMEhRREREQOV0PFOe8MO2ab3g4SjH9axihK85hv0Xb4tdGpEOvS/57dixA+PGjcPAgQPRu3dvSCQSREVF4c8//8QPP/yAZ555xli1mjRe8iMiqpuc4jLM3hqH6MRcSCTAW0PbYloffz4HkIzKaJf8Ro8ejRMnTsDV1RU///wzfvrpJ7i6uuLkyZMMU0REZDSu9nJsmtITL/RqDkEAlv52GXO3xaOotFzs0og4sWd9YQ8VEZHhfHv8Jt7fcxFqjYAWLrb4bHxXdGrWROyyyAwZrYeqX79++Prrr6FUKutUIBERUW1NCvXFD9ND0LSJDW7l3sXoL45j28lkscuiRkzvQNWxY0f861//gqenJ0aPHo2ff/4ZKpXKGLURERE9VPcWTtg750kM6eCBcrWAt346hw9/rey1Iqpvegeq1atXIy0tDb/88gscHBwwadIkeHp6Ytq0aTh8+LAxaiQiIqqWwtYSa1/ojtcHtgYArD+ahBnfxaJEpRa5Mmps6jyGqrS0FLt378aHH36Ic+fOQa3mP8TV4RgqIiLj2nU2HQv+dxaqCg2CWjjh60k9oLC1FLssMnH18nDkzMxMrF27FsuXL0dCQgKCgoLqsjsiIqJaC+/sjc0v94SDtQVO38rHmHXH+XBlqjd6B6rCwkJs2LABgwYNgo+PD7744guMGjUKV69exYkTJ4xRIxERUY0E+7vgfzNC4OEox9XbxRi/PoahiuqF3pf8bGxs4OTkhLFjx2LixIno0aOHsWozK7zkR0RUf27m3MHzX8Ygs7AUAe72+PHVUChsePmP9Ge0S36//PILUlNT8emnnzJMERFRg+Traodt03rB09Ea17KK8daOBHDaRTImvQPV4MGDIZXWaegVERGR0fm62mFdRHdYyiT47XwmvjvBearIeJiMiIjIbHX2aYI3h7YFAPx7z0VcTC8UuSIyVwxURERk1qY84Yf+bd2hqtBg1vdncFdVIXZJZIYYqIiIyKxJJBJ8NKYzPB2tkZh9B+uPJIldEpkhvQPVpk2bUFZW9RZUlUqFTZs2GaQoIiIiQ3K2s8I7I9sDANYduYGswlKRKyJzo3egeumll6p9MHJRURFeeuklgxRFRERkaMM7eqJb8ya4q1Lj80M3xC6HzIzegUoQBEgkkirLU1NToVAoDFIUERGRoUkkEiwY3AYAsPVkMm6zl4oMyKKmDbt27QqJRAKJRIIBAwbAwuLvTdVqNZKSkjB06FCjFElERGQIIS1dENTCCadv5eObY0lYNKyd2CWRmahxoHr66acBAPHx8RgyZAjs7e2166ysrODr64vRo0cbvEAiIiJDkUgkmNbHH6c3x2L7qRTMG9AaNlYyscsiM1DjQPXuu+8CAHx9fTFu3DhYW1sbrSgiIiJjGdDOA82cbJCaX4K95zIwunszsUsiM6D3GKpJkybB2toaKpUKqampSE5O1nkRERE1ZDKpBGO6+wAAfo5PE7kaMhd6B6pr167hySefhI2NDVq0aAE/Pz/4+fnB19cXfn5+xqiRiIjIoJ7u6g0AOHY9B/l3VCJXQ+agxpf87pk8eTIsLCywZ88eeHl5VXvHHxERUUPWwsUOAe72uJZVjJjEXAzr6CV2SWTi9A5U8fHxiI2NRdu2bY1RDxERUb3o3coV17KKcexGDgMV1Znel/zat2+PnJwcY9RCRERUb3r6OQMA4pILxC2EzILegWr58uVYuHAhDh06hNzcXBQWFuq8iIiITEHX5k0AAJczi1CiUotbDJk8vS/5DRw4EAAwYMAAneX3ZlBXq/kPJRERNXxeCht4OMpxu7AM59KU2h4rotrQO1AdPHjQGHUQERHVu64+Toi8kIn4lHwGKqoTvQNVWFiYMeogIiKqdwEe9oi8ANzKvSt2KWTi9B5DBQBHjx7FCy+8gNDQUKSlVU6KtnnzZkRFRRm0OCIiImNq2sQGAJBWUCJyJWTq9A5UO3bswJAhQ2BjY4MzZ86grKwMAFBUVIQlS5YYvEAiIiJjUdhYAgDulnH8L9WN3oHqgw8+wNq1a7F+/XpYWlpql4eGhuLMmTMGLe5xvvjiC3Tq1AmOjo5wdHRESEgIfvvtN+16QRCwePFieHt7w8bGBn379sWFCxd09lFWVobZs2fD1dUVdnZ2CA8PR2pqqk6b/Px8REREQKFQQKFQICIiAgUFBfXxFYmIyIgsZJWnQZVaI3IlZOr0DlRXrlxBnz59qix3dHSs95DRrFkzLFu2DKdPn8bp06fRv39/PPXUU9rQtGLFCqxcuRJr1qzBqVOn4OnpiUGDBqGoqEi7j3nz5mHnzp3Ytm0boqKiUFxcjJEjR+rcrThhwgTEx8cjMjISkZGRiI+PR0RERL1+VyIiMry8O5VXWRxtLB/TkugxBD35+/sL+/fvFwRBEOzt7YUbN24IgiAI3377rdCuXTt9d2dwTk5OwldffSVoNBrB09NTWLZsmXZdaWmpoFAohLVr1wqCIAgFBQWCpaWlsG3bNm2btLQ0QSqVCpGRkYIgCMLFixcFAEJMTIy2TXR0tABAuHz5co3rUiqVAgBBqVTW9SsSEZGBLP/tktDizT3COz+fE7sUaqBqev7Wu4dq+vTpmDt3Lk6cOAGJRIL09HRs2bIFCxYswMyZMw2d92pMrVZj27ZtuHPnDkJCQpCUlITMzEwMHjxY20YulyMsLAzHjx8HAMTGxqK8vFynjbe3NwIDA7VtoqOjoVAoEBwcrG3Tq1cvKBQKbZvqlJWVcdJTIqIG7t7dfc2dbUWuhEyd3tMmLFy4EEqlEv369UNpaSn69OkDuVyOBQsWYNasWcao8ZHOnTuHkJAQlJaWwt7eHjt37kT79u21YcfDw0OnvYeHB27dugUAyMzMhJWVFZycnKq0yczM1LZxd3ev8rnu7u7aNtVZunQp3nvvvTp9NyIiMq5beXcAAL4udiJXQqZO70AFAB9++CHefvttXLx4ERqNBu3bt4e9vb2ha6uRNm3aID4+HgUFBdixYwcmTZqEw4cPa9dLJBKd9sJfM7o/yoNtqmv/uP0sWrQIb7zxhvZ9YWEhfHx8Hvt9iIiofgiCgFs5lT1ULVzYQ0V1U6tABQC2trYICgoyZC21YmVlhVatWgEAgoKCcOrUKaxatQpvvvkmgMoeJi+vv58inpWVpe218vT0hEqlQn5+vk4vVVZWFkJDQ7Vtbt++XeVzs7Ozq/R+3U8ul0Mul9f9CxIRkVHk3y1HUVkFAMCHl/yojvQeQ1VaWor//Oc/GD58OIKCgtCtWzedl9gEQUBZWRn8/Pzg6emJ/fv3a9epVCocPnxYG5a6d+8OS0tLnTYZGRk4f/68tk1ISAiUSiVOnjypbXPixAkolUptGyIiMj2ZylIAgIudFawtZSJXQ6ZO7x6ql19+Gfv378dzzz2Hnj17PvbymTH985//xLBhw+Dj44OioiJs27YNhw4dQmRkJCQSCebNm4clS5YgICAAAQEBWLJkCWxtbTFhwgQAgEKhwJQpUzB//ny4uLjA2dkZCxYsQMeOHbUPgW7Xrh2GDh2KqVOnYt26dQCAadOmYeTIkWjTpo1o352IiOpGWVIOAGhiyykTqO70DlS//vor9u7di969exujHr3cvn0bERERyMjIgEKhQKdOnRAZGYlBgwYBqBxAX1JSgpkzZyI/Px/BwcHYt28fHBwctPv45JNPYGFhgbFjx6KkpAQDBgzAxo0bIZP9/X8rW7ZswZw5c7R3A4aHh2PNmjX1+2WJiMig7gUqBeegIgOQCIIg6LNB+/btsW3bNnTq1MlYNZmlwsJCKBQKKJVKODo6il0OEVGjt/1UMt7ccQ792rhhw0s9xS6HGqianr/1HkP18ccf480339ROPUBERGSK2ENFhqT3Jb+goCCUlpbC398ftra2Os/zA4C8vDyDFUdERGQsf4+hshK5EjIHegeq8ePHIy0tDUuWLIGHh4eog9KJiIhqq+BuZaDic/zIEPQOVMePH0d0dDQ6d+5sjHqIiIjqBS/5kSHpPYaqbdu2KCkpMUYtRERE9eauSg0AsJdzDiqqO70D1bJlyzB//nwcOnQIubm5fAAwERGZJOlfI1b0u9edqHp6X/IbOnQoAGDAgAE6y+89206tVhumMiIiIiOSW1T2TN1R8bxFdad3oDp48KAx6iAiIqpXzZxtAADJuXdEroTMgd6BKiwszBh1EBER1Ss/FzsAQFLuXZErIXOg9xgqADh69CheeOEFhIaGIi0tDQCwefNmREVFGbQ4IiIiY/F1rQxUN3PYQ0V1p3eg2rFjB4YMGQIbGxucOXMGZWVlAICioiIsWbLE4AUSEREZg99fgSo1/y7K1RqRqyFTp3eg+uCDD7B27VqsX79eZ5b00NBQnDlzxqDFERERGYubvRxWMik0ApCpLBW7HDJxegeqK1euoE+fPlWWOzo6oqCgwBA1ERERGZ1UKoF3E2sAQGo+51ekutE7UHl5eeH69etVlkdFRcHf398gRREREdWHpk6Vd/qlFTBQUd3oHaimT5+OuXPn4sSJE5BIJEhPT8eWLVuwYMECzJw50xg1EhERGUWzJrYAgDT2UFEd6T1twsKFC6FUKtGvXz+UlpaiT58+kMvlWLBgAWbNmmWMGomIiIzi7x4qTp1AdaNXoFKr1YiKisL8+fPx9ttv4+LFi9BoNGjfvj3s7e0fu/2uXbv0LnDQoEGwsbHRezsiIqLHadqk8vySXsBB6VQ3egUqmUyGIUOG4NKlS3B2dkZQUJBeH/b000/r1V4ikeDatWscm0VEREbhZFd5t7qypFzkSsjU6T2GqmPHjkhMTKz1B2ZmZkKj0dToZWtrW+vPISIiehx7eWWgKi6rELkSMnV6B6oPP/wQCxYswJ49e5CRkYHCwkKd16NMmjRJr8t3L7zwAhwdHfUtkYiIqEbs5ZUXaopKGaiobiSCIAj6bCCV/p3BJBKJ9ndBECCRSKBW86nd1SksLIRCoYBSqWRIJCJqIFLy7uLJFQdhbSnF5X8PE7scaoBqev7W+y6/gwcP1qkwIiKihuJeD1VpuQYVag0sZLV6xC2R/oEqLCzMIB9cWlqKzz77DAcPHkRWVhY0Gt3nKPExNkREZGz21n+fBgtLK+BsZyViNWTK9A5UR44ceeT66h5LU52XX34Z+/fvx3PPPYeePXvqXD4kIiKqD5YyKXycbZCSV4KzKQXo19Zd7JLIROkdqPr27Vtl2f1hqKZjqH799Vfs3bsXvXv31rcEIiIig3milRu+P5mMPy7dZqCiWtP7YnF+fr7OKysrC5GRkejRowf27dtX4/00bdoUDg4O+n48ERGRQY3o6AUA+N/pVKTkccZ0qh29A5VCodB5ubq6YtCgQVixYgUWLlxY4/18/PHHePPNN3Hr1i19SyAiIjKY3q1c8GSAK1RqDT789ZLY5ZCJMtjtDG5ubrhy5UqN2wcFBaG0tBT+/v5wcHCAs7OzzouIiKg+SCQS/HN4O8ikEkReyMSvCRlil0QmSO8xVAkJCTrvBUFARkYGli1bhs6dO9d4P+PHj0daWhqWLFkCDw8PDkonIiLRtPNyxGt9W2L1get455fzCPZ3hqu9XOyyyITUamJPiUSCBzfr1asXvvnmG7Rt27ZG+7G1tUV0dLReIcyUcWJPIqKGTVWhQfiaKFzOLMKwQE98PrEb/2efjDexZ1JSks57qVQKNzc3WFtb67Wftm3boqSkRN+PJyIiMgorCyk+GtMZT//3GH47n4lN0bcwKdRX7LLIROg9hqpFixY6Lx8fH5SWlur9wcuWLcP8+fNx6NAh5Obm6vVMQCIiImMIbKrA7P4BAIB3d13A0t8uQaPR60IONVJ6X/Jbvnw5fH19MW7cOADA2LFj8eOPP8LLywt79+6t8SW8e88EfLA71VyfCchLfkREpkEQBKz68xo+/eMaAGBQew+sGN0JTpxFvVGq6flb70Dl7++P7777DqGhodi/fz/Gjh2L7du344cffkBycnKN56I6fPjwI9cb6hE3DQUDFRGRadkZl4o3fzwHlVoDNwc5VjzXCf3acOLPxsZogcrGxgZXr16Fj48P5s6di9LSUqxbtw5Xr15FcHAw8vPzH7ptQkICAgMDtb1Tj3PhwgW0adMGFhZ6D/VqcBioiIhMz7lUJV7/IR7Xs4oBAON7+mDR8HZwtLYUuTKqLzU9f+s9hsrJyQkpKSkAgMjISAwcOBBAZRfp4y7Tde3aFbm5uTX+rJCQECQnJ+tbIhERkUF0bKbAntlP4KXevgCA70+mYNDKw/j9Qqa4hVGDo3fXz7PPPosJEyYgICAAubm5GDZsGAAgPj4erVq1euS2giDgnXfega2tbY0+S6VS6VseERGRQVlbyvDuqA4Y3N4T/9x5Dkk5dzB9cyyGBXrivfAOcHfU7y53Mk96B6pPPvkEvr6+SElJwYoVK2Bvbw8AyMjIwMyZMx+5bZ8+ffSaTT0kJAQ2Njb6lkhERGRwIS1d8NvcJ7H6z2tYdyQRv53PRNT1HLw9vB3G9fDhnFWNnN5jqKh2OIaKiMh8XEwvxFs/JSAhVQkACPZzxkdjOsPHuWZXYMh0GG1Q+j0XL15EcnJylcty4eHhtdmd2WOgIiIyLxVqDTYev4mP911FSbkaDnILfPBMIJ7q0lTs0siAjBaoEhMT8cwzz+DcuXM6j6C519VpbvNHGQoDFRGReUrOvYvXf4hH7K3Ku9yf6doU7z/VAQ68E9AsGO0uv7lz58LPzw+3b9+Gra0tLly4gCNHjiAoKAiHDh2qS81EREQmp7mLLbZP64V5AwMglQA749IwfPVRnEl++DRCZH70DlTR0dF4//334ebmBqlUCqlUiieeeAJLly7FnDlzjFEjERFRg2Yhk2LewNb4YXoImjaxQUpeCcasjcaaA9f46JpGQu9ApVartXf2ubq6Ij09HUDlM/70uYOPiIjI3AT5OmPv3CcxqrM31BoBH+27ilnfn0GJisNhzJ3egSowMBAJCQkAgODgYKxYsQLHjh3D+++/D39/f4MXSEREZEoUNpZY/XwXLB/dEZYyCfaey8TYddHIVJaKXRoZkd6B6l//+hc0Gg0A4IMPPsCtW7fw5JNPYu/evVi9erXBCyQiIjI1EokE43o0x9apveBsZ4VzaUqEr4lCQmqB2KWRkRhkHqq8vDw4OTlxUrNH4F1+RESNU0reXUz59hSu3i6GtaUUH4/pghGdvMQui2rIaHf53XP9+nX8/vvvKCkpgbOzc213Q0REZNZ8nG2x49VQ9GvjhtJyDV7begar/7wGzqttXvQOVLm5uRgwYABat26N4cOHIyMjAwDwyiuvYP78+QYvkIiIyNQ5WFviq0k9MOUJPwDAyv1XMWdbPErLOVjdXOgdqF5//XVYWloiOTlZ5yHH48aNQ2RkpEGLIyIiMhcyqQTvjGyPpc92hIVUgt1n0zHuyxhkFXKwujnQO1Dt27cPy5cvR7NmzXSWBwQE4NatWwYrjIiIyByN79kcm6b0hMLGEmdTCvDUf4/hfJpS7LKojvQOVHfu3NHpmbonJycHcrncIEURERGZs9CWrvj5td7wd7NDhrIUY9ZG4/cLmWKXRXWgd6Dq06cPNm3apH0vkUig0Wjwn//8B/369TNocURERObKz9UOO2f2xpMBrigpV2P65lj89+B1DlY3UXpPm3Dx4kX07dsX3bt3x4EDBxAeHo4LFy4gLy8Px44dQ8uWLY1Vq0njtAlERFSdCrUG7++5iE3RlcNmhnTwwPLRndDE1krkyggw4rQJ7du3R0JCAnr27IlBgwbhzp07ePbZZxEXF8cwRUREpCcLmRTvPxWIfz/VAZYyCX6/cBvDVh3FyaQ8sUsjPRhkYk96PPZQERHR45xPU2L293FIyrkDiQSY0LM5FgxuAyc79laJpabn71oFqtLSUiQkJCArK0v7GJp7wsPD9a+2EWCgIiKimrhTVoHFuy7gf7GpAIAmtpZYMLgNxvdsDpmUTySpb0YLVJGRkXjxxReRk5NTdWcSCdRqTlJWHQYqIiLSR0xiLhbvuoDLmUUAgHZejnhnRDuEtnIVubLGxWhjqGbNmoUxY8YgIyMDGo1G51XfYWrp0qXo0aMHHBwc4O7ujqeffhpXrlzRaSMIAhYvXgxvb2/Y2Nigb9++uHDhgk6bsrIyzJ49G66urrCzs0N4eDhSU1N12uTn5yMiIgIKhQIKhQIREREoKCgw9lckIqJGqpe/C/bMfgKLR7WHg7UFLmUUYsJXJ/DKt6dwI7tY7PLoAXoHqqysLLzxxhvw8PAwRj16OXz4MF577TXExMRg//79qKiowODBg3Hnzh1tmxUrVmDlypVYs2YNTp06BU9PTwwaNAhFRUXaNvPmzcPOnTuxbds2REVFobi4GCNHjtQJiBMmTEB8fDwiIyMRGRmJ+Ph4RERE1Ov3JSKixsVCJsXk3n44/I9+mBzqC5lUgj8uZWHIJ0eweNcF5N9RiV0i/UXvS34vv/wyevfujSlTphirplrLzs6Gu7s7Dh8+jD59+kAQBHh7e2PevHl48803AVT2Rnl4eGD58uWYPn06lEol3NzcsHnzZowbNw4AkJ6eDh8fH+zduxdDhgzBpUuX0L59e8TExCA4OBgAEBMTg5CQEFy+fBlt2rSpUktZWRnKysq07wsLC+Hj48NLfkREVGvXs4qx7LdL+ONSFgDA0doCcwYE4MUQX1hZ6N1HQjVQ00t+FvrueM2aNRgzZgyOHj2Kjh07wtLSUmf9nDlz9K/WQJTKyqn7nZ2dAQBJSUnIzMzE4MGDtW3kcjnCwsJw/PhxTJ8+HbGxsSgvL9dp4+3tjcDAQBw/fhxDhgxBdHQ0FAqFNkwBQK9evaBQKHD8+PFqA9XSpUvx3nvvGeurEhFRI9TK3R5fTeqBY9dz8O89F3E5swgf/HoJm2NuYdGwthjSwRMSCQeui0HvQLV161b8/vvvsLGxwaFDh3QOnEQiES1QCYKAN954A0888QQCAwMBAJmZldP4P3h50sPDQ/vcwczMTFhZWcHJyalKm3vbZ2Zmwt3dvcpnuru7a9s8aNGiRXjjjTe07+/1UBEREdVV71au+HXOk/gxNgUf7buKW7l3MeO7M+jp54x3RrRHx2YKsUtsdPQOVP/617/w/vvv46233oJU2nC6F2fNmoWEhARERUVVWfdgWhcE4bEJ/sE21bV/1H7kcjmfbUhEREYjk0owrkdzjOjkjXWHb+DLI4k4mZSHUWuiMKKjF2aEtWSwqkd6JyKVSoVx48Y1qDA1e/Zs7Nq1CwcPHkSzZs20yz09PQGgSi9SVlaWttfK09MTKpUK+fn5j2xz+/btKp+bnZ3dIAbnExFR42Uvt8D8wW1wcEFfPNO1KQDg13MZGLUmChO/isHRa9l8PmA90DsVTZo0Cdu3bzdGLXoTBAGzZs3CTz/9hAMHDsDPz09nvZ+fHzw9PbF//37tMpVKhcOHDyM0NBQA0L17d1haWuq0ycjIwPnz57VtQkJCoFQqcfLkSW2bEydOQKlUatsQERGJybuJDT4Z1wWR857EM12bQiaV4Nj1XER8fRIjP4vCrrPpqFBrHr8jqhW97/KbM2cONm3ahM6dO6NTp05VBqWvXLnSoAU+ysyZM7F161b88ssvOgPDFQoFbGxsAADLly/H0qVLsWHDBgQEBGDJkiU4dOgQrly5AgcHBwDAq6++ij179mDjxo1wdnbGggULkJubi9jYWMhkMgDAsGHDkJ6ejnXr1gEApk2bhhYtWmD37t01qpUTexIRUX1Kzb+Lr44mYfupFJSUV04D1NzZFlOf9MOYIB9YW8pErtA0GG2m9H79+j18ZxIJDhw4oM/u6uRh45c2bNiAyZMnA6jsxXrvvfewbt065OfnIzg4GP/973+1A9eBykfp/OMf/8DWrVtRUlKCAQMG4PPPP9cZRJ6Xl4c5c+Zg165dACofsbNmzRo0adKkRrUyUBERkRjy76iwKfoWNh5PQv7dcgCAi50VJoX64sWQFmhiy+cEPopRn+VH+mOgIiIiMZWo1PjhdArWH01Ean4JAMDWSobnezTHK0/6wbuJjcgVNkwMVA0MAxURETUEFWoNfj2XgbWHE3EpoxAAYCGVILyLN2aEtURrDweRK2xYGKgaGAYqIiJqSARBwJFrOVh76AaiE3O1ywe0dcf0sJbo4evESULBQNXgMFAREVFDdTalAGsP30DkhUzcSwXdmjfBrP6t0K+Ne6MOVgxUDQwDFRERNXSJ2cVYfzQRO2LToPprioXApo6Y1S8Ag9t7QCptfMGKgaqBYaAiIiJTkVVYiq+ikvBdzC3cVVVOudDW0wGz+rfCsEAvyBpRsDJqoLpx4wY+/fRTXLp0CRKJBO3atcPcuXPRsmXLOhVtzhioiIjI1OTdUeHrqER8e/wWissqAAAt3ewwu38ARnbygoWs4Tw1xViMFqh+//13hIeHo0uXLujduzcEQcDx48dx9uxZ7N69G4MGDapz8eaIgYqIiEyV8m45NhxPwjdRSSgsrQxWvi62mN0/AE//NSu7uTJaoOratSuGDBmCZcuW6Sx/6623sG/fPpw5c6Z2FZs5BioiIjJ1RaXl2BR9C18dTdROEhrgbo/5g9tgSAcPsxy8brRAZW1tjXPnziEgIEBn+dWrV9GpUyeUlpbWrmIzx0BFRETm4k5ZBTbH3MIXh25AWVIZrDr7NMFbQ9sipKWLyNUZVk3P33pf/HRzc0N8fHyV5fHx8XB3d9d3d0RERGRi7OQWmBHWEkcW9sOsfq1gYynD2ZQCjF8fg1e/i0VK3l2xS6x3FvpuMHXqVEybNg2JiYkIDQ2FRCJBVFQUli9fjvnz5xujRiIiImqAFDaWWDCkDSaF+mL1n9ew5cQt/HY+E39ezsK0J/0xs19L2FrpHTVMkt6X/ARBwKeffoqPP/4Y6enpAABvb2/84x//wJw5c8zy+qkh8JIfERGZu8uZhXh/90Ucv1E587qnozXeGtYWT3XxNtl8UC/zUBUVFQEAHBz43J/HYaAiIqLGQBAE/H7hNj7cexEpeZUPYe7WvAkWh3dAp2ZNxC2uFow2hqp///4oKCgAUBmk7oWpwsJC9O/fv3bVEhERkVmQSCQYGuiJ/a+H4R9D2sDWSoYzyQV46r/H8M7P57WD2M2N3j1UUqkUmZmZVQagZ2VloWnTpigvN88/VF2xh4qIiBqj24WlWPbbZeyMSwMAuNrL8c7IdgjvbBqXAWt6/q7xSLGEhATt7xcvXkRmZqb2vVqtRmRkJJo2bVrLcomIiMgceTha45NxXTAmqBn+9fN5JGbfwdxt8dh9NgNLn+0INwe52CUaRI17qKRSqTZJVreJjY0NPvvsM7z88suGrdBMsIeKiIgau7IKNb48nIjVB66hXC3A2c4KS57piKGBnmKX9lAGH5R+69YtCIIAf39/nDx5Em5ubtp1VlZWcHd3h0wmq3vlZoqBioiIqNKljEK8vj0elzMrb26bHOqLt0e0g2UDfDZgvdzlRzXHQEVERPS3sgo1Ptl/DWsP3wAA9PR1xpqJXeHuYC1yZbqMdpcfERERUV3JLWR4a1hbfBnRHfZyC5y8mYen1hzDpYxCsUurFQYqIiIiEs3gDp74ZVZv+LvZIUNZijFro3HkarbYZemNgYqIiIhE1dLNHjtf7Y1gP2cUl1Xg5Y2n8PuFzMdv2IAwUBEREZHoFLaW2DSlJ8I7e6NCI2D21jiT6qmqVaAqKCjAV199hUWLFiEvLw8AcObMGaSlpRm0OCIiImo85BYyrBzbGcM7ekKl1mDa5tM4mZQndlk1onegSkhIQOvWrbF8+XJ89NFH2sfQ7Ny5E4sWLTJ0fURERNSIWMik+HRcV/Rr44bScg1e3ngKZ1MKxC7rsfQOVG+88QYmT56Ma9euwdr671sbhw0bhiNHjhi0OCIiImp8rCyk+OKF7gjxd0FxWQUmbTiJpJw7Ypf1SHoHqlOnTmH69OlVljdt2lTncTREREREtWVtKcP6SUHo4tMEBXfLMWNzLO6UVYhd1kPpHaisra1RWFh1jogrV67ozJ5OREREVBf2cgt8GdEdbg5yXLldhEU/nav28XcNgd6B6qmnnsL777+P8vJyAIBEIkFycjLeeustjB492uAFEhERUePl7miNLyZ2g4VUgl1n0/G/2FSxS6qW3oHqo48+QnZ2Ntzd3VFSUoKwsDC0atUKDg4O+PDDD41RIxERETViQb7OeGNwawDA4l0XkJhdLHJFVdX6WX4HDhzAmTNnoNFo0K1bNwwcONDQtZkVPsuPiIio9jQaAS98fQLHb+QisKkjdrwaCrmFzOify4cjNzAMVERERHWTqSzFsFVHkH+3HNP6+OOfw9sZ/TNrev620HfHq1evrna5RCKBtbU1WrVqhT59+kAmM35qJCIiosbDU2GN5aM7YdrmWHx1NBHDO3qhi08TscsCUIseKj8/P2RnZ+Pu3btwcnKCIAgoKCiAra0t7O3tkZWVBX9/fxw8eBA+Pj7GqtvksIeKiIjIMOZti8PP8elo6+mA3bOfgKXMeE/Sq+n5W+8KlixZgh49euDatWvIzc1FXl4erl69iuDgYKxatQrJycnw9PTE66+/XqcvQERERFSdd0a2h5OtJS5nFuHLI4lilwOgFj1ULVu2xI4dO9ClSxed5XFxcRg9ejQSExNx/PhxjB49GhkZGYas1aSxh4qIiMhwdsal4vXtZ2FlIUXk3Cfh72ZvlM8xWg9VRkYGKiqqzlRaUVGhnSnd29sbRUVF+u6aiIiIqEae7tIUTwa4QlWhwad/XBO7HP0DVb9+/TB9+nTExcVpl8XFxeHVV19F//79AQDnzp2Dn5+f4aokIiIiuo9EIsFbw9oCAPYkpIs+N5Xegerrr7+Gs7MzunfvDrlcDrlcjqCgIDg7O+Prr78GANjb2+Pjjz82eLFERERE93TwVqB/W3doBGBzzC1Ra6n1PFSXL1/G1atXIQgC2rZtizZt2hi6NrPCMVRERESGd/BKFl7acApOtpaI+ecAg0/2abR5qO5p27Yt2rZtW9vNiYiIiOqsT4Ab3BzkyC4qQ1xyAXr5u4hSh96BSq1WY+PGjfjzzz+RlZUFjUajs/7AgQMGK46IiIjoUWRSCVp72CO7qAxp+SWi1aF3oJo7dy42btyIESNGIDAwEBKJxBh1EREREdWIh6M1ACCrqEy0GvQOVNu2bcMPP/yA4cOHG6MeIiIiIr1YSivvsdOI+Hhive/ys7KyQqtWrYxRCxEREZHeyv8afiQV8aqZ3oFq/vz5WLVqFWp5cyARERGRQaUXVI6d8lTIRatB70t+UVFROHjwIH777Td06NABlpaWOut/+ukngxVHRERE9CiCIOBG9h0AQHNnO9Hq0DtQNWnSBM8884wxaiEiIiLSy63cu8guKoOVTIr2XuLN86h3oNqwYYMx6iAiIiLS29Fr2QCALj5NYGNl2Ek99aH3GCoiIiKihuKnuDQAwKD2HqLWUauZ0n/88Uf88MMPSE5Ohkql0ll35swZgxRGRERE9Cg3sosRl1wAmVSCp7p6i1qL3j1Uq1evxksvvQR3d3fExcWhZ8+ecHFxQWJiIoYNG2aMGomIiIiq+OlMKgCgT4Ar3B2sRa1F70D1+eef48svv8SaNWtgZWWFhQsXYv/+/ZgzZw6USqUxaiQiIiLSodEI2Hmm8nLf6O7NRK6mFoEqOTkZoaGhAAAbGxsUFRUBACIiIvD9998btjoiIiKiasQk5iJdWQpHawsMbCfu+CmgFoHK09MTubm5AIAWLVogJiYGAJCUlMTJPomIiKhe/C+28nLfyM7esLYU7+6+e/QOVP3798fu3bsBAFOmTMHrr7+OQYMGYdy4cZyfioiIiIwuq7AUexLSAQDjgnxErqaS3nf5ffnll9D89cycGTNmwNnZGVFRURg1ahRmzJhh8AKJiIiI7rfh+E2UqwUEtXBCZ58mYpcDoBY9VFKpFBYWf+ewsWPHYvXq1ZgzZw6ys7MNWtzjHDlyBKNGjYK3tzckEgl+/vlnnfWCIGDx4sXw9vaGjY0N+vbtiwsXLui0KSsrw+zZs+Hq6go7OzuEh4cjNTVVp01+fj4iIiKgUCigUCgQERGBgoICI387IiIielBq/l18E5UEAJge1lLkav5mkIk9MzMzMXv2bLRq1coQu6uxO3fuoHPnzlizZk2161esWIGVK1dizZo1OHXqFDw9PTFo0CDtQHoAmDdvHnbu3Ilt27YhKioKxcXFGDlyJNRqtbbNhAkTEB8fj8jISERGRiI+Ph4RERFG/35ERESka3nkFZRVaNDL3xkD27mLXc7fhBrKz88XJkyYILi6ugpeXl7CqlWrBLVaLbzzzjuCjY2NEBQUJGzdurWmuzM4AMLOnTu17zUajeDp6SksW7ZMu6y0tFRQKBTC2rVrBUEQhIKCAsHS0lLYtm2btk1aWpoglUqFyMhIQRAE4eLFiwIAISYmRtsmOjpaACBcvny5xvUplUoBgKBUKmv7FYmIiBq10zfzhBZv7hF839ojnE8rqJfPrOn5u8Y9VP/85z9x5MgRTJo0Cc7Oznj99dcxcuRIREVF4bfffsOpU6cwfvx4I8U+/SUlJSEzMxODBw/WLpPL5QgLC8Px48cBALGxsSgvL9dp4+3tjcDAQG2b6OhoKBQKBAcHa9v06tULCoVC26Y6ZWVlKCws1HkRERFR7QiCgH/vuQgAGNvdBx28FSJXpKvGgerXX3/Fhg0b8NFHH2HXrl0QBAGtW7fGgQMHEBYWZswaayUzMxMA4OGhOzeFh4eHdl1mZiasrKzg5OT0yDbu7lW7FN3d3bVtqrN06VLtmCuFQgEfn4ZxFwIREZEp2nU2HfEpBbC1kmH+4NZil1NFjQNVeno62rdvDwDw9/eHtbU1XnnlFaMVZigSiUTnvSAIVZY96ME21bV/3H4WLVoEpVKpfaWkpOhZOREREQFAcVkFVkReAQC8GtYS7o7iPmamOjUOVBqNBpaWltr3MpkMdnZ2RinKEDw9PQGgSi9SVlaWttfK09MTKpUK+fn5j2xz+/btKvvPzs6u0vt1P7lcDkdHR50XERER6UcQBLy5IwFpBSVo2sQGrzzpL3ZJ1arxPFSCIGDy5MmQy+UAgNLSUsyYMaNKqPrpp58MW2Et+fn5wdPTE/v370fXrl0BACqVCocPH8by5csBAN27d4elpSX279+PsWPHAgAyMjJw/vx5rFixAgAQEhICpVKJkydPomfPngCAEydOQKlUah/BQ0RERMbx7fGb+DUhAxZSCVaP7wobK/FnRa9OjQPVpEmTdN6/8MILBi9GX8XFxbh+/br2fVJSEuLj4+Hs7IzmzZtj3rx5WLJkCQICAhAQEIAlS5bA1tYWEyZMAAAoFApMmTIF8+fPh4uLC5ydnbFgwQJ07NgRAwcOBAC0a9cOQ4cOxdSpU7Fu3ToAwLRp0zBy5Ei0adOm/r80ERFRI3EmOR8f7r0EAHh7RDt0b+H0mC3EU+NAtWHDBmPWUSunT59Gv379tO/feOMNAJXhb+PGjVi4cCFKSkowc+ZM5OfnIzg4GPv27YODg4N2m08++QQWFhYYO3YsSkpKMGDAAGzcuBEy2d8JeMuWLZgzZ472bsDw8PCHzn1FREREdZddVIZZW86gXC1gREcvTA71FbukR5IIAp9oXB8KCwuhUCigVCo5noqIiOgRlCXleP7LGFzKKIS/qx1+mdUbDtaWj9/QCGp6/jbITOlEREREhlCiUmPKxlO4lFEIV3s5vpncQ7QwpQ8GKiIiImoQVBUavLolFqdv5cPR2gKbp/SEr2vDnVHgfgxUREREJLoKtQZv/BCPQ1eyYWMpw4aXeqCdl+kMkanxoHQiIiIiYygtV2PW1jj8cek2LGUSrI3oju4tnMUuSy8MVERERCSaotJyvPLtaZxIyoOVhRSfT+iGsNZuYpelNwYqIiIiEkVOcRkmbziJ82mFcJBbYP2kIPTydxG7rFphoCIiIqJ6l5p/Fy9+fRKJOXfgYmeFb1/uicCmCrHLqjUGKiIiIqpXJ5Py8Op3sci9o0LTJjbYPKUn/N3sxS6rThioiIiIqF4IgoCtJ5Px7i8XUKER0MHbEV9NCoKXwkbs0uqMgYqIiIiMruCuCot+OoffzmcCAEZ08sJHz3VusA871hcDFRERERlV1LUcLPjfWWQWlsJCKsH8wW0wI8wfEolE7NIMhoGKiIiIjEJ5txxL9l7C9tMpAAB/Vzt8+nwXdGrWRNzCjICBioiIiAzut3MZ+L9dF5BdVAYAiOjVAouGt4WtlXlGD/P8VkRERCSK24Wl+L9fzuP3C7cBAP5udlg+uhN6+JrWzOf6YqAiIiKiOtNoBGw/nYIley+hqLQCFlIJZoS1xKz+rWBtaR4Dzx+FgYqIiIjqJCnnDt7akYATSXkAgM7NFFg2upNJPdy4rhioiIiIqFbK1RqsP5qIT/+4BlWFBtaWUiwY3AYv9faDTGo+d/DVBAMVERER6UUQBPx6LgMf77uKpJw7AIAnWrliyTMd0dzFVuTqxMFARURERDUWdS0HyyMv41yaEgDgbGeFRcPa4rnuzcxqXil9MVARERHRY51LVWJ55GVEXc8BANhZyfDKk/6Y2scf9nLGCf4FiIiI6KGScu7go31X8GtCBgDAUibBxOAWmNW/FVzt5SJX13AwUBEREVEVWYWlWPXnNWw7lQK1RoBEAjzdpSleH9i60Y6TehQGKiIiItJSlpTjyyM38E3UTZSUqwEA/dq44R9D2qK9d+OZBkFfDFREREQEZUk5Nh67iW+OJUFZUg4A6Nq8Cd4a2hbB/i4iV9fwMVARERE1Yvl3VPg6KgnfHr+JorIKAEArd3v8Y0gbDG7v0ajv3NMHAxUREVEjlFNchvVHE/Fd9C3cUVVe2mvtYY/Z/QMwvKNXo5uYs64YqIiIiBqRrMJSrDuSiC0nbqG0XAMAaO/liDkDWmFwe09IGaRqhYGKiIioEUjNv4t1hxOx/XQKVBWVQapzMwXmDAhA/7buvLRXRwxUREREZiwxuxhfHLqBnXFpqNAIAICgFk6YPSAAfQJcGaQMhIGKiIjIDF3OLMR/D97Arwnp+CtHoXcrF7zWrxVC/F0YpAyMgYqIiMiMxKcUYM2B6/jj0m3tsgFt3fFa/1bo1txJxMrMGwMVERGRGTiRmIs1B6/j6LXKZ+1JJMDwjl54rW8rTshZDxioiIiITJQgCDh8NRv/PXgdp27mAwBkUgme7tIUr/ZtiVbu9iJX2HgwUBEREZmYcrUGv53PxPojiTiXpgQAWMmkGBPUDDPCWsLHmc/aq28MVERERCai4K4K359Mwabom8hQlgIAbCxlmBjcHFP7+MPD0VrkChsvBioiIqIG7kZ2MTYcS8KO2DTtA4td7eWI6NUCESEt4GxnJXKFxEBFRETUAAmCgKjrOfgmKgkHr2Rrl7fzcsSUJ/wwqrMX5BYyESuk+zFQERERNSBFpeXYdTYdm47fwpXbRQAq79gb0NYDU57wQy9/Z84h1QAxUBEREYlMEAQkpCrx/clk7Dqbjrt/PazY1kqGsUE+mBzqC19XO5GrpEdhoCIiIhJJYWk5folLw9aTKbiUUahd3tLNDuN7NseYIB8obCxFrJBqioGKiIioHgmCgLiUAnx/Ihl7EjK0g8ytLKQY0dEL43s2Rw9fJ17WMzEMVERERPUgt7gMu86mY/upFFzOLNIuD3C3x/iezfFst6ZoYsu79UwVAxUREZGRlKjU2HcxEz/HpeHItRyo/3pKsdxCipGdvDEh2AfdmrM3yhwwUBERERmQqkKDYzdysDs+Hb9fyMSdvwaYA0DnZgo8260Znu7SFApbjo0yJwxUREREdXRXVYEjV7MReT4Tf17KQlFZhXadj7MNnunSFE91bYqWbny2nrlioCIiIqqFnOIyHL1WGaIOX81GablGu87NQY6hHTzxdNem6Na8CS/pNQIMVERERDVQWq7GyaQ8RF3PwdFrOTrTHABAMycbDAv0xNBAT3T1cYJUyhDVmDBQERERPcS120X483IWoq7l4OTNPKgqNDrr23s5YkA7dwzp4IkO3o7siWrEGKiIiIjuk1ZQgt1n0/FzXJrO9AYA4OlojScCXPFkgCt6t3KFq71cpCqpoWGgIiIisycIAsrVAlRqDVQVGpRVqP/6+ff7y5lF+CU+HSeT8rTbWcok6N3KFX0C3NCntStautmzF4qqxUBFRERGIwgCyh4ILqoKDVRqDcrK7/+p1nlfptagrFx9XwB6WBB6+PLK39WVP9UaCELN6w72c8ZTXZpiWKAnnOw42SY9HgMVEVEDIggCBAHQCAI0f/0EdN8LmnvvK5cJ963TVLP9/esr7uuleXQgUesGE50ApNZ9/8C2Or+rNY/5xuKwlElgJZNCbin766cUznZWGNrBE6M6e8O7iY3YJZKJYaAiaiCqO5EKQvUnzgd/1uREqtE8ep+P3Ifm72XA/e3vbV/d/qup4f72939HTc3aC/rs8xHf4eHtq/ubVD02j9xeU/32Nf08fXpRTJHcQgorCynkFlLILWTa33V/VoacKsseaPvwdQ/Zr0wGuaUUVjIp78Ajg2OgMnHKknIUlpRDEAABDzkpGehE+qj21YcBw51IH1q/5sHvbfgT6cP+hpV/c55ISVwSCSCVSCCVAJK/fla+l+isq3xf+fu9UFF9SHlEyLGQantzHuzdkWuXP3x7S5mE44/IbDFQmbh1h2/g80M3xC6DRFCbE6nkkW2qWSfV3V7fz7u3D8lf7e7/LAmqa1PDfUoe2KdUz/b37f/Bn9V+x4d8h4e2r+Zv+Kga7i1DTfd5/9+RAYWoQWCgMnGWssr/A6zyH2mpfv9RNtyJtLYnW8OeSCXAfetrdmI11olUgoe0kdZinzyREhE1SBJB4IWG+lBYWAiFQgGlUglHR0exyyEiIqIaqOn5W1qPNRERERGZJQYqPXz++efw8/ODtbU1unfvjqNHj4pdEhERETUADFQ1tH37dsybNw9vv/024uLi8OSTT2LYsGFITk4WuzQiIiISGcdQ1VBwcDC6deuGL774QrusXbt2ePrpp7F06dLHbs8xVERERKaHY6gMSKVSITY2FoMHD9ZZPnjwYBw/frzabcrKylBYWKjzIiIiIvPEQFUDOTk5UKvV8PDw0Fnu4eGBzMzMardZunQpFAqF9uXj41MfpRIREZEIGKj08OC8P4IgPHQuoEWLFkGpVGpfKSkp9VEiERERiYATe9aAq6srZDJZld6orKysKr1W98jlcsjl8vooj4iIiETGHqoasLKyQvfu3bF//36d5fv370doaKhIVREREVFDwR6qGnrjjTcQERGBoKAghISE4Msvv0RycjJmzJghdmlEREQkMgaqGho3bhxyc3Px/vvvIyMjA4GBgdi7dy9atGghdmlEREQkMs5DVU84DxUREZHp4TxURERERPWEgYqIiIiojjiGqp7cu7LKGdOJiIhMx73z9uNGSDFQ1ZOioiIA4IzpREREJqioqAgKheKh6zkovZ5oNBqkp6fDwcHhobOrN1aFhYXw8fFBSkoKB+yLhMegYeBxEB+Pgfga2jEQBAFFRUXw9vaGVPrwkVLsoaonUqkUzZo1E7uMBs3R0bFB/MvTmPEYNAw8DuLjMRBfQzoGj+qZuoeD0omIiIjqiIGKiIiIqI4YqEh0crkc7777Lh8mLSIeg4aBx0F8PAbiM9VjwEHpRERERHXEHioiIiKiOmKgIiIiIqojBioiIiKiOmKgIiIiIqojBioSla+vLyQSic7rrbfe0mmTnJyMUaNGwc7ODq6urpgzZw5UKpVIFZuvsrIydOnSBRKJBPHx8TrreAyMKzw8HM2bN4e1tTW8vLwQERGB9PR0nTY8BsZ18+ZNTJkyBX5+frCxsUHLli3x7rvvVvkb8zgY14cffojQ0FDY2tqiSZMm1bZpqMeAM6WT6N5//31MnTpV+97e3l77u1qtxogRI+Dm5oaoqCjk5uZi0qRJEAQBn332mRjlmq2FCxfC29sbZ8+e1VnOY2B8/fr1wz//+U94eXkhLS0NCxYswHPPPYfjx48D4DGoD5cvX4ZGo8G6devQqlUrnD9/HlOnTsWdO3fw0UcfAeBxqA8qlQpjxoxBSEgIvv766yrrG/QxEIhE1KJFC+GTTz556Pq9e/cKUqlUSEtL0y77/vvvBblcLiiVynqosHHYu3ev0LZtW+HChQsCACEuLk5nHY9B/frll18EiUQiqFQqQRB4DMSyYsUKwc/PT/uex6H+bNiwQVAoFFWWN+RjwEt+JLrly5fDxcUFXbp0wYcffqjTdRsdHY3AwEB4e3trlw0ZMgRlZWWIjY0Vo1yzc/v2bUydOhWbN2+Gra1tlfU8BvUrLy8PW7ZsQWhoKCwtLQHwGIhFqVTC2dlZ+57HQXwN+RgwUJGo5s6di23btuHgwYOYNWsWPv30U8ycOVO7PjMzEx4eHjrbODk5wcrKCpmZmfVdrtkRBAGTJ0/GjBkzEBQUVG0bHoP68eabb8LOzg4uLi5ITk7GL7/8ol3HY1D/bty4gc8++wwzZszQLuNxEF9DPgYMVGRwixcvrjLQ/MHX6dOnAQCvv/46wsLC0KlTJ7zyyitYu3Ytvv76a+Tm5mr3J5FIqnyGIAjVLqdKNT0Gn332GQoLC7Fo0aJH7o/HQH/6/HsAAP/4xz8QFxeHffv2QSaT4cUXX4Rw34MseAxqR9/jAADp6ekYOnQoxowZg1deeUVnHY+D/mpzDB6loR4DDkong5s1axaef/75R7bx9fWtdnmvXr0AANevX4eLiws8PT1x4sQJnTb5+fkoLy+v8n8p9LeaHoMPPvgAMTExVZ6ZFRQUhIkTJ+Lbb7/lMaglff89cHV1haurK1q3bo127drBx8cHMTExCAkJ4TGoA32PQ3p6Ovr164eQkBB8+eWXOu14HGqnLueEBzXoYyDi+C2iKnbv3i0AEG7duiUIwt8DENPT07Vttm3b1iAGIJqDW7duCefOndO+fv/9dwGA8OOPPwopKSmCIPAYiCE5OVkAIBw8eFAQBB6D+pKamioEBAQIzz//vFBRUVFlPY9D/XncoPSGeAwYqEg0x48fF1auXCnExcUJiYmJwvbt2wVvb28hPDxc26aiokIIDAwUBgwYIJw5c0b4448/hGbNmgmzZs0SsXLzlZSUVOUuPx4D4zpx4oTw2WefCXFxccLNmzeFAwcOCE888YTQsmVLobS0VBAEHoP6kJaWJrRq1Uro37+/kJqaKmRkZGhf9/A4GN+tW7eEuLg44b333hPs7e2FuLg4IS4uTigqKhIEoWEfAwYqEk1sbKwQHBwsKBQKwdraWmjTpo3w7rvvCnfu3NFpd+vWLWHEiBGCjY2N4OzsLMyaNUt7oiHDqi5QCQKPgTElJCQI/fr1E5ydnQW5XC74+voKM2bMEFJTU3Xa8RgY14YNGwQA1b7ux+NgXJMmTar2GNzrrRWEhnsMJIJw36hHIiIiItIb7/IjIiIiqiMGKiIiIqI6YqAiIiIiqiMGKiIiIqI6YqAiIiIiqiMGKiIiIqI6YqAiIiIiqiMGKiIiIqI6YqAiokZDEARMmzYNzs7OkEgkiI+PR9++fTFv3jyjfu6hQ4cgkUhQUFBQo/Y3b97U1kdEpoGBiogajcjISGzcuBF79uxBRkYGAgMDDf4Z1QW00NBQZGRkQKFQ1GgfPj4+OvXpG8iIqP5ZiF0AEZEhqFQqWFlZPbLNjRs34OXlhdDQ0HqqqpKVlRU8PT1r3F4mk+nVnojExx4qIjJJffv2xaxZs/DGG2/A1dUVgwYNwsWLFzF8+HDY29vDw8MDERERyMnJAQBMnjwZs2fPRnJyMiQSCXx9favdr0qlwsKFC9G0aVPY2dkhODgYhw4d0mlz7NgxhIWFwdbWFk5OThgyZAjy8/MxefJkHD58GKtWrYJEIoFEIsHNmzd1epiUSiVsbGwQGRmps8+ffvoJdnZ2KC4u1rnkd/PmTfTr1w8A4OTkBIlEgsmTJ2PTpk1wcXFBWVmZzn5Gjx6NF1980TB/ZCKqMQYqIjJZ3377LSwsLHDs2DEsW7YMYWFh6NKlC06fPo3IyEjcvn0bY8eOBQCsWrUK77//Ppo1a4aMjAycOnWq2n2+9NJLOHbsGLZt24aEhASMGTMGQ4cOxbVr1wAA8fHxGDBgADp06IDo6GhERUVh1KhRUKvVWLVqFUJCQjB16lRkZGQgIyMDPj4+OvtXKBQYMWIEtmzZorN869ateOqpp2Bvb6+z3MfHBzt27AAAXLlyBRkZGVi1ahXGjBkDtVqNXbt2advm5ORgz549eOmll+r2hyUivfGSHxGZrFatWmHFihUAgP/7v/9Dt27dsGTJEu36b775Bj4+Prh69Spat24NBweHR15Ou3HjBr7//nukpqbC29sbALBgwQJERkZiw4YNWLJkCVasWIGgoCB8/vnn2u06dOig/d3Kygq2traPvGQ3ceJEvPjii7h79y5sbW1RWFiIX3/9VRuc7ieTyeDs7AwAcHd3R5MmTbTrJkyYgA0bNmDMmDEAgC1btqBZs2bo27fvY/5yRGRoDFREZLKCgoK0v8fGxuLgwYNVeniAyqDUunXrx+7vzJkzEAShStuysjK4uLgAqOyhuhdgamvEiBGwsLDArl278Pzzz2PHjh1wcHDA4MGD9drP1KlT0aNHD6SlpaFp06bYsGEDJk+eDIlEUqf6iEh/DFREZLLs7Oy0v2s0GowaNQrLly+v0s7Ly6tG+9NoNJDJZIiNjYVMJtNZdy+o2djY1KHiSlZWVnjuueewdetWPP/889i6dSvGjRsHCwv9/pPctWtXdO7cGZs2bcKQIUNw7tw57N69u871EZH+GKiIyCx069YNO3bsgK+vr97B5J6uXbtCrVYjKysLTz75ZLVtOnXqhD///BPvvfdeteutrKygVqsf+1kTJ07E4MGDceHCBRw8eBD//ve/H9r23t2L1e33lVdewSeffIK0tDQMHDiwypgtIqofHJRORGbhtddeQ15eHsaPH4+TJ08iMTER+/btw8svv1yjgAMArVu31o5v+umnn5CUlIRTp05h+fLl2Lt3LwBg0aJFOHXqFGbOnImEhARcvnwZX3zxhfZuQl9fX5w4cQI3b95ETk4ONBpNtZ8VFhYGDw8PTJw4Eb6+vujVq9dD62rRogUkEgn27NmD7OxsFBcXa9dNnDgRaWlpWL9+PV5++eWa/rmIyMAYqIjILHh7e+PYsWNQq9UYMmQIAgMDMXfuXCgUCkilNf9P3YYNG/Diiy9i/vz5aNOmDcLDw3HixAltz0/r1q2xb98+nD17Fj179kRISAh++eUXba/YggULIJPJ0L59e7i5uSE5Obnaz5FIJBg/fjzOnj2LiRMnPrKmpk2b4r333sNbb70FDw8PzJo1S7vO0dERo0ePhr29PZ5++ukaf08iMiyJIAiC2EUQEVHtDRo0CO3atcPq1avFLoWo0WKgIiIyUXl5edi3bx8mTpyIixcvok2bNmKXRNRocVA6EZGJ6tatG/Lz87F8+XKGKSKRsYeKiIiIqI44KJ2IiIiojhioiIiIiOqIgYqIiIiojhioiIiIiOqIgYqIiIiojhioiIiIiOqIgYqIiIiojhioiIiIiOro/wGnGPHBfEzQHAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "prof.plot(y=\"range\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plotting 2D data\n",
+ "\n",
+ "In the example above, the `.plot()` method produced a line plot.\n",
+ "\n",
+ "What if we call `.plot()` on a 2D array?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 45,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAHTCAYAAABiAb/vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9a5Ak6X3eh/4qr5VVWZV16equvkzP9EzPzO7M3oBdcBcLgQQJQCBFitShbFqEtKJkmUGJOjRxKAd9ZH8QdEICFfxAyyYiqKDDPqZCliH6HCOOfY4Ek6JFkASwwC6w98vszm7P9Ex3V3d1XbIqq7LyWufDm/nujnkDuIvVAptPRAew09V1ycqsynze5/97SsvlckmhQoUKFSpUqFChd4WUf99PoFChQoUKFSpUqNAbKk7OChUqVKhQoUKF3kUqTs4KFSpUqFChQoXeRSpOzgoVKlSoUKFChd5FKk7OChUqVKhQoUKF3kUqTs4KFSpUqFChQoXeRSpOzgoVKlSoUKFChd5FKk7OChUqVKhQoUKF3kUqTs4KFSpUqFChQoXeRSpOzgoVKlSoUKFChd5F+o4+Ofv0pz9NqVS646fb7crfL5dLPv3pT7OxsYFlWXzkIx/hhRdeuOM+giDg537u51hZWaFarfKjP/qj3L59+47bjEYjHnvsMRzHwXEcHnvsMcbj8TvxEgsVKlSoUKHvWv3SL/0SpVKJT33qU/Lfvpnv7u92fUefnAFcvXqVo6Mj+fPcc8/J3/3yL/8yv/Irv8JnP/tZnnjiCbrdLh//+MeZTqfyNp/61Kf4/Oc/z+c+9zn+4A/+AM/z+JEf+RGSJJG3+eQnP8nTTz/NF77wBb7whS/w9NNP89hjj72jr7NQoUKFChX6btITTzzBr//6r3Pffffd8e/fzHf3d72W38H6B//gHyzvv//+P/J3aZouu93u8p/8k38i/22xWCwdx1n+s3/2z5bL5XI5Ho+Xuq4vP/e5z8nbHBwcLBVFWX7hC19YLpfL5YsvvrgElo8//ri8zVe+8pUlsHz55Ze/Da+qUKFChQoV+u7WdDpdXrx4cfnbv/3by+/7vu9b/vzP//xyufzmvrvfC9L+fZ8cvlW9+uqrbGxsYJomDz/8MJ/5zGc4f/48e3t79Ho9/vyf//PytqZp8n3f9318+ctf5md+5mf4+te/ThRFd9xmY2ODe+65hy9/+ct84hOf4Ctf+QqO4/Dwww/L2zzyyCM4jsOXv/xlLl++/Ec+ryAICIJA/neapgyHQ9rtNqVS6duwJQoVKlSo0HeLlssl0+mUjY0NFOXbs8j12GOP8fzzz78t9/ULv/AL/NiP/dgd/2aaJqZp/pG3/7t/9+/ywz/8w3zsYx/jH/2jfyT//Zv57n4v6Dv65Ozhhx/mn//zf86lS5c4Pj7mH/2jf8Sjjz7KCy+8QK/XA2Btbe2Ov1lbW+PmzZsA9Ho9DMOg2Wz+odvkf9/r9VhdXf1Dj726uipv80fpl37pl/iH//AfvqXXV6hQoUKF3tu6desWW1tb35b7/lf/6l9xProLgz/6BOqb1TGH/Mqv/Ap//a//9Tv+/R/8g3/Apz/96T90+8997nN84xvf4IknnvhDv/tmvrvfC/qOPjn7oR/6Ifn/7733Xj74wQ9y4cIFfuM3foNHHnkE4A+5VMvl8k91rv7Pt/mjbv+n3c/f//t/n1/4hV+Q/+26Ltvb23zkn/4ak1//1wTRjLv/Hz/GZGqz+PU/wDBs5osha627SJcx7uQATbcw9Are7IQz7/thlJMBKz/t8cG1mF//xhqP3XfM/kzl+ljh1c98nXq1y3r3Pr7x7L9kpXkBzz9F18pE8YIo8jm78T2Mp7eJYp/Z/BTTrDObn3J194cJd3dQr13jr3xmyeuuxm/+/Ff4p7/5EP/wPzlmMutRLbcYe4fEkY9liZPZMJxRr67hhxMq5SbzxQhV1Zl6x2iqgaIaWGZdboM4CWk5Z4njANc7ZLFwKZedO7abqupYhsPQvYGmWcSxj6ZZWGadMPapllucDF9hpXmByeyYarnJbDEijny21t/PaLLPYjFBVQ1UVScMZ+i6RZomhKFHuewQRT6qaqDrZXx/hGU1SZIIXSvjBxPazjlc75Ao8rP3OqHlnCNdJviBy3R2QrO+RdkUz92dHhLHPopqYBpVomhBkoSUy3U0xRCvPQ0Zu7dpOFtE0YJm/QyjyS2q5SZxGuJODzmz/iD94XVMo8psfkoYL6iUm6iqTn/4KmfW3sfeweOstHZJk5BqZQU/mGAaVUzdxg9coniB749YbV3E9Q4xDBtV1UmSiDD0AKhWVojiBZZRJ05D8behi++PUFSDarmJUlKZLUYAOLUNjk9folk/gzc/pdU4Rxz5DNwbrDQvEESefM26buHNTymbdfna0jShWm4RxT7e/JSSoor7n58CkC4TatU1mvUz9IevUKuuEUQz5v6QZv0M7vSQmr3GcHyTVuMso8ltatVVfH9Es34GgMnsmJKiMhjv0WnuEsc+pZIKQMVqEsUL0jThX33hE/z1H/0DgnCGoqgsFi6KohLGCzRFZ6V5AT90MVSLOA3lczTNOppqEIQz0qXIo6ZJyGwxQtcszm58gKOT52g3L+DN+xia2A5ObUPuM/kxYmhlLKuJoVoM3BtUrBaLhXvHMWvqNmPvUOx/aYKuW/IYMo0qluEwmR3L/S6OfOI0YhG4NOpnWGtfpj+8TrXcxPUOiZOQdJnSaZxnEXn8Tz8x5if+pyp2ZYXtjYe4efur+OFEvK40od04x3h6cMexaZkOx6cvo6o6SkmlZq/hBxNq1gqT2TEA0/kxjdoZ5osRncZ5pv4pyzRhPL1Nt3MFAN8f0aifQdfE65/NT7mw/WFOBq8Qxz6mWUdRVHx/xNrK3RyfviT3Ccuo42bbxTTrBMEEx96Q71WppNJqnGM0uUUYelQrK8zmpxiGjWXW5XZNk5CWc47ZYih/bxpV8Rq8YwzDJo58mvUznAxfZXvjIeb+kNHkFjV7jdnsFE23iCMfd9aj09xFUVS8+SnN+pbcrzXFYLYYoanic6BUUlAUldPR6+iahaGVSdNEbss0CTEMG9taYTS5zTde/F+p1Wp/7PfM26GOukGlVH1L9zFPZ9x///188YtfvOPf/yjX7NatW/z8z/88v/Vbv0W5XP5j7/PP8t393aTv+IGAN6tarXLvvffy6quvyqnN/7O7dXJyIs/Iu90uYRgyGo3+xNscHx//ocfq9/t/6Mz+zTJNk3q9Ln8cR3yRl1QHXS/TaZ7n7KrO2TMhmmYQRh5Vq8Va9yqlkkIQebjTA9zpbYLIw04MDN2i6ZQ529H54F1zzq4a/MAFhXs2Tba7D9KobWJWHLa6D1Cz11hp7NBduRvLrHNl9wcZTW6yCFwWgUvFalIpO9TtNeJkQVKvMXBfp2qX+cBZlSCaolkmVrlOCSibNapWk3QZi/82bKxyHUpgGlVKJahVVug0L9Dt3E21skLZqGLoFmXDRlFUKmWHRTBmEbqstnZx6hskScB65yrrnatoqk4JMIxKdkIRYBhVNFWHEsSxz2H/OXStzGiyj2XWmS+GbHSuYBhVTkfXKQFxGqAoCo69jq6XqVVW0FSddvMcVauJoih48xOSJGS1fZmq1QKWJEnISmMHVdXwgzGKooi/qawwXwyZL4Yslwntxlnc6QFx7DOe7FO1mqy0LqCUFNrOWc6sv4/1zhWWaUIQeTi1dZSSiqabTL0ehl5GVTUcew3P7xPFPqqq405vY+hl5v6QOAmoV1fZWL2KoVusd66iGxar7UusNHZYsqRs2FStJlOvR5KG2UnkGVZa5zHNGqvty9QqK+L3SUDFalKtrJBkX/CKqpIkIZNZj97pS1QrK2yt3YdTW8fz+xh6GUVRWAQudXsN07SpWE3xmitt2o1zYpukCYZexq6ukCQBa+2LlI2quL3p0KxvMV8MiWIfWKKpOo36Bq3GWa7s/iBObR1YMl8MqVhNvHlf7FOKgqYZdDtXMHRLbEdFpVJuUCk71Ow1osTHD93shEFha+1+RpOblEoKFatJo77BInCpZv9/fXWdwXgPQy+ja2VUVWdj9V6a9S10vcx8MaQEBJFHEHrU7DVUVadW7aAoKqZRZeodsQjGVKwm2933sb3+fm4fP4VhVBlP9qmUHSjBua2HKZVAVVQatXWWy5hKuYFT22CZJjScM9TtNdI0xjCqzBfD7GLKZ+Du0XLOMPcHtJvn8OYn1O01lmlMkoTsHT7OSnOHUkkhDKeky5h24yxls0atssJg/Lo8bpzaBk5tA1OvMFsMxfsZi+N24O5hrKzj1DfwgzFJElC1miwCl/uv/GVxkgssApfprEfNXqViNWk3z7FcJlhmHT90mS8GpMuYqtXG0Muc2/gAw+k+zdoGplFle/1BwtDD0Cyazhk0zWA02UdTdS6c+RBHJ88RxXNW25dJkhAtu7iaznqstC5QrbSpWk10w2LJkmQZY+gWmlZm4O6xXCZoWlns41ZT7u9q9p5pqg7AZNZDKSkYRpX++Lq4IG5fwspOvpMkBJYYWpl28xwpCZvd+zgdXac/uk7ZrGefUVXxfPQyF89+r3zMduOsPBELQw9Dt1BKCkE4RdfKVMoOhmYRRXO21u5npXWBpnOGKPbRVJ1q9llVNmuo2XP+dp+Q6JqGoetv6UdVFFRVveM7r16v/5EnZ1//+tc5OTnhwQcfRNM0NE3ji1/8Iv/Nf/PfoGma/F79k7673wv6rjo5C4KAl156ifX1dXZ2duh2u/z2b/+2/H0Yhnzxi1/k0UcfBeDBBx9E1/U7bnN0dMTzzz8vb/PBD34Q13X52te+Jm/z1a9+Fdd15W0KFSpUqFChQn+6PvrRj/Lcc8/x9NNPy5+HHnqIv/pX/ypPP/0058+f/1O/u98L+o4+OfvP/rP/jC9+8Yvs7e3x1a9+lf/gP/gPmEwm/NRP/ZTkpnzmM5/h85//PM8//zx/42/8DSqVCp/85CcBcByHv/W3/hZ/7+/9PX7nd36Hp556ir/21/4a9957Lx/72McAuPvuu/nBH/xBfvqnf5rHH3+cxx9/nJ/+6Z/mR37kR/7YYYA/SbrpkyQhteoqjrHkUiNF1yrial6rMJ+eMHRvMJn1MA0bNbsKW4yOSZcJLROcsoqlLQFoWyptc8lh/zmMi1fpHTzDxtp9GHqFprPNeHILb97HKjdQFBW72iGMxXLdxup9qKpB09mmNQpZbV3mf71hsGKJK7UnTkxq1TVW25eYzk+Y+0O2uu/DD1y5tDOeHmAaNmHkEychr9/6Ess0yVwSsUQSxj7erM94coBSUvFmfY76L5CmCbpmcePgcQ6On6FR26JurxMnAaWSShB5mIYtH6tsOtTtLptr99FytomypavR5DaGblGrdIiTEE0x0DWLmT/I/ndIukyyx6sw84d0WrtYpkMQTlFKGrVKh5ZzlqF7k6F7E8t0SNOEXv9FNNXANGyC0JP/XjYdgtCjUdvEm/eJIh+r7NA7fZnT0WvifrPlu5PhqyiKSq3SYWP1PlrOWQ5OnmURitenqQZ2pUPFarHeuQddt6jbXVTVwJ0eMvF6Yklw1sfMXEi70uF0vEetskrZdPBmfQD8hctgvMd4epuhe5Mw9qlYLXTNYjw9IAg9uT2Vkkq6TDANm6sXfhCA0eQWp6PXaTrbqKpBd+VuFoFLGPlMvB5B6FG3uxycPAuAphpY2dJ0vl1U1SCMfMaTA2b+kIl3hF3t4AcuFatFrdJhPDlgpXmBo/7zpNn+EsU+ayt3Y5Udcb+mQ5yEOLUNJp44HrxZHy27/yj2CULhOC+XiXBPVIO19mVazjZzfwhAo7ZJmiaMJwfoCZlTCt68T8vZ5tbxU8z9IZtr96OqBi3nrFxGzPc7paShqQaLwKXT2qXd2MFfuLheD001WKYJc3+IadjoWoUkCRlPbjF09/EXLqZhUzYdolgcJwD94SukqXjOiqISxT5Vq42uWVStFv7CZav7AP3hdZr1bUbuPlbZYeL1aNgbHJw8y5n195MuxXZPkhDLdNB1C6WkYpUd0mXCzBeO7+bafVStFla2HB/FPss0Ye/5f41jb7C5el+2NO7jBy7XHmpmy6HiOC2b4n1JU3Gf/sLFyPbVC2c+jF3pULVatJyz3Dp+Ck0xcL0e6TIhCD3sSkdEAxYux4Nr1KodLNPhdPw6iiKWoAfj1wkiTy6pxkmIk73WOAkpGzWxwtAWn71JElK3u8RJyHTWYxG4HBw/Q93ukqYJqmpQKqloqiGP4/xYNHWbuT/kZHSdKPYxDRvTsCkpavaaK/gLVyzXaxZrmas3nYtjLYrEsTX3hSvcdLazWEINqyyOg0XoSSdtNNmnPxSPtbl2PzN/wDIVUQk/cEnTBG/eJ05CgnDKInC/5e+XP4sMQ8cwjLf0o6rqN/14tVqNe+65546farVKu93mnnvu+aa+u98L+o7OnN2+fZuf/Mmf5PT0lE6nwyOPPMLjjz/O2bNnAfjFX/xFfN/nZ3/2ZxmNRjz88MP81m/91h1r+P/Vf/VfoWkaP/ETP4Hv+3z0ox/lf/gf/oc7drb/8X/8H/lP/9P/VE6P/OiP/iif/exn39kXW6hQoUKFCr3N0jUdIzuB/LNKjb75k7NvRt/Md/d3u76jT84+97nP/Ym/L5VKfPrTn/4jp0VylctlfvVXf5Vf/dVf/WNv02q1+Bf/4l/8WZ9moUKFChUqVOiP0e/+7u/e8d/fzHf3d7u+o5c1vxPVdKaYhk2rsUNdh7q+xCo3qJRbhPEcq9pm7g/l0kN35YpYttnexjBtKtoSTVHYqqbEqbjPKIXOx/4q1jQgCKf4izFlo8bhybN0O1dpN85nVrlH2ahx6ez3U7FaePNT/IXL7d5T0OsRJwG3h3VuuCW2/6P/O//vL96NUlIZTW4x94ekacLQvSmXwkollZXGDoPRHnN/yHCyL5cblJKKrlliyaakYho2VtnBD1zsakf+TtctrGxJZjo/4eDkWQajPTTVoFJuZQFdoeUyobtyN6PJbfkYVavFaLJPxWoRxr5Yfli5iyD0OBlcQ1FUOSXaO32Rwfh1NlfvxV+4xEmIN+8ThII6vX/0ZBZSNoginyDyWGtfJk5CZv4Qu9IRoWDDplHfRFFUXE+EVmfZ9lkErlzuCrLpyDRNMDSxTJYkATN/wPqKCPpXrBazbFlkPDngZPgKmmow8Xq404MshG5Tq3SwyiJcHydBFuq3Oeq/gGnY2X2H4j7LLUzDZhG4jNx9MS1pteg0d2XYOklCXt3/PTkQMHTFsEgQekSxT6//YrYNX0HXLLnsZBo2M39Io7YJiGXUYfYYIJbKosgXYfGyg2nY1O11kiRk7g9JkpBF6FGrdjjqPy8nKk3DJop8xpNb9IfXUbNlTSX7fb78ly4TuQRomQ5l02E661OxWqjZ8iDA6XiPKPaZzvosQi9bHuuSJgl1WwwL2dkyeLXcwq52ODh+hiQJ6Z2+LJdRAeb+kPH0NtNZH12zsCurJEkol8Ku7/8+JUWVS+jivlcJI5/1zlW57CZC30Y2oNCS29qudkjThIrVwg/GBKGHrllEsc+F3Y+y1r6LqtUmTcWSYNVqsbZyF1Hkczp6DbvSkQMMjdomZaOGadhiG0Q+3fx4GL4ql4Ipq3KpUtcrVGqrYjnOdLBMRyz9qmk2JHNe7hv54+fvy8Tr0eu/yK3jp1hmS6i905dp1DbRdQsjWx7Ol9Lz17yZRSrEdG9fLvXq2XFiZNtSKamcjl6jUdtEKan0Tl9mOu+LYZvQEzGNSLwmp7ZJGPtymb9W7XAyuMZ01sviEuIzMIp8cR/LhO31B6lXu3LJPIrEftWobTHzB/LYrlotuSyfH2d2tYOhic8vVTUYufsEkZgC7vVfxM+2GYil9Uq5RUlRKZVUltlS7yL0xLFtOhi6hZ7dn2nU5HLot1u6ZmDob+1HVd5e56zQd7hzVqhQoUKFChX6s0vXDQztrXHOVLU4lXi7VThn77DKaoqqGtw8+Cqb1QRLW3I6eo3uyl1c2P0olE3ajfPYlQ7dlbs5HV1H1yoMGzovvfqvGQQlbLPGMwMxFBCnSy44EcOWwle+/Fm2uu9D2dl9IwCvVwQ2Ig5YW7mboXuTGweP4836dFq7GLrF9tbDBIFglSlqgh+X2H70ZS4/M2YRTtFUQ17ZWqbghPkLF001mPlDGV43dVsEc+dvBNePB9foj67LoLCqGhhZ4DldJiglMaTQaV3EX4gArKIIRyyIPMJIhJMts8HMH3IyeIVFINya/LaVsnAhNNUQLsfkNoqi4tQ2ibLg+I2Dr7Lavkzd7rIIPRaB4EqpmUuVO2NaFiAGcRUfJyGjyT6GbsmBgOm8TxB6zLIAeMVqUbVa1Kqr1O1uhrQQucfJTDhrR6cvMp338QNXhuSH7j6D0Z50VPIr5elcvDcXz30/aubihbHPUf9FXr/9ZRmCn/sC7wHQcrap213CyJf303S26XauZPyxinSDZv6QOAmpV9eoWC00RQTs88GBut3lwvb3SrczCD2SJCTJnAcvC0TnzsV65yp+4OLN+9TtLo36Gel0iG07wDRqbK8/CAgH9HS8h5I5CIZuycGCRv2MdCG2uu9jONnHqW2QLhP2j76OrllMvB51u4ue/Z2hWzj2OkHoMZ31M+djUzpK+fu3CD0S35Nh9rk/lK6NoVmste+i/vP/IctlwrnNR4hinzRNSJcJ7vSAZca58+YnTLwendaudKuUkiqD+OPpbbz5CYZuMfGOZLhduG4dTMPG9Xp48z7txnm8WZ9F4DKeHjAYCyzExOuRJCGP/t9uMZ4KpzgfhKnbXU5Hr8twfv56VdUgjH1Gk9tMvB7rK1cBOBm+Kt3CUkkV7mLDJMhQD+3GDoll0G7sSHZfmiY8eM912o0dpvMTdM1iuRS8tarVJop9tjc+IF3flcYOYeTTqG2iqQa1yqoc0AlCD6UkHGxNNSibDkP3JuPJAVHkY+piKKbT2hX3X27J7ZQPNOT7Xf5YByfPydB/yzkr3bw85K/rYj+pZPfVz4ZyGvVNrLKTBfzvYjw5oGzY+AtXrghEkc/tbEhkOuvhB2KAwTRsqlabdmMHu7LKeHJAnDnBQeiJgaXq2psYZpZEsPiBi2N3adW3BaNv4dKobzKa7Eu3NXd3hbs5pdO69DZ/+/zR0jW9cM7ehSpOzgoVKlSoUKFChd5FKk7O3mHFyxJXrvwYw8k+flJCU0RW6HT0Oi/fbzNtlOWV+fOv/m90VzKqtiVGt3vzEk6lzU5tiVaCZqVGx4KqB/dd+jGu7f1b+Vi16moGczS4ffwUN24/zpnugxJdgCMyQS9c+9947pX/Fc8XNPROJeGRtYTAd9m7/RXULKO0e/b7ZHYkxxbkObL5YpiNhw8lGsBfuOiaRae5i+v1OOq/QBCKMXlVNWnWzxBkV50zfyDgmNUuZdMhjMUVdZKEtOrbpMtYOkK5w2UaNq/d+hKNukAlHA+uyRH29c49rLYuArDS2JFogkmWEavbXW4cPC6ch7KDXe0AIuPXbpwT9PjApdU4x/rKFfrD6/L+3Km44tc1S2bi/MAliubM/CFl02HiHVGxWhIvcPHs98tsia5ZqKrB5up9pMuE7fWHCCMfXRf3t7l6H2ma8PqtL9EfXqeS5ZMUReX81qMoJVXiTFaau8z9IafjPXStIuC4Sch4ekB/eJ2Ru59lfyoyQ2VXOjKjk7sMVauFphqsti+hqgYz/1RuK9OwsSti++QZQoCWczbLBL3Ouc1HOLvxAY4H1wQeYyn2sfy5H5w8K10Wu7KKpoh9pFR6I6ulqgano9ewTIdO6yLe/JRHH/5Z3Okhmmpw3+W/JJ//8eAayzTBNGpMvB5VayXL6ticjK5Tq66KDFpJpd3YYTw5wJv3SeYTgbvIEBD5e6jrFfaPnuTCxjGN2ibHpy8JFyX2qdtdKuWWREnkedDbvadlK4KuWay2LmJXO8INMmymsz4t56zcX2vVVfzApT+8Lh3fwfh1qplj2apv06xvZ+6jcMJ+4qxwkMbT29zqPcUicwdbzlmazrZ0QpWSSqO2hWmIY0Ycl2OZi5t4PVYa50Vu0dmmZJs4ueO9scP1SxVO7xJOznTep1E/w9+8O8QPBJold5tqlQ5+MKZUUukPX0HXLUollfFEOIuD8V52PIwZuvs0aoKWn2fdKlaL09F1iTmZZftfo7aJNxOO9JsxJn4gMCQt5yy6Zkk32650GIz2MHQLPxjL47hqtaSjtta+CxAolHbjPFHkczy4hqoaOPY64+lt6nYXN3Mp88fTdYuruz9MFPs4tU0MzaLT2iVNEybeEYcZMBeEc6+pBn7gSoh1koQ06puYhs3x4Bq6JnJ1+0dfR1MNjvovMHBvCAe42sWudlhtXZTuomg3MekPX/mzfMV8yzL0dxalUeibU7FQXKhQoUKFCr1HlS9rvhUVJ2dvvwrn7B1W00w5OlOjWm6xaiXU9RRv3he5rNU+w4ZGGPmcP/MhKuWWvKK3vSXpMuHQ09ATuKsZsmqXSdIYAM9JefXm71K12swqKvPFiNPR6wTBlIsP/oecWX+IzbX7GLjiKrhitbhxrkKchLjTA+xKh+H4BoYeEadgqUte2fu3TGc9NNVEVQ1uHX0d07BZa19m5g9ZhB6n4z1Mw6bd2KE/fEVegR4ProlMTXMnywKJ6UU/yKckT0QnZRISRT7u9ICmsw2Iqpg0FVmkc1uPMPOHzP0h7cZ5ZouhzKGMpwdcOPMh0WNp2Gys3isnMP3FmOPBywCEmfsBIkuTZ8c6rV1qVeFMjNx90qWAQF7b+7fCCWlf5sbtxzkd77G9/iDHg5dJ04RmfZs4cye8eV+CeIVTsCmnCXNorDfvM57cYjw94Oj0Reb+MMvjvYxlOviLsZygjJOQg5Nn5VRbDr9VSiobq/fy+u0vYxo1wqz3Mwg94jTPg01F1kW3MHWbRm1TTprdOvoGapYdXAQulunIjFg+eTieHHAyEO+hN+tjVzpYZgNvLsCvuQvm1DaJYp/jwcsyL/P67S8xX4wwdZuVxnnhoJ2+BAhnWCmpEsA68Y5k56Y7PWDi9YRz5JwTj1vtEEVzykaNyDI4GVyj07rIS6//7yyybNta+zKn472s1qjL+JEHpGt0futDEuipaxZzf0ijLqZL1UpduIWaha5bcopy/+hJyqbDlr2UU3b5/b15YlhVBVi1bndpOtvouiWzkrd6T8n/H2bu2WhyW0wiZ+Bl07DptHYlJDaHCef7nlV2GE8OmM76NGpbBEevYZkNmUnM3eP9oycZjPdYaV7AzTJtSRIwnhwI12zhyonk3Mk7Gb7K7d7TAlhcsXC9HrXKKqcrJksrZH5uytba+8SE7dVHuNC5QJK5VBKMmx2b+bZYX7lKp7WLmuXf7GyqWNcqrK3cRZIEwnnMwL/+wqW7coVzmw/TqG9K9zVdJkxmPVZbF7HMhpiitVosM0ese+9H5TSuphrS9QMxTZvDeUG4XwA3Dr9KFPvMs4wnQL3aFW7v+HUJMq5aLel+5pnL12/9AdvrD8mVB3/hYpUFRHhj9V7CbCL5du9pJl6PVn1bZGPLDQndzT9vNNWgWd9mq/sAQ3cf07DZ6Nwjndm5P+Sl138LQKyoLFzSZSy387dbmqGjG8Zb+lGKk7O3XcXJWaFChQoVKlSo0LtIxbJmoUKFChUq9B6VWNbU39J9qErh87zdKrboO6zdeoozjfEDl6aZoilLGUwOFxaJKgLYp6PXqNtdjJV1troPkKgluit3c3K8TuS5dCywzTqqotH3AUPY4NtbD9O5NeHW0TeIYh9VM7n9sI+iaNSqa4zcfcbTA4HCOHNKd+WKDIgHocdsVmURK3z9VJOQz/7wVQmmHIz2ZCdhDnSUYdqFK//9/Naj6JpY8oliH8OwJWAy7+LMlyF03ZLB28msJwcQZv6QG7cfl+gGb36CpgjMQt3u3hHyPx5cY54NI1imQxTPRTB/1mPi9ZjO+qy2LtJpXXwDZTDrczreY+juyyWNRm0TXbPk9sghojN/KMPJOVwVkEH5fBksH+FXVUM+73LWEWlXOtSrXdY7V+XyVI4XkH2Lo9eoZR2E9WqXIPRYbV2kP7ouHkO3mfkDnGyfscoOq81dKlaLKPZpN3dI04T5Qixn5ksp7eZO9r4JxMdq+1K2DduUSiqWKZa6FUWVwwcglobW2pexq2v4C1egPbJQfz5YkoeZy0aNzbX7RdC62qXtnBPA3mybVrKw9mwxlFDddmMHAEO3ODh+BkVRMTSLMPZFN2mSEmcDM3alQ0lRqVgtxhOxlKeqhoDCbkzoj67jBy43Dh5n/+hJCTc2DYF4efDqTwJvLG33h9cFTDR7X5bLhDgVuAmrLECm+b5glZ03cCKRl+2Pffm+54DcjVWxXDXJeh7z3tFGfZNF4Ip93OtJ8Kw3F8vHdVuAUMeTA+xqh+UyIUkClmFAf/gqM39IJcPP5N2j6ytXcL1Dzm5+D0HoEcZ+9nprstu2lQ0NmIaNoVu0nG0BmK1a8v1NVNGla1U9gbjIlkkNNO6/6y+TZP2ax4NrhJEvkRPi+Z9kww4d5ouhHITYP3qS09HrElOSvw/evM/MH0rAaxBO8ebiOLRMh6P+C4ynt+VAh1PbZOfMhzBGHvNsiX7i9RhnaJNJhiTJj598GX8669Gsb+PUNolT8bu8v1VRVFYa50WQf/FGf6WEMEd+ttz8Ov7CldGFidfDrnQk+iQflMlRMufPfIibR0+y0tiRn3X5wIE7FT2z+TbKETl2pcM4i5VEsS/B2oPRnly2/XZLM3Q003hLP4pWLGu+3SpOzgoVKlSoUKFChd5FKk7O3mHt1GNitcQ9F38EAE1ZUrFadFq7aEZI3ROdTHmgXg1jgQqYJzj2BkbZJw19TE3BLjs4VpuavoRQE9Uw/phe7zl2tj4oAvTzU1qtAYbTxio3OX/mz9HIAt1pouLUNlhpnpc1KuHNNcpayjO3VmTAPU5CWVWUX/lNvB6aatBytpnO+xiZMzKd9ymbDr3Tl1EUVVx1Z8FWP3Bp1DZl2F9RVAEJdffx5n3SZUKrvs08wypEsU+jvilrdiZejyASsMc0TQgjEeZt1DZl4B9gthCQ1SQJada38eZ9HLuLH4ghAXd6wMbqPQKnUO2KuqbYx9AtppmTcWb9/Wiqwen4dQFSXQwxdZvx9IDx5ICq1ZbPM69/qVotXrnx70iXiRwoyEPlOSRX1y1m/kA6LtWsvklTDXTNYqNzj6wtqmZw2zgJxTj+rC9ev2EzfVOYf+juZwgBUZPkzfvUq12G7j63jr7OWlvU92yu3icRJKPJLQ5PnqN3+rLEMZwMrmU1Wn3CbEgjx0b0h6/QqG/SXbkLy3Q4Hoi/a9Q2OTh5lqrV4mT4Kv5iLHEAOWw2H5gQweyeqGmaHnA8uMZwsi9Bt436G++jAOyOKU0FMNjIcB+mLqqsDN2Sgxx+MCaaiIGQlrONUlIpKSrevC+RLoZmMX9sASCD2DmoebYQiA9VNXDDkjjuMjdTUVTSNGGleUE6HvWqqGNq1rdJl6KyS1UNLp39fr7x4v8s3FDFyJAqPTbX7ufw5Dm6K1dwM3jtPAMY50MR+fCIphry/1vlBiDcr0aGPVFKIhBvVzr4gXCNRb2TGNZQVYN+Bp3NhzxAVJ3JYYXYp1QXTlqaJsQqkCgEC3FMaorBSVtnmcSky4RGbVMG3PM6JuFitdE1i6G7T394nZXmLsPJPoqista+TJIhXVTVlOBmpaTKgZ/5m/Z7QxPPJR8s2D96UoJ4h6M9xpsNdN0SwzCxL4d86naXZn1bIjwW2TapZa5zEHq06tvifcsQG0HosX/0JCvN8zTqm0y8nkDOZE50EHry/vJhp3xFIH8/chyOrlsZdLgvatLKYvAhzoZ7cqc6x7A4NYHYKOeDPooqK7NygO/hyXN34ES+3dJ0Dd3Q39JPMa359qvInBUqVKhQoULvUWmGjm6+tcyZohY+z9utYou+wwoSBS1ZUqm0mUYlTnyN82e/V5QajxoEhsI99/w4IPITS1Vh4vUYNsS4eRwaWN1t2tU2RpZJqBoKaqhw3/s/iTs9pF5dI04C/GCMoVdIUoXlfM5sfoqhV+i0Lgk3ZeSg2DWmsxOqWXH09q0Fzw8Mgpko945iUckSRj4t5yyVcktefeaYh7ykOHdG5v6QZXbFnWezcgCrZTZIkpBSSaVsOpi6TdPZZr0jqmb8wKWcZYXajR0mXk9WJ3Vau1imQxB5WQn6XZyMrsur8mmWPTF1UWI8GO8xmfVYa1/meHANf+GyuXoffuDiTg8JQg93eiAdh6G7L3Ig1Q6905dkjmW9c1WWY2tZliwIp1SsFpOZeH7eTFQznem+H015I2+WZ1byjJhwTGpy+70Z9Aoix3ScFbbn2ILB+HXhYGbZmfH0gDRNOBlcA0TuStcq3Dj4qqw2yp2gUkll6N4kCD1uHH6VG4dfle9bDkd1pwcyn7bSvMD6ylWCyBP7W+YA5JDfW72nJKJiffUe+qPrsgS9mhV355VZaZrI15W/RrvSYRFMhNtZ7aIpb9RlJUkonZ619l2cjl6Tr2/i9bDMhshuZUXmObph4vW4clUgQPyFgIjWMvxDDjWd+UOa5RjdfgM4XMuylqZuE8a++BtFvI7BeI8g8iiVRMbNnR5Sq65m78eedGUWCzdzIve51fsGdmVFOIr1TQbjPep2l5PhK7LaLN/2lulglRsSmgwwdPeZZXVcFavF0L3JMo5ZZFiVfDvnCIhKVol2be93GE8PZCYrzxDmkOgg9HCz6q44CVltXaJ84V7syirnNh8Wb46akiaqdHqSjQlpkmDaTV679SUJ+M3rmOI0JIrnNOpnJH6iVl2VDpieFYPnVUT5PhWnIU7mEIEoRM8h0t5cFI/ngF7LdFAUAWb133+Mrlmcjl4Xr00RDlvVaqNmqApdE9nVduO8zMBpqkEQigqvfPvX7XUqVovR5DZDd5+K1RLu8UJ8huXOLyD/Zr1zDyuNHRRFlfVnOdpk5g9Za1/Gmx1TtVosss+Vut3lqP8Ci0DkbnOHO/+sqFgt+kORk5wthrhej/XOVemsvlPumaaraIb2ln6Kk7O3X8UWLVSoUKFChQoVehepODl7h9UuJ8wqKlHb4V9dL/PsQOXrz/4LyobN5a+6qMmSSbtC3e6y1X2AgzO2cEKslDCao6gJR5PbGFqZEuCHHlXDQA9h3Lbodu/FNGtMpockSciL1/8NSaJSqlREpc7lS9zufYN0GWM2XfyaKfNcLWeb57/y/+S3r7e48I1UXiGK350liucyeyEzLZmLkwM019qX73BcFEWVNT2ALHHO3bU8OxSEU8YTcbU5ynJISuauBaFwcfzMpVhp7Ah4bgaW9AOXTusirfo2SRIyXwxZ71zl7Ob3yKxNPt151H+BcxvfIytvSm/Kx+Rg0ty9EdObW0y8I5FfyqqG2o0dWbVk6mI6rWK1CKMMeDnr3ZE1y6c9vbm43Xh6W+QBs9xRXsUUhB5r7bvQNStzvPbl7yezHsvMKcqn8vLsnbjNOAOcXsSurIrt1DwvJ/Xe7HrmWZ6W80YWJ8yu7A9Pnqc/fJW19mU6zV3qdldMFFY7aMobtwW4vv97tBs7ovJGs+gPrzPxehIUquuWdAhGk325n5zd+IDM7+i6JcGyuct1MroOwGH/eZ564TeJIp9u5wpBOOXW0dcBkaEydIvV9iV5X3lOLAcd5xVN+bThTn1JpIJS0qSrmzsktUoH900uZqe5Sxh6Mhs0nOyzuf09TGciM7bS2JFF4HKKNRI5KFFHNqRR25R5t/zfcwBwnITc7j2FadgS0GsaIk8Xp6GcjAQxZegvXG4fP/2Gc5WELNOEKJrzvqs/QdPZZnv9Iby5mCTMa9bSNOHC9ocJIgGAvnDmz9Fq7uBbGuPpbYJwSmscQ6hxbvOI/vBVTMPm7rOHxN6I4cmrNOtniJNQTt3WKmJfOB3vsX/4BCCmlY/6L4jjNRKuojfry1ze0L0pAbCKonIyui4yh65wtILIk3VUtUqHWrWDrlusNC8w8Q7xZ2ICVpSqd+Tkp+sdiWM++6xSFBVvfsJ4coCp2/I9zqvg3gD2iv+fl9qf23wYU7dl5lHXLOmMTbwer9z8d7heT6xwBC5B5LF/9HUJmQ0yIPfJ6Lq837JRk1PQdkUUoOefpePpAYvAZa19GVMX+4CovxtgGjZObRPLqL/t3z9/lFRTQzP1t/RTTGu+/SoyZ4UKFSpUqNB7VJqhoZlv7VSgWNZ8+1WcnBUqVKhQoULvUSmGivpWT8604uTs7VaxRd9hLZIS4x2fozWTky9dQleg3TjP0N3nK9/4b3GmMfXBHKUkMBReK5bh2Vp1Davq8dSRR8WoEnlTjqenHE4XLOyU07bKaf8a+4dPyqB8y9lmPFwh9abEScDpxQXnNh/heHANq+phTQMWGeIi7zjc+GKNpx//79FUg0ZtKwOqnjCd9bGrawBYpsPMH9Jp7sqlgzyYnyMgvHmfidejbDqUDRu72qHlnM069d6AY068nlyaGk8ORNDe62VLA2JgwMjC3f7CJYwErHHk7gs4blksVw4nAk7bqG0ynt5m5O6TJCGba/dRKqncPn5ahsOdbLlurX2ZaRZwDyJPIiyiyM+6QMdyWXTmi+XSfAmrYrUkaHQ02cfQxXj91toD6Jollzbz5WE9C0ubhi2Xd/Ou0FplVWy7ShtFUWW4G5BIkFIGhjWyMf48oHwHfDeaM3RvomsWe7e/jDfvUzZsDk6eRVMN1tqXAQHPPTx5jmUGFH1zf2TFasn7nPvDbPtXJBw4D4crJZXoTUtv+YCBXelIPIhlCphro7YpMAlZL2rZdJgthnKJbrV9mbq9Tss5K/Edpl4VuIdsyfd4cI0z6w9KDIaqGowmt9jd/jDdypKRKzAOyzSR29kyHfzAZaVxnra5JIwDZv6AwXiPmS8QGjleZLlMqBtL6vYGVrnBavuyXMJaa1/m5fdX6K5cEftg7Es0jGnYLBau7B4NIhEIPx6+Il8fgJMtmc2ywZlOa1cM0CyGbwwvaBbu9JDV5i7TWQ/mYvuqqkF35YrEz+SIFbu6xsIfM54ccDp+HV2zshC+J4Yoyg7e/BRNEe/FyeAailnG9YdEURZSn4aUEoXjcU2+rvO1Jcl0hFPboFHfzPbNFRmIt6sdDM3K+iQd2YWZozZMw5bbI3+NeVRhMN5jtbnL1toDNGqbeLO+xElEsY+bQaNFJ+kxx4NrVG7UJKYif99KJVX0hAJn1t8vX3e+Dayyg65bVK02dbtLKevwDMIpZdORoNg4CQkjn0XgopRUHLsrER+zxVDu8zlyB2B95Srb6w+iZp2zOWR67ovj2dRthu5NRtlnUt7RGYQeJ8NXsSsdyqbD0N3HrgoI8f7hE/SH11FKKpNZj9li9HZ97RT6DlThnBUqVKhQoULvUYmGgLeK0igyZ2+3CufsHdbRXMUo+wQWJGqJu5sJO+c+jGnYvO/u/5D9syr+pC+vAu2hxs7Wo5Q9hdn8FMsMuO5qzMMZyyRmpdpgraqjWCGWD+32Ltt3f5RlBnlchB6JZ/HUi7/JSmsXhlU01cwC1RFPPP7rEiQZJyEng2u89I3fZLlMqFgtkiQgya4so9hn//AJAevMrvyjWKAndM3C1EUIPXcL1tp30W6cB5BYiNPR6/SH13G9HkN3X9avTDPwp6ilufrGVeboOr3+izJoruuWrGApm44cRFAyfMB4cnBHTVS7scPQvUmSXdlGkU+jviXRAr3+i2iqIa76s4GA/ug65898SEI087qaKPY5Gb6KNxeYjuPBNRGIX7iyxil3EQzdEuiFZYJSEogCq+wwGO/J59pyzhKGHiuNHY76L1C3uxyfvkSpJF5nvg2M7LFr2fMvZVf3+dBFu7nDLAPino73MmfugGZ9m3Mb3yOqkEoCzTHzh7J2ya508BeuHGgQUOGz1KrCxTs4eQ6A/vA6R/0XqFotjgfXssD2qkQd5GgVby4csuPBNZSSKp22OH0DRNyobQrMgS8qnHJ3TTzes5hGLXORpuJvkxAlc0jUDNCqqUbmmjawzAaud8TdjUQ6VO3GjgS8Tud9KuUW0/kJZW0JCJevpKgyiJ87c/nQSv3qI4wnt5n7Q4HDqHbFPmkFEm6cpgIVM3T3GU32sTMwbu6+rDR3MfWqvP/8uW2u3S+D6/3hdUolVQ6YmIbNYLyHZdY5He/RXbnCMgj54c9+BG8uXreRAVv9hUt/dJ3x5Bbm6pYcKPADl1pVOHR1u8vE67HMKp8URQyZkKSoinCRothnVjNYqimlF9ZZbe5y6dwPcLYWk4Y+wfqKPJaefvl/kSDb/LjttHapWm2JNMkHB0buPovAZblMWO9cFQ5m5i5urN7L6XgPPxCvId/XZ/6QduO8rEib+UPCyKfT3GX12JeulZIBhpeZezpbDOmdvpTBerdk1VUY+SwzFE3+Hjfr28z8IbXqKhWrxfmtD4ljfvgq7cYOYeyj6xUa9S2Jw8nf8zgDNIMYbHrt1pc4OH5GuGXZsEujJqDZQZTVuWX4nOFkXw5ULAJXDkTV7S6GZmGZDQnYns77aIpBnL3eb7fUAqXxrlSxRQsVKlSoUKFChd5FKk7O3mE1zZRabcK5GwGek6KXlizThDPrDzKbn6LXPaJozlr7LjqtS3itmEqlTaKC0ziDpiyZROD6AxJ/Sqeyhqqo7DwDMxviepWgomNXOrLWZON2KjI1NZu1kxjLako4aO705OPeuTMFIv91PLgmcQNKVgid53P2bn9F1PRkToymGrx683fZXLs/ywi9zOHJs0xmIlOWO1459NEyHZpZ3c76ylWJAPDmJ4AYZ89zJp3WLmXTYaVxnrMb34OqGiwCl05zV4JHVxrnSZcJ4wwsa1dWJcYjR4IATLwjDN1ivXNVuA0Ll0XoCeSDu8+5jYc56j9PxWqx2tzNgLE1kiSUGa263aWWZatWWxeZ+0OBy5j1JXBy5g8EfkO3eOXG/8HpeI9qVl6dLoWLWKt27wBeDsZ7bKzeI7Mzx8NX0BSRiSqVVOI0pFbtSDBprdLh5sHXJFC3bncpZ1m+1fYlZv6QUVbD1XK2ZflzEIqrdDUDlb5260ui3mYZM57cppLVYuXVQHa1g1VuZE7kPtPZCXoGB84zW7lzl9d6RZHPWvsukQHLXBpv1pf7lL9wKWUOG5A5n7cE5Fav0O1cEaXWaZhBT8V+GUY+TWebmT9g4h0Jl7Cc3FFYb+gWy6yeybG7wkWOS/ihx33f81N481MURcXUhdsECNyICvFrL3PXh34qc/m6nI6uU2l0abROZWF8EHqkaULL2WZr7QHSZSIrmup2945i7Lk/lJnK+WJEd+Uu/MDFl7dZJcowLJ3WLrWsDixOQkqaymN3l9jqisfI69He/NxvnKuInFWWk8zRDjN/KGuG/IXAi9x/918mCcV2FO/vZeonHqVEYe16H9fr4WzdjZ59M8RqiemsnxXEr2Bknw91u8tKczfLHc6ZzHo4tU2a9TOAQGvkWazj05dFxiorhB+M9uRt7AwWnG+Lo9MXcKcH0o2uWm2C0OPrX/pnNGqbzBbCFWs3duTnSO5k3u49TX/4KoYuMBh5tVn+GWMatkSZzPwBSRKyf/gErfo2VtmRoOOZP2Do3iRNheudK6+2SpKQKPIx9SrtxjnG0wNZPZYDtM9vPYq/EJ9npZJwaW8fP4NVFmiN3BW/ffy0LIK3Kx2SDG47XwxpNy+8rd89f5x0Q0M339qPWgwEvO0qMmeFChUqVKjQe1SarqIbBUrj3aZii77DStISYaSjJEv0usexrxI27QyWOiaJDKxyk401UVKtGDFJo06qwrTrcDpqEqUlDNVkGUf058d0ahsAnH9NFDvPKqqYFMumzHjlJYbuPqWpx/GqRhTN5UTczB8SRB7txjlZK2MatizqtSsdAQiNxJVwmiYsM3cqz/YMs9LgfOruZPAKndaugKlm03Oba/fLbFc+1ZUuEwajPZzaJocnz1JSBOR1kOVRvHmfqtXCyWCeeebr5b3fBpDTYKZh404POOq/QMvZpuVsk6YCfBlGwtGrVTtyuiqHv/ayK3q7Kq7qvVmfkqJyPHiZ8fSAKCtYznNrlaykPC+cHoz3aDlnOTh5VpYw5zVUumYRZhOdoorqHHNfVPPkGS0lm77sD69LGGazvs3p6DVZgr2+cjdxGnLz8AkWmcMznhxg6OL+j05fZGP1XqpWSzgQCxc3m369efiEhJEOJ/sM3X3SZcLGqpheHWT5NH/h0qqfwV+4HA+uyQm1lnOW1279PqpqULXaDN2bouIoA/AqJVWWhI+nB6w0dlhr3yWnNU3DzrblocyAzRdDmfWK05BGfVNOpupZDZjIb1W4sP297G5/L2HoUS2L0vOWcxZ3KnKFy2WCoqjSXT3/g3+HC3/p70mnSNT7tOR06DwukSwTrl+q0Hay/b3ssLl6HzN/SJIEANRWd0hu32Q673Px43+bsxsPc+NCnUc254w+/miW6+rckfOCN8qu+8PrqKpBo7YpoacAt4+f5nhwjZPhq3LadzLrsX/0JICcRs73n7vf/xMsg5C1xGLi9Tjqv4hSUnGzIvl0KY6r+uWbcjqx09qVjt2lc9+PVXbYP3yCdnNHAHm3Nri2929RFY3x9IAw8jntX6NkLzjuv8iV3R8CoFlOUKwagakQxb7IMuq2PM4H4z0Wgct4eiAmPssis3gyeEW+tpPBNVYyh2vi9XC9HrVKR05/5p9BoyyPNRjvYWR5UavsZLmzgahVWojjztRtlmki4de90xdZX7mCphq0Gzuy6muW1R+Zhi2dusmsJ6ul8tylN+/TH4ns32TWI0kCxtMD6bTZlQ4rjR1KJVXCsHPXtVx2sCsd+TmU36cAOt8Uk6ymw9wfYpkO5zY+II8LLYM/51OcufIJd1U16A9eeWtfNt+k3p7i8+JU4u1WsUULFSpUqFChQoXeRSqWNQsVKlSoUKH3qAxDxTTeGgpDOGfp2/OECgGFc/aOy1RT/JmNX9FIUxVdWXJ7w+T4+x8gCKeoeohetok7LaqVFdJQQ/cWKGJ1ivBwBV1Z8tpwSOpPCZOAim7h1XSuPfE5dG9BrJbY6NxDo7YJwH7WR5jEIWsnMVV7FT9wWSzKYvmqvs1ocksE8lPRYXk6ui6RGPm49+noukQCdJq7MhgLsFyK4HWShAIO6u6LbsOqCE+PJreYzvvE2e+H7r4cEkgSEfZebe6iKCo7W4/KvrmT0XXRa5n1NSZZp2DeEekHLoPxHs36NnEacnjyHNNZn3ZzB2/ex5uLgP7hyXO8dutLOFlYe+L1CCIPq9xAKamcjvfkcEPeraiUVAzNYjTZl0sRui66Bet2l9X2ZQbj10mygYqJ1+O1W78vlzeWS4EzUbPAvGU6MiBuZp2NeXh5vXNVQElnPTm4oCiqHN2vV9colVR2Nh8hin2O+i9SzYLFUewzGO8RpwLRMJ315JKRphqUsiBz3e6y0tjh8ORZlkux5KcoKstlkiEELMLQo14VCIbp/AQjw3Kcjl7HD0S/Y/64/dF1Lpz5MHN/SL3a5Xhwjf7wVeIkxCo7pMsk6yfdkEgHJ4PRtpxtsd9ky0xDV/SpdlfuAsSyXhIHvHLj34kO0QwHkSNH8iXhQfa+vTwymNw74u/8xwL/kXd19k5fRFUNzm0+LI/BpRGLbZpBYY/6LwBwOt4jWsLo6BoHP7xJrdJh9MCYw5Nnqfop97YijJURkwwDs7l2P2Ekei8ns2OSJCJJQtY7V8SxbtQAEbyvWi0qZbHEnQNaDc1CU8TyZ7pMaGdQ4ZZzlrk/5GijAsDid34LgOqblvFLJZVOa5fj05c41/SzJeRrEvraH13HNGqMJwdi2XkihmQCQ+HyA38ZOwO+KorKyVAsn61cfASr2gbAj0sopkWsltjd/t7s9QhgdBT7Ytk+GwIKojd6UqPYZ5YtQRqGzcnoOlWrLZf7AdkZa5UFQqWSLUtbpsP2xgdoOtv0h9fxZn3uvvAJ6lUBkBVLzyEno+vYlQ6jyb6IAYz37lhqzY+3Rm2LcbasPJ4eYJkOZ9bfjzfrczq6TpombK8/KDo/FZVGbZPSmwYtBuM9DN2SQy75Z0COQ8mhuZbp0KyfYTLriWNbF8e2UlJZa9+FVXbk0nDL2ebw5DkqVouhu0+tKj4zJzNxzLcbO6RL0aFbra58U98pb1WmplLWtbf0oynFqcTbrcI5K1SoUKFChd6jKmsqlv7WnDNdLRG9Tc+nkFBxuvsOq79Q0fQQLVmi9Kv4cYnYgHNXXhFXokYIWbhSU03KrkbgWNS9lONVjYabMo9LnMxVSqrOs8cLgiRk2BAB72jh0RqJK7HBeE9eOeq6xWv7v4d9OCStikBskqhZNVOfNE1kON7QLZzaJmsrAqOQj6obhk2t2uH28TMyABtnTkApg5zGGW4CYO4P8eZ9VtuXRZ2OLsLnUeRL18KpbWKVHbbWHhBh+yzInQepl6kANeZBX0URWIz5QgTHg9CTtUCaYrDavoymGgxGezK4Pp33aTd2aNbPMPOHAvKqWUy9Y476Lwh0g2ahKKp8rDxgfePwa9KBXGleYH3lKoOxCBj7izfqe/yFy2B8A7vSEbDcDOwbRAKJUbfXRVA9ENiPHKbqL1x0zeJ09LqsscpRDf5CBKCtN1XNLIIp6TJhq/sAvdMXM+dli7LpsMxAmLVqlyj2Zf3TalPAgpWSShgJlyWMfVGDE/li+EMRoeRKucVymbDVfZ90G/KQdpJVUMVJeMd2VzNHMcdl5BU/eRWWron3wQ/Ee69lQxmrzV2OB9eIIp/77/pxatU1lA99lAvbHyZOQm4fP4Vd6ZAuE0buPtMMOJxjYOIkxKltsghc9qYlLq6f8v6NdSazHhur99Gob8rXM50di/csnKP6Gm4WZM9rngC5jTXVYHtTYGR0Xbi6g82YjiWWbXKY6MngFVnf1XbOcXbjA0xmPXm/x4OXATg6fVHUpZUdKuWW3H/iJCSIPCYzAXTNq62G7k0a9U3UZAlxwrLn3YGbyFE2yzThwof/Oj+0Hci6oYnXI06FO52jbnK3LXdkhytl/AxjYZkNLu98DLPq4dV0JuNbpKrCaKGyjCPcTkK1ssJa+zK6bkmEh1J6YxCjXu2K9z5z0TXFQFMMgagwHW4efpVbx08xcG/I6iX5+kOP5TKh13+RitWiUm4SRb7Evpxc6uJm++E8C/m/OWQfRB4tZzvDr1ic23yY9c5VdM3i8ORZFEWVLqtSUjkdvYaiqOIzKXOM84GWsukwGO1JYLWiqBJ/kzvdZdPBnR6QvAlMm6YJg/ENTN2Wn6dyUMk7otO6RJomWSVXn2Z9Wz7/N/BBp0SROHbWcxzLYvKWvmsKfWercM4KFSpUqFCh96gsXaXyVp0zRSmcs7dZhXP2DqtTTpiNm5jziMgJuTUr0Rqm1IyUuT8kDg0iK4O+KirOVLhQM0th7SQmMBSiFEaBOJhuTDU0RWP71oKru39BuAzXvoZlOqy1L2NlpeOGZons0PA6ahjTcs7iT0XtUZxlHvzApT+8Thj5pGmSQT7F+Hle5tsfXufsxgewqx36o9dYZG7Zm2GapWwMvWK1ULIRdG/el8XPeRVNjmIQ2It96XRpqoFT26TTuki7scN4eiD+vrZJOcttbazeC5BVtmwSRQLNMBjvyZzZSmOHZgZDzeunBuM96cZUrCYgsjQt5+wdBcelksrE69GsbzN09zEyp8Sbn7C19oDMn7heT1TXzHpsrd0PQBQJ122r+4B094buTTTVoHf6EkpJlSBK4A4nQUBM19lcvU9mVTTVwK52WAQuQ/emcBsyJzNOQ06Gr0rYqGU6stYmTROBShgLXMksq4zJHSJdt2SGMK+3idMwc1mOZNk8gKFbnN96lHQpMolW2aFe7TLzB3K71qtdCQbN39uT0fUMWXCKqdu0mzuiRNtqcePwa5RNh/XOVV7b/31sawUtWbL/6AUUReXC9veiKKLqqm53sbKi6NxhdacHErz6yGrMQ50EQyujKQbpMpZO63h6wHR2jK4ssYwKiZFKDIyiqDITudq6SJRCcvcV4rQkMoAnqzTr2xBqOGUdpzGSVUh+4LLeucp03qdW7dA7fVFCcEE4jekyEflF+Tx6bKzeK5zeDFXTqG1y+dxHGbn7EhI8dPcxH9yDOIH4DcduthjKzNvx4Bp6kHDPalMcs5mjmjudy2UiHZ7V9iXSZUJj4GO/vMfzJyOqVot7/uFF4iTEHzWwpxFWuYnuh2jKkmW4wGqOUTa2iCIBEC6bokw8iDyJpWnUt+iPXqOf5bjybTPIXKeN1XsxNIu11iUatU2SbJ8bTw/YXL1XloYHoce1vd+5w6UKjBJ1u4sfuHRauyITG7jSec8r2wCJI/IXYxaBS0lRqZRb0kmzq503smLZ9pp4PZIkFNVoGVrDKjsYukWzvo2hWRl258U3Pq+yajs7rx8rZ05eWdTJ5e67H7hMZj1uHDyOqhqcjK5j6CLDmudt88+Ly+d+AKssqpuOTl/EX7jM36Hicz1NMN7ij7oshgHebhUnZ4UKFSpUqFChQu8iFSdn77DiZQm9vECZ+VQbI148WGGwGXPt9hph7JNEBuOmQZLVYdRvnmB6AYEFWrLEDFNujCzK2pJlEuEnEKcxnJ7ieoc8+dy/YOjeQHvThFaes1rvXGU4voE/6Yt6klCTE1Z5nmir+wCGbjFfDGVmrOVso2UuT0kRjtJ4esDlc9+PXRGOzmTW4+hUTNIts8qSHLqaAzuH7j4g4LH94XUmsx66JrJKiqLiL1w6rYsc9V9AUw28+YkoKa505GTUcpmwCFxu956WpdtWuYFp2FTLLVFsvBhRynImVatN3e7K/JWohGkRRb5wuLKi4f7wVQnUPDx5Tk5zNeqbrHeuMM2umIfuPovQ4/DkOekARbEvyqhzGGka4i9c4TBlzzt3Cy6d+37SbIozinzOrL+fMMuH5VU009kJByfPAsItycGkJUUVOaoMrHp+60NMvWOmsx7zxVCCXvMCeT9wpXMymYmi9zDLBS0Wonw5iDwJUw1Cj1pW4B4nIe3GeQESzpzQm0dPyrqnuT+k3Th3R66sP7oOIEugTcPGm5/Sbuyw2r5ExWrhL1zpGHZXrnDf5b/E6spdIrvVFjDlpZpSNmp89dnfkNskzFyG/L9bzllZN2YaNu9bKzFcKFi6RaO+ya2jrxNm5e6d5i4zf8hmNWG1toHym/8zjfpWln1cJ4p9mvUznDn3QeIUYq3E4dGGqN7yNFFgXfdQFZUz9ZDx5ADrp35GOpmWKap/wnghIc4AZdNhY/VejgfXAFBVg2Z9W+53a+27Mod6yHR+IvNcumaJ8vRKmH9oMJrsUyqpLBYu7cYOa+3LlBSV0xUTp9IWdVHZlKA377NME5rOtnRw9g+fQFMMFqNjtLVNmuYSf+Hyf70fXtv/PZRsgjWXlZXEf+JSn9H3nUjYsJvBX+vVLs36Fu3GDvtHT1KvruEHE8xsurdud+l2rtAfXpfHvR+4DCf7MhdqmQ6L7Bhq1Dfx5n0unPlz9E5fFMDc7JjRNQu70hFw2MxJnXg9ms62cLvLjsyohbGPadTuqF661XtKTrP6GThXVY3MYU2YzAS0FqDpiJzcaebA51lXw7Cxqx05qbx/+CR+4ApHPvLxs0n3rbUH8AOXqtWSDl2nJZzTKPKJk1DkaxcjKlaLui3yofkqhShBF87sIpx+a18uf0apcYIax2/pp5R+a87Zr/3ar3HfffdRr9ep1+t88IMf5N/8m38jf79cLvn0pz/NxsYGlmXxkY98hBdeeOHtfunvahUnZ4UKFSpUqNB7VKUoRAmDt/RTSpJv6TG3trb4J//kn/Dkk0/y5JNP8gM/8AP82I/9mDwB++Vf/mV+5Vd+hc9+9rM88cQTdLtdPv7xjzOdvjMnrO8GFQMBhQoVKlSo0HtVYQTBW4zzJwnwzQ8V/MW/+Bfv+O9//I//Mb/2a7/G448/zpUrV/in//Sf8l/+l/8lP/7jPw7Ab/zGb7C2tsa//Jf/kp/5mZ95a8/1O0SFc/YOaxGXiGYCLlmvTYlDA901sGsTgY1o9xm2FNTbh7jTQ04G1yBJaQ1TKoMZrdMF83mVRVzCXL9Ab15iOBNLIkkSUsr+d+YPGXuH2FURVo9in+PTlwlCj5PBNTF67mly/F0pqSIIq1U4On0Jy3RI04Ry2eFkdJ0w9gW01XSwTIeVxg7Hg2tyVF9TDNbal2XA+uD4GRk29xculXILP3Bp1DdJ04S19mW21x+U4NuZP2QRuHjZ8k6+ZJAv1+XPcTrvZyHyK7KjcujeZLYQsNfJrIddEfDGmT9k/+hJuWRXsVp3jN1vrz8olvR0Mbyw1r5MxWrRXblCpdyS4feZPxT9nJUOndauhHAqiggI+wuXcgZ9VbPb5cuvIJYmc+xIEHr4bwJlHp48LzEWpmHLgQbLdDgeXBNLXVnvZz6QoWQ9gDP/lDPr7+fM+oOiQxUxXBBFPhNPLBmbhi2WQ7OexygWAfpy2aFZ35YdmROvR6O2KbshBdZjKpezj/ovArDWviwxATcPnxDh8NBj7g/lcwhCj6azTRj53HvxRyQseJmhNqJYDGhcPPf9AIzcfe69/Jc4XaswbCmsHS2xyk2J8VBVQwBbswC9Xemwd/vLMiiuqgaLOOHWrISf7c+VcktiO3K0iR+XWC4CdK3CzB9knYhTiYJ45dq/QVOgPol44MItzt7/I0R2jK5bVOvivexWlgSRR2PrALvSkXBhgAtnPkTZFP2WOYJGPoeS6JiNs4GXIPQ4yFAPVauFN+tjGLZcZhZoGMSXXpyia5YcitEyhIllOjjTGD2B7fWHcKcHjKcHcuDl5sHXsMoOO1sfJE4EoPig9xQHG2U6dpVGfQtLr7DSvIBZ9UjVEtHmGgBlbUka+nywG3ChPZNDDqZhY2Tv+a3eU8wzZIpp2LSdcxwPXxHPLxWP72QYmnyoaH3lKhOvRzn7HClny6DjycEd2IscnP1m3X/5/4JlOqy2LlLKlgnX2ndJEPBq+zLN+hmOTl9gMhNYmiASy6ano+u06ttUyy3ibKm/YrVo1bexs6V8EEMcp+M9quWWxGLoGSw4P6ZWm7usd67KJezRRCzb5pgfTTHk0qkYGjAlqqhW6TCc7GPqVdltmvff1u2uXL4PQg9dM7+5L5V3iZIkYTKZ3PETBME39Xef+9znmM1mfPCDH2Rvb49er8ef//N/Xt7GNE2+7/u+jy9/+cvfzpfwrlJxclaoUKFChQq9R1WKYkph9NZ+kpRnnnkGx3Hu+PmlX/qlP/Zxn3vuOWzbxjRN/vbf/tt8/vOf58qVK/R6gse3trZ2x+3X1tbk794LKk7O3mHp2RYPmzbDYRur6qEm8OGtOaZhoyopVQ+mXk+CJZdpQn0SEdll1DDGP22hKUt0u0ZFg1cHE9JWk1p1DUOz0LNQ6VrrEi3nHFtr70PXLAlWHU9uY5kO518YoOsWneYuZdOharVxvSOq5aa4Em7uCDRDKgCvhmYxGO+JGp/e05QUFUO3ZJ3O3B9y1Bdh3u7K3diVjgwk5+iJJAmzIPU+/eH1O+6jYrUk1DFHQlTKLQk8VRSVerWLoVtMZ32SDEYbhJ4MuJu6LW6T4QTyUHAOhgQolcRV99DdlwH3XFbZkQMGpmFLXMN4esBrt77EeHqQhYoPUVWDMBZh4Fp1FU016I9eA5Bw03w8v93cEdupJF5DjiJYZsMQw8m+vLqWwFFdhJi9eZ8g8nCnB8z9IS1nm2Z9m1tHX5c1N6fZ+1J50+BD/rpXGjty4AOQNVWLwKVZ35ZO2Hh6gDs9kG5QDsUFUR1Ur3bxZn0RgF640hUomw7b6w8ydPclWsCb9ZkvhhyePE+cCqcifxylJN5zgNn8lP3DJzCcNjNLYWnENI+mzOanePM+iwx2DEiAaT5skEN60zTh1F8yXCgkaSxqjCJPOhEXz39MOjKaZeHNTzg8eY4kQ5eMpwcSKaMrcOOcyYOdhBvnypAo7Jz5EMHCYrII0EuwvnIFVUkJQo8w8rnr0l+gVFIZjPY46r/A7d7TpMuEOA3pj64zW4xkDdoiC6TndUB+4IqqH0VltbnL9vpDss6roiFQGsDaL/4nsubM9XrSxVl85BaxP6Pd2MGpbQqcROZGtxs7DMZ7BKHH2Y0PEGfQ1KqfYqgm6d/8IKqiMZ0dE4cGhh8xq6hM2hWaJqTjEVsNcWzomsWV3R+ibnclLiN3QcuZy75cJnSaF2QlUcVqMfeHrDR2hLu5cEmXsTy24ySUDlOjvokfTLDtNQzDplnfJl0mLOxUDNAshljlJoPxHr3TlwkzFMXMH0gnfO4PuXX0DYnjCaKZXAHYWnuA/ui6+BzJnOccaVG3u9iVDu6bXMc3H0O5o5fDk4+ySrBh9vf5kNFgvCcB3DkyJIp9Jt4R05n4PN8/+jrhm46DHLadA21zfM3E61Gr3Hly8u3SMopZhm/xJ0m5//77cV33jp+///f//h/7uJcvX+bpp5/m8ccf5+/8nb/DT/3UT/Hiiy/K35dKpTuf53L5h/7tu1lF5qxQoUKFChV6rypKIIz/9Nv9SUpSVFWlXq9/039iGAa7u7sAPPTQQzzxxBP81//1f81//p//5wD0ej3W19fl7U9OTv6Qm/bdrMI5e4elKkvsoTgnNss+/swmsN4YXd90fGY2vHD9XwNQNuuUdB0tTFDHE5ZRRClReNVVOZrcBqA/fyOImbsu4yx/AjB0b6IoKu3GDv3hddJlIounvayMXBRmi5F5gInXw5v15ZVlnIocm13pSOdCuHQViXDwF67MIFllcXX85sxHjoDIS8d1zcLURZ4sinwJg7TKjgSk5liOHN+xCFwJU83dp8nsWIIf86xPvi2azrasyzENm0V2xZ1fDdcy+KWb5T+iyOeo/wLpUpSrdztXpGNXsZooJVEivrF6j8RUaKrBdHZC2XQwtLJwYLLtEIQeYezT67/IYLzH7eOnscoOSRJiZK8xx4C4mYvgzYUrWLe7EuyqqgZNZ5ums800e1+crDoqx0s0apsS5/HmQvm924/LrNt656pARzjbsgYodwWi2GeluftGxk9RRV1O2ZGl0zlewA9cNNXg2o3/g7k/ZOYPpVPjL0QlTbO+jVV22Fy9T0Jxk6xyaf/o6wzHe+wdfIV7Pv5zTBtlFnaKPdQ4OHiSZ659XjoctQwemu+zs8VIvtd5cXycwiIWzpkonBa4Bk01eP1qWx4LS0D/jx8T4OLY5/nr/z/ajR0ms2OuXP6L1PUlJXvB2VqEtjZCDRUOL6+SJipxumQSgV1dI4p0gbIYXeeVD5Xldrl07iPy/VhmTmineYFOa5fBeA9dsyS2IXelc+fp6PRF9o+exK50GLo3pcuOpnB565hShpHIM4+aanC+Ifb10WRf4EhMh0aWS8uzVZbZEHeT5QcB2vYa92wfEyYBvf6LrHRO8GsmkwsegamgKiWIE1rVVQ49DUVRcaeHjCcHb9QT6TZ2pcN8McTNHOXcMU6XiUTkTLP9WbhFGt68z8wXjvfHfvUTGFntlF1ZIQimtOrbEj2BIWDCpm6jaoZ0s4wMep1DZKNIbBNdt6hXu3RXrsg6syD0mM77zP2RBL+utS+LY6a+RZKEVK12ltGsEYaiUmsy62WgZZF7LZsOK83zNGqbIguri/xdjvpQszq2sXdInB17ef6ubDrZMTih3diR+99q+zJKSWXo7jPxeqx3rtJ0tuWx917ScrkkCAJ2dnbodrv89m//tvxdGIZ88Ytf5NFHH/33+AzfWRXOWaFChQoVKvReVZCwDL41FMYfUvytcc7+i//iv+CHfuiHOHPmDNPplM997nP87u/+Ll/4whcolUp86lOf4jOf+QwXL17k4sWLfOYzn6FSqfDJT37yrT3P7yAVztk7LK20pDpPmFfEeXGaqjz80MvoinB6pqGC1pxgVzqE0ZxFMGGpKpysWXjeMTPvhDO3I6LsWLjtKXQqCdpkxsHxM8wWwuHotHbZ6j7AjYPH5XRYFAsg4sTr4Xo9KJs0suLo/DaLwJU1SVEG8cxdk7X2ZTqtXRq1TSaz4yyndJs0FVN4dbvLMqtiyvMt+eTSztajcjK009pF1wQsFGCa5ZOEQ2SKOilPQFPjLKPWqG2yvnKFUkllpSHyWzmss9O8ILJ52ZV6XqOS58WsbILOnR4wGO/JfFE5g2CC2PaO3eXm4RM0suxOXsjszfsC4qrbrLXvIojeyEGpWdVUFPuMJvv4wUROW5aznzx/06gJgOxgtCezLy1nWwJco2wiFpAl4rOFcFkMzZLOU63akROAINzPRm1TZJkysGYYizorw7BZbV+SV/83Dr6aTYk+ByABxU1nG6Wksshya2qWd9Q1S5Y0jyb7MtNmmQ7DyT5t5xyKojKa7DPIaqJy4G8QepmTNpbTwNN5n0XgUq92qVXXhGtZ05hVxGuJVTgdvU7L2aZud2nVt2k55+SUae5W5kDgIPRkRiiMdJI0ppxNuoaRz3QmnODcoV2GIVZ9Qt3uMp4esNLYYRG4tJ1zLNM3vqD8WGRbEiNl7YXbaLpwqNywhDc7plxeYOo2G6v3YjeGomrN7mIaNVkw327syLL38fSASlYUrmdui65btBs7Mg+Xw3lvHz+N9dN/SzyRJAGthGOIbd47fQntTVnFdnmJ4TSxyk1ZgRRGosw7SUJ2th6lP3wVd3ooX1t9ElGKYhxjiR/OuXju+7m7JVAK1brLxFYoayrLuY+maCSpgqoalI0a6TKRnw95jZWuWay2L4t8aCQ+Q+xKh9XmLoPxDQCZT6tVV3Fqm7Qc4ar+4HYgJ24FfFVjnB23AKoRiUxYtUOpUpFuKcDEO5I5yzy75weu3FdUVUcpqW+qylphlOVMp7N+Npn8Kkf9F/HmJ9TtLkE4xa50aNbF8dAfXZfH7yTLje1sPSodzNz5zt3uRn2TcxsfkPVScSJK6Ot2F9Ow6TQvYPzk32Li9aiUW3Jfzlc2XnjtC4ynB9mqQvVP+zp5W7SMkrclc/at6Pj4mMcee4zLly/z0Y9+lK9+9at84Qtf4OMf/zgAv/iLv8inPvUpfvZnf5aHHnqIg4MDfuu3fotarfbt2ATvShXOWaFChQoVKlToHdN/99/9d3/i70ulEp/+9Kf59Kc//c48oXehipOzQoUKFSpU6D0q4Zy9xWXNb9E5K/Snq1jW/PegYUPFDFPWGlMSz+JjWwE9v8RsMWQ0s0hTAZI9Hb3GzB+QelPmVoneqRgzrgxmHHgqYRywiBXOOgJWmIMdg9DDX7gcD66x1r6L2WIogaTHg2usd66Ike9FwMwfMpzcolRSmc56WTj6ja7Gk8E1afMDWXC3w0bnngyUKBAda+3LjDMMg2nYorcxGwyoV7tMZydUrJaEtgKcjvcwdEvCWgWsdCxDxX7g0mntSsRGHkI/HlyTy7Q5zHWWPd88bH3Pxb8olnCzTsnxRCwrKYoql4/y5cocUOsHLqvtS/RHYmhC1yzKpoNT25Sg0iCcopRUGXDWFEOCXCvlFqZeRdcsxtMDRpN9RpN9gc7IQsnVbGlrfeWq6PpbuHLgQNcsGhm0M1/WadW3ZV/mcpnIgYCq1ZJLnvlrjjKgZbpMqFU6YinRdFBKqghu+0PZWbixeq/s4FxtXeR4cI2K1aJUUhm5+1hlR+wH/lAuwZUyTINp2GKZRrcZuDcwDZvLOx/DrnRIkpDDk+cEjqPsYFc6TN6EhUmy5eT8fWg52wRGiblVQg0Vqn6KXe0wzfaTidfj4PgZifYYTm5Rr66hlFQJKw5Cj6a5JEkVWuU2VtmhUm7dsW8ZuoWmLEmTBEURvYuN2qZEISwCl2lXYCPSROFwphGMHC58+ZB0mXC2M+J1V6NdXhInoey9rHziP0JRExq1TZZ/84d48bUvEESeXCIPs2XXfDgjx7bousVgtMdwsi87I/NexU5zlw/f+zpb1ZTlIoZFwk4tRSmptBvnsCsdCXjWS2LIobV6US6LT2dvIFBe2/99gsjj0vmPEYQe+71vMGwaRJ7Lo90QQzNoN3YAiNUSaaLSGcSoigonIwBUJZV9j/mQRhCJYyaHF+fDIiuNHbk9BapGx5v3JTw4in0msx7jiRjQsNQl9WpXLv+alvgMe9/3/izzxZDLZ2/h2Ouic7ZRlmgVQ7PY2fqgGFgxHYF6sbvycyeKfbbWHqCUQX7zzxwQWJi8y7Zud2k3dmSvbpoNII0m+/K4tisdxpMDquUW1/d/nzCay+MgX/rM8T8TT7y2wWhP9nsuAlcur8ZpyK899hwVqyUGbRZDMUwVTAhCj1b9jMQAjSa3/qxfMd+SlmHKMsud/Zl/kuU78lzfSyqcs0KFChUqVOg9qmUYswzeIkrjWxwIKPSnq3DO3mFpCqSquEq1tCWKFXLO0Xh83xEYCTMg8SwqVkuOvr/02v+OGcLt3tOM3H3SOOTWzbPcdAM0ZUmSJqRVS7oTFatFrdohDD2SJJAujGnUMHVbBqnd8a3synBFOiQzf0i13GJr7X3ESSgdlyD0ZDh25g9Jl2I8/LD/PKZhM83wGnGGdChlrg3AOAviLwJXBqAtUzhqjdoWJUWlVu1imQ794XWWmfNjmQ69/osCX6GK+pT8OYWRL928KPJl4HvuDzkeXOOo/zxDd59GbZNh5gTlj9uob8rnVq8KAOVgvIdlOsz9oQzDT2Y9ToavyOB9PkhgZ7iPNBVIkigD0c4XQzx/gGU6aKqBNz/l3MbDjKcHsoooin103aI/fBU/cLnVe4rjwTVMw8bJQv3LZcJW9wEJjc1romb+kLk/xNAtbh8/jTc/BWC9c0XiRXTNwtAsjk5fyvAaW9JlgTfguF4G8fUDl2s3fkcEnCM/q9Dqc3jynHRLgsytaDnbMgidh5g1RWfi9bi+/3uyiivHkOTVPqJqakjv9EUatU1+/8nfIAg9lmnCpd1PsHBiIitFSaA6F0MYhibAxLkT2HS2iZMQy6yL7W86cmBB1yw6dpUoNJi9/ixe5izmVUaxAd1P/M030BTA2c1HCEKPna1HRTjbamHt9+Rt/Fg4eeK1xPixQrQUQwJR7GNpEEQe/uaMNFEplVSu7txia+1+KuUWJ6PrlM06K03BcaqUhVNzdPoS8+x9VBRVOqm5s50PUaxZSzariYDQagpNUyw7efM+/dH1rLZsn3kCsTdl3rDk+5y/x3EacveFT/Dglb8iH6Nhb+BMY0qqxvs31lEVjZNLXZ687RCYCkmiEpgKszBkeTpHLSk0yzH7vW+g6xV5DOWw1LrdldiYfD/Mn18e8s9dtSD0eOXGv5MBe3/hMgrEBs/3q/zzIj4+oGw6+LHCxvr7mM77aMmSc5sP42c4HUXRhLuV7aPevM/G6r2ySi3HffgLN6vq8qS77s37KCWV8eQAQxcoDF23ODx5DjeDEuuaRbnscNeFT+DN+8JN1y1uHX39DVyPblEptyQMW76PkaiOSpfCVRWuu0cU+azW1gSqI8OAbK7ei11Z4XT0GmoGus3d/ELvXRXOWaFChQoVKvQeVRompG/ROftWpzUL/ekqnLN/H2rN6Lc1DlyLNNRwrCb1/8kVOZvARPcVRpN9jk5fZHvrYXHl6aRUrBbVygpfe+Y3uPB8yu8dGsSpuJpPRwIE6mZj2CBAjceDa+i6JfMi3rzPme77BBR0mchKIRBj31WrxWiyz+1jUWoMAuuwzKCiw8ktcRtXQC83OvfgL1xOBq9Ih80PXIzsMfNMWO5Upalwd9KlcFb8YCw3SxT7skZoOu8z8USP2t7B4+i6JSucxtMDGvVNiVWoWuLKNS8gT5KQobvPWvsuJl4Py3QEGDUVr3eUOYc5jHYRuJzbfJihuy8QIpGPOz0QSJLmBekS9UevCeBq9ljevE9JEa5JftW/s/kwk1kvK1C/m6F7k7rdZTLrsdV9v7x61nWL7soVNtfuA2Aw3pOPKSGtWaEyiDqYtfZlDk+ex1+41Kpd1lfuFpVRw+tUs8J2b97HD1zObXyAprPNxDsStU+LIavty8wXQ6bzPnEqMnOmbtNduSJLovN6nrX2ZekyWGWH+WIoC8wBapVVGrUtkcezu6yvXEHXLOI0zDKGAhrcO32J7soVgUDIKpfed+UvMFuMeP32l1mmCaoVgJqStBbogXDK/ECAbPNs0GC0R90W7mr+GnPnZjrrYagmuiHcjByau75yhUZ9Cy2EwWaMpiyJvREtZ0K6JmCmplGT7y1AlIJZnbFZTVASuPHIWfYfvQDA1VZM21yye/Yj+DHUKh2qNZcoMhhN9olTJHwUYLlMMHRLoj7G0wMa9gbN+nb23ojtmbu1lulQsVqsti+zN81qarLlIl2BRn1L/G19Wx4rg0WJxJ9y0tZlfq6ZwXoXC5fDk+d59pX/DwB2tYOiqJSPRyyTGMdqAjDdDPBnNvVXbjEbN9HiJZpSAi/KtkkJTdEpWw3SNJHYHaWkMhjvcTy4JuqXsmMsz2POF0O6nSuoqkElex811eDyzseY+0Ou7P4QNSMV+busZmq0XuP81qNEO2dZaexw++lLLNMEU7cJDAWr3GB3+3up212+9uw/l/VMeea1P7wu6tIa5zkevkLVaklnzaltsr3+EFbZkXmzdJnIzOZ9l34M07Dpdq7I7KyhWSRxQLuxw9wfsli4Mks5cvclPLtUUimbDmsrd3Pz6Ema9W1M3Zbg62b9DJPZMS1nm1ujIzRFAHUr5ZZEFamqeA8btc0M9n36rX6z/Jm0jGLS8K39FCdnb78K56xQoUKFChV6jyoNE1L1LTpnRebsbVfhnL3DGgcK7c4xqQqj/hqoKV4w4fShuwVANFFZP4m4+/wnRF4m9OXfrrXv4pUb/wdR7HPzmf8vr441/MBEVUSB7krzPHES0jt9EdMQsL6t7vvQFDGVd+Pwqzi1TW5mFTGv3/oDWfq83rnKWvsyt4+foWyKabeSosppx9yVW1+5W2akwsx5qttdnNoGcQa/VUqisgVg5O4zmtxCVQ3U7Ipb10XFVKO+KfIxui2n6nLXwTJFhZNT28SpbchpqNx1Oh5ck1mk07GAuq6t3IU7PcDIroqPBy/LK2A/cPEDl+msL8vKkyQUdVZpQhTNRXn7YihfU15TNHL3mflDUR6dhjK3tta+LMGopm5TKbcIIx+lJErgczivnxWM3zh4XLooaZrIEnnLdLi881HajR06zV1OBq/IScso9jPHbz0D59aFExB59IeiyLlsOjKnktfI5KXleR1XDunNK7IMzWI672NXRaYwikVur1RS5XTs8eAandYux4Nr0l1t1DaZeD1uHH6VmT9gmTkP03mfsXdImE3o5lmw1fYlWeqcF76vte/CrqwwmfUYDK6TulVUX0MdlvFqutyWSkk4r/n0pzfvUyq9MW1rVzv4C5FjdCpteZzEGQx06O5z1H+ByEpxejp+XCIaHHKxEaOFCVvd9xGEU9I0oWFv8PrDW0yiEsGkJiDPaxOUBM5deQVNWdKsVO7IrfWH11HUhJXmCLvSYRqqvO/en5RTfHpWS1Sr5C6dyCLVqh36w+sS6Ly9/iAAfpb3C0KPKM1AuIuEpRfhxyVuHHwVP3CZzHpy37u/nbBMYqLuTE4L5sdRPh15/syHUDRDZgcBgqPXCIdi37hn9wZW1YNul/aBuF7XFIWlFxF5U3bqKZ3WLmFTPP8w8mU+UtdEXVJ/eJ3+6DqaKqY/c/jqa7e+JIGu77/nJ8U+aq2IDFgw5UKrRf0vPEbFalEuOzSPpljlhtwena88x/GumAKeVVRm81PGk1tEkQBq5xnHmT+kkQGQG7VNDk+eZWvtfrnvzBdD5oshByfPSmd+Ou+L2rLIZ+4PsevrKCUxNTueHshjZzTZZ5JNsuu6yOX6gctW9wEJ181zppX7Psju9odJsroxP3BxMwfZrqwQJyEbToeWsy1XJuIkpFJuyalTP3AzGPgbvZKF3nsqnLNChQoVKlToPaokjEneonOWFsuab7uKk7NChQoVKlToPao0iknU6C3dxzJ5ixDbQn9IxbLmOyxdAaccoYfQ7ByjGhGGZhJ1ZwSRx+zmBrFaolpZ4fGnfxO9bDOZ9dB9hSiey3C9rlc4OV0hWFgM5wtu9b7BeHJb2uszfyB6LSe3WVu5i1IG3dRUg2WGOeiPXpOwSrEEWMOurLDS2EFTDQxNjJgDsssyCD3ObT5Mp7WLoVl4s76EtpqGLcf4DU1AS+t2l9XWJQG9zTTxehIh4M37eBmGw89QDNvrD3L7+Gk0xZDj8AfHzzCZ9ei0LsoOxFqlI5Y5M3jn0L1Ju7FDkoRyiS9OQmYLAV/VVIMo9qmWWzKgbho2iqJm6AMB8K1Xu3LprF7tUi6LbZpDWSeeGIMPY18uLebDCiCWEEsZJLVUEoMYJ4Nr6Nn2VBSV09FrmIZNLXuOL7z2BfxAAGl3th6hmXVuTrwe3rzP0L0JwLnNhwGolkX/ZX/0mgCsZkuw88WQVn2bchaUzsf/kyTEX7jyucbZUmx/eF2CPAEJSa3bXTZW76XXf5F6NesFbO0ynh7QbuxQKbf+EDoDoFbtEiehBOqmaZIhMBxOBteY+yP2j56UmI1WcwfTFx2WdS+leSKOg2WGHghCj621BzANm7X2ZYnxiGLRV7mxeo8YMsl2r2Qqlolv955m7B3K5XK3GzEKVNLphNNFieMfGBMnAebGDvPFEF232LrrVer6ErM+JU5LbK33SKyYVjlFV5aoiriWHdx3gWmYLX0rKc2yGGDIh3P8wGU0uYVT2yROQm4ePkkU+3K7hRnaJh+eGbr7uBkEFcSS5Bl7iaUJsGfJ1tGUpQQUT71jCVV9/2pCSdX46NV9gsiTAOh6tSuGM+wuna37iOwyJ4NX5H5NkhCe3MRQTc7XxOMoyZKVmyPMMMXQDJbRUn5mmT/9V5lXNB688leoVUWHZ9Vqsda+LI/terUrlvEXYshhmSYoJYWTwTW8eZ/Bzgpb3Qd48bV/w9wf0uicR1U0/M0ZqxlyJI1Dms42w4aGZTo89dL/i+7rQ+JUDHtoqskiG17J8S790Wv0R9fla8u7Onv9F+W+niNzlJIqP/+m3rEEKwehx5NP/wZl02H/6Ou0GzsZtPsVRpPb7Gw+Qn90XQ5VqarBeHIgP+/yTtzDswLnMxjvMc06doPQw81wOhOvh3HrJgcnzxGnYnhkmQ1clRSV/vA6IHpWp97xn/6FUui7VoVzVqhQoUKFCr1HFccJcfQWlzXTYlnz7VbhnL3DamQwyaqfMp9X0fQMEDqsoqoGtrfEmscYK+t8+KGfYmlobKzeS2THVK02SRKSpgmno9cB8EcNFgm4WYB14N4gTRMmXk/UhSQhp6PXiWKfMBLVKbnL5dQ2xJVdJILjR6cvEEU+p+M9Geid+0MJsQURXj0+fTkLp2cj6dVuBjzdpHf6osB3aBa90xcJI5/5YkicPe/cKYuTkDDyJaw2TRPsSgdNNTgd79FdESP4hm7RqG9SsZrZQMFUQHYrHV7d/z0Z3B25+xKqmofXRVXMsbwCzYcDAMLYv+N1mbothxEmM1E3lGTbIH/db4BzN2UNlWU6uFlt1cTrscygqYAcCKhaLZzapnQYwtin3TjHSmOHo9OX0FSDtdYlCX89zQYFRpN9ZosRVaslt93EO5KwUdOwaTvnZNBbKamYus3hyXNMZj2MzBHTNUsORCglgSLJr9iTJMSdHlAqqei6xc2Dr5EuEzkEkDun+T4VZm7WaLJPnITSMZgvhtiVFYk3We9clfVQ1WzAAGCleYFL574fLUO55FKskImtsIwidre/lyD0BJYi8umPrjPzh4wnAio79Y4FQqXc4nT0Go36FpGX1fMkCcPJvkAolBRWmruoto9qvLFs4xjwly6P2XrgL+DVdCrlFgfHz7Jpi+ej6SE1I2WtcucXjlpSiVLYujFhHghQcRTpjBZif7ONhHm7iqmLY2sRuESxz0rzPN68LyG/g/GeHPQIQg9NFViFqtWSzu+alaIpS1gkEKf4iUJ/dJ3J7BhdK6MookIsiFPSwOejmwHN+rYEV/dOX6JV36blnOPa/WW0yQzTqGKVHUqKirG+wzIMUBWND6wF6HqEX9Eo6TrWNMBQRSVcGi5om0t+4SOvAvDS678ljsNIvD/7R1+XAOrcAY/TEF0XOJ9GbZOKJVzeleO5dIYUReXVu+viNq1Tzmx8QFRg1WzSVpPAQta1lXSd3e3vxbdgMjtm7g+plAVUNox96tU1Ua+WubeWKVAXdbsrP1NmiyEng1fEcI6zLUDZiioHGNJlwqVzP0AU+9x94RNEkc/MH9JunGMRuNw6+ga6JnA+dqXD8k2udMVqCdht4NLePGB3+/votHZxpwcCDK5bGJmjqakG6ekplimg47kD7Acupi4GmaLYlzigd0JJHBG/xZ/i5OztV+GcFSpUqFChQu9RRUlCFL815ywpTs7edhXO2TusaSQ2uRmk1GoT4sigVV1l9xWRdXKmMbq3AER2oRTGHA+uoVoBul4RBcGxgKQGsyplV+OJY5NKuYVd6dBpXqDbuSLhsvPFG6XYmmpQKbekw6QpAhCraxZhvGC1uUu57MjKFU01KJcFzkHXLKyyI8fDR64YLz8eviIzHYPxHp3mrgTGdpq78m/tSodaVYyQVyxRSp0jHGQdUIZJqFVEpuXNheiN2qYo2s5glTN/yF07HyeIZlStFrpuEWZgTl0T9z1y97HMOqqqk6Zi3D6K/DuuUvOr72pW4ry19gB2pcPe7cdZae5i6BbV7Cpdy2CaOQx0vhgy9g6pWC1OBtdIsqyVadiy5DrPCS0zsGquvIT+3MYHsCsd+qPrEh4chh6GZrG19j6WWWZrvhhKh3GlsSPrpgbuDZGVy9zPKBaYgxxoCsJB1DIXK10mhKGHH0wAKJedO1y9ut1lsXCpZZVWOfYkL4KvZbmiHCpq6jatDLhpZBDaMPYZujdFzqYsoLGno9dwaptMZz1eufHvaNa3qZZbeN4x514Zo5d9tDOnhE2bVlaenWd5ctSKoqhsrz9Id+VuKuWWdIYn3pHcriXTxNDEvtCsb4s8T6Ky8moZTVlSMk3cELZrEVqYYO8dkS4TnNo6FU3kvFQ1oWakVLQlTl+4Yn6skGTb6OiMwNQoioqivpF/BDhY19FUQ2acKuWW/O/JTGAuGrVNuf/kTi6IDNrrt77MQ/f+NbZrMevVJWgllouERVzCrnRo1c9Qt7sSubFIYBkuKGslDo6fkZiHC2c+JJA673uU+uoJYeBJ9yauV1nYFssgIEljLrRarNWyHJw3IvWmWIYNcUp4chNNWfJDu5eYVVTuu/yXGIz22Fy9Dz9wqdtdlqkoC7ez4zbPL5YUVeYP8307/1/TsClvHRMmARUzxDAFoDg2VLyaTsleULfX6bREFm11/R5sb0m9usalcz/AIhCVTCN3X2BLdFGNllfLJYnYD/PtlCQhq+1LbHUfkHVOOdpiNNnnww/9XfofvJf77/pxLLOBoqistS/TcrbF50aGJvGyHFmntSs/a3K3UlMNNh0fPxhL57c/vC72Zd0WKI7s9Y+9Q6bzvlwxqJRbshIu/xysvgkPU+i9p8I5K1SoUKFChd6jiuOISHlr05ppmhROz9usYnu+wzr1FSxtiRkkXG6FLBMVNUyYNkSORA8S9m78PkqSiszUqk213KJc8RiOb8j7UVUD1TOo+imvuKU7slS9/ouiPDgV+R9Dt+Rk5nwxpFnfpm53qdtdZgtReN52znH7+Gl5FZrX/CwWLrPFiMF4D7uyynhywPb6Q1SsFq36Np3mBVnMnUMv86Lj/Cozin2C0OPw5DkANMXIrlhv3VHwO86yW9N5n/nijUqbvBA6in3KpiNzVP3hq6yv3C0Lh5WSSss5SxCJ+2w3dmSFShT7NGqb8j6j2Bc1TtGMalmUZDdqmwzGewLUaq9lGa+ezEYFoYehW7y2//v4gYtd6bC+crcoRE8jms42o8k+3rzPIqvlOTx5TgJ5K+WWfJ5B6NF0tiW8c2P1XnlVneu1W7/PavsSAM36NrOFKJWezvusZnU19eqahOB2WruyhskPXFkPtNa+TLO+TSmr8KpVu7Sdc8QZkNadHgAi4xNmDsHE68ms2lr7sszXWGWHReCy2tyVzth4ekAQefROX0bJplPzjNnpeI9SSaVZP8N8McymPCdMZmIK9bVbf8Bk1SZaWFQqM4yRh2k5zBZDJrMeo8lt5oshJUVM1VlbF+WEce7SpKmYWLTMQGxnq8ViISDDOZR1VlFZtRJQVeIULG3J04//97KQ2pufEqUl4rSEN24RZZOXbifBj8HSUsI4YBKVqM7F/nDPA/8RUWiwWknoD68TpyVSFfn+7x08zsC9IfN3zfo2qmrgzfsSQJpP5M4yh3u1dREAS10Sp0u5L1xuhjx49SffmLbMXudaVQdVw9QUKlaTTmuXtfZlhu4+YbzgZFU4f6blCNcsCdHCmK/dFttFVTTa9hr1fIhza4PZ/JSKUSV0l6TzGZoCoTtAu3qL0WSfS+d+gBsHX2WZ1aHlzmu6TKSb1aht4k4PObf5CADTWY9SGBNEHqVs/2g5EwzVZNNOSOMQx+6KfaatcuGcmE4eTw4IvBGBbVKdJ5irW7jeIaXsM6ekqMSpeJ8XgYuuW4zcffxsHz23+bCcVJ/7Q/rD6wSRcKa9+SnTWU+4vqYNaxNGPyHqtjbX7ifKprFbjqjbWm1fol7tcjy4xvHgGhOvx+lIQKzz7KWuwPrW++Xx03S2RSZ2ss8w+2zANFhfuVvmXJWSyL55sz4nw1cxDZuWs41jb/wJ3yRvn+I0IUrit/RTLGu+/Sqcs0KFChUqVOg9qiiJ37pztixOzt5uFc5ZoUKFChUqVKjQu0jFydk7LFWB87UlSrJEV5akvoGiqgwbmrDJV0w21u7jdK0iwvE9EcaOI4NxBjJca18mSUKURAwWHE8tET4dXcfUbRGOjUTfW96zePHs92ZojJEM1QMsFq5EcOxsPUq6TPBmYhku77F84K4fR1MNnn75f8E0bIbuTQnQVDLQbBT7MtRu6rZcQgSBqUiSEKe2SZjdZ5omNOtn5HNNEjF+P/eHrGTBWdOwcT0Bfj23+YhEEwShJ5dSp9lyaj5QsHf7y0SRLzst84GEKPa51XuKIPLkEMJW9wG5vOdODxlN9mWo2dRt1tp3yfH8dmNHACsXLk5tk8nsWCx5ZoiLVv0M3rxPrdrFDyYYWfdoxWpRLYu+PCPDC+SojyQRkND1lSvcPn4GQ7e4ePYjcjkxXyLK0RXu9BClpMphjXq2DDQY71GxWkznfXTdkpDNHMFxu/e0hLjmGJUg8jgdvc7E68m+yiRbigTksnMUie2dQ4NH7j6VcgvX6zHzR4yzJdF2Y4dW46x8fVHsC2RD9j4qioofTOi0LtKsn8GudDh/5kNcOPPn6F2MSUONxaJMGoeM1kXg3tAsdrJlqSjrLFXHE06GrzL2DkmXiVwSTEOfn9j1WcYx/eF1iW8omw6qHhKrCDRFkrBTF8uF91z6i4AI6Du1DSxtiaYsMaseurLEytYVTueGGAhI30B/qGrC6V8YUK3OcIwl3c4VZqFGa5gKnEQSYldWALi29zvZ/vcN1jtXBfpkKUL0+ZBAkoTi9cx67N36kjhutOzjWStxxqmiNEX/YtPZlhgbQzNI/SkNy5HHW8s5K+CzzQsoCTj2jNsXGqTLVCxtTsYczjQIwuz9UpjHMKlpqFmBtVJSCGfi8a+2YuLxCZ3aHEOr0PvEPZzfepSy6dAfXpdLe+kyYTw9wKltomsWO5uPcG3v34rlRs1iOHiNZn1bwoub5QRV0diqLlHsmlh2T5ZYPtSNJftHT8rPGNP1sfZ7lKYeteoatQwo+8gD/zGmbjNfjFhp7mKZYsAF4Mbh17jdewqAMPJRMwi1oVmUFJW2cw670sEqOxxcbPP9dx/wAzsus/kpq+e/h07rEhWrxdHpS9w6+gbtsw+gZPiNB6/8FdntORjv0axvk6ZiCXy0WmWr+wCLYCLiGJHPuY3vEQNftU1IEomhqVhisOV4+IocTMnBzTnU+tutKI0Jk7f2Uyxrvv36rjk5+6Vf+iVKpRKf+tSn5L8tl0s+/elPs7GxgWVZfOQjH+GFF1644++CIODnfu7nWFlZoVqt8qM/+qPcvn37jtuMRiMee+wxHMfBcRwee+wxxuPxO/CqChUqVKhQoW+f4iQiSsK39JMsi/qmt1vfFSdnTzzxBL/+67/Offfdd8e///Iv/zK/8iu/wmc/+1meeOIJut0uH//4x5lOp/I2n/rUp/j85z/P5z73Of7gD/4Az/P4kR/5EZI3dYV98pOf5Omnn+YLX/gCX/jCF3j66ad57LHH/szPN78g3nVSFCtEMQxa41gEha0SSRwwsxSUksp0ckjVahHMqlw69wOUSipuFnLevrXAmscsFmXmi6GsT6mUW9TtLu70AF2zKJsO/kKgCEqKSrdzBT9w6Z2+SLdzharVYmvtfm73nqJV35Y4hnyM/dbRNyibDmsroj7HyZyyeTa2Pp5klT7ZVWDL2WY8PZCDAfOsPsmb91ltXZSj7XEa4s1PadSFy5ZXEk1nfTkOP50Jd+r6/u+ha5YI1CLG1pXMmRlN9mWtSqmkUi47EmGQ31ZVDVaa5wGBi2g3djgeXGM669FduQu7skK7sZM5HmJkvj98FUURkNyyYUu0h6FbmHpVjNkvhmys3ku7cZ5GbZMg8rArK1TLLZZpIgGslXKLWQahzLEfIDAhr936EvXqGv3hdV6//WUqVgs/mNCobUqIZpKEdJoXKGf1Sv3Rdeb+MMORLCgbNmE2GFG3u1imw1H/RTG+r1sCsbBwmfsjDo6fQVMMzm0+LAck/MCl3diRrle7sYNT25BVWCDQLqYh6sQWgUujtiFxKROvJ3EtQSScofx+B+M9yqbDuY0P4M1PUBSVzbX7aTV2MM06aaJAouBPHVSrij2NCDPEycwfykoyVTU4Ob1Gd+UuTF3AXoPIo1bpkAY+D66XIRH7TRT7TGc93v+Bv4FR9lm0Qk58DVQVvQRaCQynza3DJ2Rll66AH5cwyz6vuTqWCqoVYGoJs/8/e38eLklal3njn9gjcl9Onjxbndqruququ3qlF+gFhRZxUERnRsFXRGXwUsZd/DmM2ijbqCwCI6iAssjlMKPiOL7DCwrTKE3TbTe9VC9VXVWn6tTZ85xcIzP2iN8fT5woSlApurrbZvK+rvjjRObJfDIyIjLifr7fz+2rWHoOgPzAxw80RqM8USTcjfnp6zDUCMOL0wYDsZ+W8k0MvSBgp+VdLK7+QwaaVRU9a1jZbnKRJYW1zceYq5RpFoXzJqkyiqxyZleOtc3HWFp7kGb9MhEl5joZTNbQBAh5orafYn4SgJnDAh5rN3wqhRlMs8zi6n30fYnE8/FDFwkB5h1NuWhbPSyzCoBZiiGKUGSJyO7SczUsq0plejU7rrLmjMDGTx1WLxCg4q3uArNpo0ucRJh6kZXWMREx5bbR0vOgE0G3brHVWcAuahh+zO5iIjAt5XkeeuLPWFt7BLVUQZIVijsPZ40vUaVE3qpRyjcZpRgRL7DTc1MsgLFp3Nd2U5Dn2yytPcja5uNZw8hoyuXVh01umfHo2auc2ZWj+9LnE8cRumpyw5Wvxt9cpd0/l7nCcRwx1Th0Hm2UNgWsT0usth5DU00ANM1ifet4Fh9HKH5borQhx/NtKoWZLAat0z+HPWzR6Z/7Jn9hxvpW0HP+4sy2bV71qlfxh3/4h1Sr1Wx9kiS8+93v5o1vfCOveMUrOHLkCB/5yEcYjUZ84hOfAKDX6/GhD32Id7zjHbzoRS/i6quv5uMf/ziPPPIIf/M3fwPA448/zqc//Wk++MEPctNNN3HTTTfxh3/4h/yv//W/OH78+LPymccaa6yxxhrrUiiMwkuQEDB2zi61nvMXZz/1Uz/Fd33Xd/GiF73ogvULCwusra1xxx13ZOsMw+C2227j7rvvBuD+++8nCIILnjMzM8ORI0ey53zpS1+iXC5zww03ZM+58cYbKZfL2XO+njzPo9/vX7AATOciNDnByak83lEw8jZRElPsugISqoCm5ZjcCqhXd6cQxxzzT4ow9K++QwtWRbyHf7YpUAyauPPeDj8207tx1+uJejS9kN1hboeH28PWBXFAa5siLFiWFOxhi0Z1HyO3neEW/NBho3NS1GDJ4r2SJKLdWxSgTXuN42c+L0LQU3CpmQb+Amy0n8xqxgSocyJDbDheT8TuyEoWrVQtzYtW+eE65eKscJPyDRRFJ46jDFGwDbrNp1EqI7ctcCJfHUMVOqiyqMGzhy0RLWPWOLn4d+SsGisbx5BlhU5fbNcs4HiwzDDFEMB55EffXsN1xbZd3Xw0w3BYRpn+cC2r6Rq5bTbaJyjkGqxtPkac1oT5gcBWlIszYjuZZWRJoTdYplHdy1Z3IQt83sZbiFBlEdG17YoVC03aaS3Y+uYT+IFAjmwHnm+HrY/SOJpioUmtPJ+BfuMkIghEnND239t1QvXK7ix+y/8qlIkkC4et3V8UDlYaNF8qTLF/5wuzzyGn8Vz2qEX8g9/HysYxphuHObN0DwN7TQCL9QCUmNjRCSydzukHRHSXKsa/HbuVt2o8dvL/BaBWnge4AHBqaXmkXI6ZySvImTUm6wd5+IFP4LvnESWSotIPoOUoOFsr7Nv7Iqw02B7I3Jx1R8aJYLK5iqnGGGpEIYWrPnlUFKM5/RKuaxLEEt2rL6dqRlijUOAqUrdTU60M2LsNP+4P1zI0zHbQvJ/WUlbL89Qru9EVA101IUxIwpiBayPPdFKXdjet9pMCWxMnJJ6HH3ls9c4IrIxmZeHqNzTDLJB922WUJZWSnkDfxglGBPYATU7QTAe3WWWzcxKiGLUgwchBlcX/K3LM2eV7CHydU+f+Loto2o41MlNETeZiywozk1cKhyvyWVr/CpZREvgcs8aOfEIUhyz0JVxDFg56JOoBX3m4np3/ZptHWVy5D7+3BabB8oyZoXvU/pB2fzHbB3TVQk+PpUJugqX1h/B8m1pZ1IStbj4uzp2hk9UEhpFPqd5CVwwMVaZe2UXcGHLo8Al6g2WGToeF5S9xYuFvsYwSc82r6PbPsWv2Bra6C8RxhGkIt/51hz3yky12zd6QOdHbavcXM6fxyoMvp2+vs7T+EFEKmZYlJZvdsMzyM4fSCHyCp7h89UzTWJdGz2mUxp/+6Z/ywAMPcN99933NY2tr4mKg2WxesL7ZbHL27NnsObquX+C4bT9n+//X1taYnJz8mtefnJzMnvP19La3vY03velNF/eBxhprrLHGGusZVOT5RLL3lF4jCccXZ5daz1nn7Ny5c/zMz/wMH//4xzFN8598niRJF/ydJMnXrPvH+sfP+XrP/5de51d+5Vfo9XrZcu6cqB9wI4kgliistDnTV4gjhYHbIxmNRMePAnK1huZFNKr7WNt8jL69itXqYxSqmGYZ1+1h6AUePvGXLM+Y7DllZ8BRRdGzGottVytOIoJQREJFkc/QEVDPXFofoqkC3DhM3TZ71MoCxVc2HiFnijv/IHCyIPQgcGjWD9LpCbCiquhsbB2nUpylUpwRLmAs6s9KhanMjdton6BWFjBOWVay6JfeYAXX6zEYtWh1TtGsH8QPHTr9RXTVopRvEoQOpcIUjisAq2Yad9IfisDxVudUFtT91Y5LMdegWT9Izqyx0X4yczL8wKE5cRnN+kERVWWUiCIfKe2ILBWmsm5Fe9Qiiny2ugtZXVacblsRhL4JkMVjCUdsmkKuwcjpCGdBLyBJCoM0WF1NgaTbr1fMCUdwu7ZOdIJuZl1hpcJUGpI9QZJEnDr3RfF9p51yYexTq+zMoo62Yb/bkN6R206/n1k2OidxvR5+6Gb1YZ3+ooAbp7VE2x2vUuqCiaDxk4SRj66Kjtsk3u7+HIrPkG+Su/Imnnf01fihy+F935WBiSvTq+SsKqutR7FHLXJmldFoKztmZMtHc3w2tk5kQdL2aDPbFp5vc2jfS/F8O9uO27VEkd2hYJZJNre47PJ/Q6e/iOP2OHL9D8F6CbOtYykxSRTS8yXanoxpVQgKJmF6TDih6OhU5Ji6kRDE0MidzxxUZBVNAs0UxxKRjGm6WRi6JsOZXSYjt0O1NI+uFxgM1+gNllMHtUMY+8RxlIVhd3qL2T4qy4oAqLo9Krk6ipzeO4cJXhgzM9lirnk1UeSz0X6Sieo+7EA4TX7oUSnMUCpMEVVKFPOTHNn/Mr73gMlwlKMyuc5c82qGTput7mlMNSHpjVBkhSQKsVQwTIfFPRIrG8eIfI8khMTzMxju5bUgc49vu/Hn2Ng6nkW1be8HQ6ct4ohSEDAIevyhfS9lae1BgKybcs2RBATXBLsgZa5SvyBTUvI065dRKc6xtvl45ixtNnMEunhNTbX4+/v+K0nqoMN5qG8U+bhuj2p5B0HokLfqWEYZyxBh6/XK7rQGzE1r/sTFiakq1Cq7KVbaqLKoTz2464XMNo/ieD0O7/sudh95KeY1t7B0x14KuQbV8jybnVNM1vYzU25w2XSHqV/eh5LGvRVyDcLUUW/WD0LOYuW7ZQw9TyE3QbUs9hVIY/ZkjTDyL+ieHuv/Pn1TF2d/93d/xw/90A9x0003sbwsprs+9rGP8fd///eXdHD/nO6//342Nja49tprUVUVVVW56667eM973oOqqplj9o/drY2NjeyxqakpfN+n0+n8s89ZX1//mvdvtVpf48p9tQzDoFQqXbCMNdZYY4011r8mJWFAHPhPaUnGNWeXXBd9cfZnf/ZnfMd3fAeWZfGVr3wFzxN3HIPBgLe+9a2XfID/lL7927+dRx55hAcffDBbrrvuOl71qlfx4IMPsmfPHqampvjsZz+b/Y/v+9x1113cfPPNAFx77bVomnbBc1ZXVzl27Fj2nJtuuoler8e9996bPefLX/4yvV4ve85YY4011lhjPRclJRFSEj6lhedwQkAQBLzwhS/kxIkTz/ZQLtBFX5y9+c1v5gMf+AB/+Id/iKZp2fqbb76ZBx544JIO7p9TsVjkyJEjFyz5fJ56vc6RI0cy5tlb3/pW/uIv/oJjx47xIz/yI+RyOV75ylcCUC6X+bEf+zF+4Rd+gb/927/lK1/5Cj/0Qz/EFVdckTUYXH755bzkJS/hta99Lffccw/33HMPr33ta/k3/+bfcPDgwYset6kkOJGwr001xusXieIQ216nUppj7rIn8TaWiBWJ/PRegsBhevIIcd4icoaMnDbV8jxDt0OpMIXhJ3TrFr3BcjY10mqfZK55FY7XE7BKrUC1tAPPtxm6HWrlefwUIqsoejad1awfpFaeZ2byCvJWjWqaKffVhcaV4mxW7L++dZw4ibKpuKnGoWwKDcimOTa2juMFdgqBdFnZOEbfXstyNTXNolycQVF0fF+gKNr9RTq9c0xU9+F4PQGJ7S2ytPYgSSLAr0kcZaBGAVk9wFZ3gSRl7lhGmSjysxw8L7Ap5icZOW00zWIwXGO19Sieb9MdLNOzV9FUi0Ztnyi2T6cCG7V9ouDXqmGaZcy0MDxn1jL4q6HlKRdnCUKHMPIZOQKx0ekvMjN5hEphho3OSVRFp5ifyrIytzED2w0G28gITbWolefJm9UMGyBJCnq67UXxvXBuw3QKF8heb6u7QNdeYZAWn292TmIaZU6d+yJL6w8BMHQ76KopEBxpM0nOrCFLCqZRzqaZDL2QATznmleRt2r46bR5f7jOVneBvFll5LQp5pv0iyqyqovP3D6e5VfqWoCi6OzZ8QKuPPhybGcTy6wQ2RayHlKqt4h0lb3ztxDGvoDOKhrV8jyaJgr/c1fehCQrGdYkjiMct0fie6iyCsUCa98lsCCGXqBfMVAiiJS02D+KCGKBszlxkwDrbm9fVRaZllEsTotOKBHGUDcTTDUmikOCBFQ9hbfqYspTk+GJowXKekJSdrn8de8Rxf5p7udc86qstKCYa9DeBgv3zl3QMLO9vWVZQY4RU452QOJEVHM55gqxmL6OfKqlOVyvh/lVnNKR2xYwW0Xi+MLf4Lgdpkpz2N0aRctldfNR8R2nWbZSOUfZqiPrJk4ImhaQr2+RJBGKbiCZMoQRXhiT9AeUNHHe2tno0J2tkDNr2KPNDLGiKjqGXsiyQ+uV3eQqU2iaxURtXwYGPrf2AL3BMnUzoWiWedVBER0kSQrFtR5KBO7GOUZuhyjysmNmONpkaMlcf8MTTDUOcW7tAXJmjZtf8DMAWYbl9vGz3VRSr+zm5OLfMXJFScY2cFngdfaKY7UQUjPrDP0Qb+cslzWGOKGEk5ZaFKwJphuH2Xjx1QCs74zYsfMssiQabSbrBzBvfjG1fIPD1ZhfvtajWprLkEOyLGDdrc5JGNhcs6NDELoi5zdw8NPvPoyD7FzwTElWYpSnuMhy8i+/0b9SaZrGsWPH/sVyp2daF31xdvz4cW699davWV8qlf7VgVnf8IY38LM/+7P85E/+JNdddx3Ly8t85jOfoVgsZs9517vexctf/nL+3b/7dzz/+c8nl8vxV3/1VyjK+bPen/zJn3DFFVdwxx13cMcdd3DllVfysY997Nn4SGONNdZYY4011iXUD//wD/OhD33o2R7GBbrobs3p6WlOnjzJrl27Llj/93//9+zZs+dSjeub0v/5P//ngr8lSeLOO+/kzjvv/Cf/xzRN3vve9/Le9773n3xOrVbj4x//+CUZYxjD5ZWQk0aBqulwrqdSMMuU6gWOnfxrDuX2YNfncFSZUU4VUS9xhOKHYOUJQlfEEQUO9rBFSZFYn5a48uD3cuLM57BHLeqV3fihQ600nxV2h5HPdOMwqqKzsnGMnFVFlhR838ZIAavrvp0Whp9jauJyZFlhkEYTbYM6ZVlhaf0hZlJQq6LoDOx14cD1FjO3qVSYygrmqynYNo4jClY9i1vqDZZxvD6WUaKQa9Dpn2P37I0Z1LSQm8jwFAC2s8Xs5JUMhmsYegFNtbBSF8sPBLBUlhX69hrV8jzL6w+TMyso6R39KC1WBjJ0hCgWFm7Rnrmb2eouZEiO7Tgq0Ryxia6amEaZkdumb68TBMI9Khdn6fQXs6J1yygjqxZLaw9SLs7iuAKMGQQizmmzc4pCbkIgK9zeBQiU7UaHSnGWVlsgS7axFmubj2PoeVxvQBAIUKw9amURVdtxVduvtd2YMHTaFPNT6XbLZ46f79sZdHe7AWKru4CmWhnuZDsWq1SYotNbxE+dABCxR4UUnJmzaphGmaVv3w+KT7SiU8g3qJR2ZHFKw2EeWVKI4xBVMcjnJpALRTRHhpJPHCn0KwZVp54VmG/DiM+tfYV6eSeeITNy2hy47Ps4vvA3lIuzuF4PSTcAUCsTzFeHrAKbnZPoewKknkKlF2OqMbKcxwklSlrMjj0LKF8S+4+hFQhjCBKJwNcJYhiF54HRtn/+Zi2OFBQ5TvcjDUsdUZkTtbea6ZDsEPvvdpH6+tZxPN9mqn4Zg1GLYl4UzGuqRatzihlNfHeN6j76w/T/FBk9UrEHAUkIjeIMmryIZVbE+6SF72VTQzLEZ992O9tVnUZtH5ZZRQIUzadn57Mmju5gmb2lK6BUQFcN8CPWRhK6FrC1Ni3izHzhTNK36XgSRBE1M0ZRdOYKCUHXy5o68qkj5ri9tImkz5UHvofHTv6/PHl5Cf1+C7cpntfuLTJZOyD2Ny1BjmH/5GVEVshm5ySbO6uoEcTOgPrOq8itV3n4xF8CMBiK2t8bJgPW529laf0hBsM1Tu8t4N1tUy7OMhiKZoDeYAVF0Wj3z2FoefJWDSlFfGyDmyfrB7Jzy2sPB/i9LVoOrOyJudpMGIViO9/wOy/k+JuOs7r5KBPWt0GvR3ltCnZCId8Q4FvfpnbrkzjBNC/apdF3Q04vCdRSHEfpeVcggxLPBwvq5V04qQNczE/hBTaGls/OV9OTV/DAY3/1lH5vvhGpiogteyqSk+eucwai5OmDH/wgn/3sZ7nuuuvI5/MXPP7Od77zGR/TRV+cve51r+NnfuZn+PCHP4wkSaysrPClL32JX/zFX+TXfu3Xno4xjjXWWGONNdZYT4MU9RJcnD3H+wGOHTvGNddcA/A1tWfP1nTnRU9rvuENb+DlL385L3zhC7Ftm1tvvZUf//Ef53Wvex2vf/3rn44xfkvJUhOqZsTmziqjEMqDCB2VSFe59vAP4pzv3Cc3CunaKwDEnsuZvSUa1b30BstUijOM3DaeuDmnUt6R1ZNoqsXUxCHa/UWCFBy6HVje7i0iyUoGDS3mRXj20OmIwObYZ7J+QDhH7ZOosp65YBtbx3HcHnmzSi+NZ0rSAHM3vWsuFaaYqO5jq7tArTRPpyfGYI9aAiOQ1ldt16XVy7so5qcEKiLfzOrDJFkhSUT8USHXwNDzGFo+A3sWcg1Gbput7oJwEVOcx3Z0VRA4orV98gqBekjr24wUZwFkUNvVzcfJWTXOrT2QIS7Wt45nDl8SR+yZvZFCrpGBWatlEd6tKDprm49lsEnX69OcuEzE1Zhl1jYfR5aV7LlR5JOzqvSH6xl4tl7ZTRj7tDqnMkdrrfUY041DuJ4Ipo+TiPnpayjlp5is7cd2trKawe3InyBwMuhpHEeZS7Jdo1dOw+jDWLTpx3GUfabteKdCrpE5cIqio8pp5AxgmmU6vXNUirPMNa/KwJsArc4pADRbhUgmVmThYJbmhQvQOEwcC0fv+MLfECcRaqlC2O+ScxJ0U7xHqEokunpBDd3QaTNR3SNibp5coV7ZTTHFs/SHazT/fz8AwFJngSQKCGPSKJ8+1cY6sQLdsoylJiRRSN0UP0SqnPDIE59iq3sGgCA+fxLWZAhi4XQHX1Xr7IQgKxG6FiApEfnciJIG89Uhm674f1kRv1RBGnzfH65ncWMDe/0CMKmmnY8k24YvR5GPH/kkUchoA+IwQZVVdhVjJFkRWAlZwQuGIlJKURj6ApkSRj6RIomosFKFBFEjp2kB9coeuvYKpfSYp91DV3SSKCSIJUw1RnJ0XK9H0SwjaRJJ16GoJaAoWEqCPWqxvxQhDx06/eXMuXY8gfc5uPtF1Eo70vivWagNGTptPF1GUy3yVo0gdLhsz4tZdyQi3yNyHFCEK7c1FTMsgKRbtCdMLLOCLCnkzRozzSvxGy4dT0FuNLGMktifdRjY61ng/GT9IPXKLlRFZ37qmgyWuw2uDeMA0yhx9VWvQpIUwshnZ30P4aDNhqNyaP9pNEnUHEaRz6sPusw0rxT1am2TM0en0e67l8mciK7bjhcr6WK/KhhlSqY4R22T87eP0yjywfU53tYz+LOmWhlWaBvR44cOT575P//sb8lYl06f//zn/8nlc5/73LMypm8KpfGWt7yFzc1N7r33Xu655x5arRa/+Zu/eanHNtZYY4011lhjPY1SZFCUp7bIF2kuve1tb+P666+nWCwyOTnJy1/+8q+JQ0yShDvvvJOZmRksy+L222/n0UcfvYSf/OtraWkpQ4Q9m/qmIbS5XI7rrruO5z3veRQKhUs5pm9p1SyFjqvQWLEp6zDMKdjhEC+nUftJh82RjlM0WJ3UWNir0ajuRZYVtnZP4DfcLOYFwB5tEabO2YmbalkNU6e/SK2+NwN5RpGfRSkZeoF6eRc5q4ZllkVnmKQw1zyaBTHHcZQFYXf652i1T+L5NqZZxgtEx2ecRFlcy8hti86oNP5p26U5u3Jf1k0ZRj5BkHawpfFAxfxUGn4unINtGKokK9TSSCY/dd0URadYaKIoOpIsoKjb3WJeYGexJ1HkZ0BeLxBdmCA6DrcDzZc3HqY7WM4coe0Yl6mJy7M6oXplNyOnnYa3bxInEe3+OVRFFx2hKfx2s3MaTbUII5+N9gkMPc/65hNYRpnJ6j4qxRniOGJj60RWwxUEDjmzSqO2j1J+CsuoZCDNUmGKyfrBNE7qERyvx47paynlpzi78g/krBph7LNjSsBIXU/UrFVL8zRq+3C9ngi81yy8YEizfpCJ6j4RBh6I4OftmJjJ+sGsU1HTrKzWL2edD43fDrEW7uQm1fIOhk6bdn+Rre4CI1cEk9dKOxi5bWj20fIjulWdffO34rgCwLu09hW8oYACX3fFD6EqOr6loZkFRpZErdxHViJCRcIpGvTtNc4s35ftK9uucBCMaHVOYVhl0a2sFdjZEJzCctqFaKnCtTK0PM2ikx54Q9R/9ANS1GMO7Xsp+3feiq5ZosZISlCUCFNNzr9WDKZ63j7TNBF8nkQKw1EOTU4Y+OJUKisRshxl8NGR06aUF121Z1fuZ2ri8swVFFFjeTzfJooC1lOo63XXvoYojoijiGFbJUrh7aoMo9GWcNZCh6sv/7dYWp7E85gpT2WAYcOPzwNMo5ijOzYpWR67d92CLMlEkc9184dJ1gfEiQDz7ijEhLFEosToeoEwDrM3dSIp3RYJmmoxXwyJ8xa7Zp+XAYKDwEGWFSZq+4Rrp1vsmL6GSk1AlJUood1fFF3Rg5VsW8a+APpWJtfFmJWYWlts663ZkPbepqibdNusrD9MtbGOqSZotouhiS7iyY2IQ3tfQm+wnNauCqB2OQ059307q6Hs9BepFGZIkojGj67QfIWY7TEUndgZiGM/ZZovrk0K0LYnoSo6PXuV6Y0AeaaD/fwbRF2i285mA3Iq5DSLAiZNtS5cfk047UAWlk4UcWTCyzqOAWRJYeh2aFT3oco6ebPGFftfxjMhRQH1KS7yRV5J3HXXXfzUT/0U99xzD5/97GcJw5A77riD4XCYPee3fuu3eOc738n73vc+7rvvPqampnjxi1/MYDC4xFsA4jjmN37jNyiXy+zcuZP5+XkqlQq/+Zu/SRw/O5iQi645c12X9773vXz+859nY2Pjawb+TOI0xhprrLHGGmusb16KAspTDHKULvLi7NOf/vQFf//RH/0Rk5OT3H///dx6660kScK73/1u3vjGN/KKV7wCgI985CM0m00+8YlP8LrXve6pDfgf6Y1vfCMf+tCHePvb387zn/98kiThi1/8InfeeSeu6/KWt7zlkr7fN6KL/kp+9Ed/lM9+9rN8//d/P8973vP+1bFBxhprrLHGGmusZ1ZRFNHv9y9YZxgGRtpN/M+p1xMuYq0m3O+FhQXW1ta44447Lnit2267jbvvvvuSX5x95CMf4YMf/CDf/d3fna07evQos7Oz/ORP/uSzcnF20dOaf/3Xf82nPvUp3v/+93PnnXfy67/+6xcsY/3LOtkTDQAlPSFUwPFtNE8UjhpqRLuikXMSlILAPHjegKMvPY5V7Ilcy9DF821mm1eS6CHoIdO7ztAfrmOaAmrYmS4yctvsm7+VSmmWIHBYaR3LipHzppg269trIluzv4gkKVhmmSQFXXYHyxRyE2L6SC+woykAjLIkZ3mbul7A8foix1ITBbluWlBuGiUBRY1FTqhllBm6HexRK81NbOGn6AknxUX0h2vIkkJ3sCwKZSUlg0q6rsiMdF0B15VlhamJyzPg5PaU6TaKYrsAOZ9O051duU/8nySaDUZOGz9wUGXRBLCdx9npL3J25b6s8UBTTZbWHiRvVukP1yjlp9L2+SG1yk4so0zeqlHKN8mZNRyvx0rrGBudk5QKU4zcNoXcRIoNKVMuziLLCo+f+kyafRqiKDqN6l5WNh6h1T5Jb7DCRHUfhVyDVvsky+sPUcjVWWkdy5oiFEVHkpQMqeG4PQG3dTopULZKd7CcAYTD2Gd183FkScFxe2xsHRfbx6xleAyRM1jGD13yZi1t1BDF94aWz9AfIKbloshn5LZpdU4hSwpW3kbVfYaWjGmUsimvodshdnQso4JuFFAVAzlKWNpbwfChakZU8w4jS2J5WiNOIiaqu0QDRQrG7Q/X+crj/516eReRJdAEW70zOKE4jalLZ0mikKP1CF0voGkWJR0Sy2eyuZpNz+VUAZUNU9N/orqP4st/jLKeZM9xQwlNhpwKA1+mmYvJ6Xk2XQnPtVCUiNjRyedGBLFEGEu0Rip++lgU+RmUdRt1Mj15CHvUynJq17dOUCnOZlP52/iTwNJRRy6x7xJ4EqEnEcYhGyOZMPQwjTKqrFMtzxPFIZKqYul5hm6bVuck+VHE/Mz1uJ11QmfIDZMBNTMmKJhpXu/j9O/6ayjohHGIlNomRT1CtgRAWVd0MY9qB9i+TNIS+0cU+eys1vA2lkgSkRHaHwpgaru3iD0j9om1PTUmavtoFh1xnimqWSawoecpFJpcUQuJnAGyomSA4vknJTxdfJ8/eONJ+nttVlrHGNjrnFn5MkebI66ciBjV81nJRmtPkMF5AUp5kUG73Yzk+cOsIUdNG2LiOGIuH6MePpeViSRRyKQVYqVT2pMTm0xU93Hvho6s6uTMCvHCSeJIwW+4lNOSko2tE/iBQ91IGJ4VdVOjY/dkjUcC3SGm17enOH/l5j1MTRzKjqVW5ySF3ARDt41llukOlimWZ5/aD803KPkp1ptt15w99NBDlMvlC5a3ve1t/+L7J0nCz//8z/OCF7yAI0eOAOdjF/9xRGKz2fyaSMZLoXa7zWWXXfY16y+77DLa7fYlf79vRBftnM3Ozl4AcR1rrLHGGmussZ6bulTTmkePHuWuu+66YP034pq9/vWv5+GHH/662dz/eGYuSZKnZbbu6NGjvO997+M973nPBevf9773cfTo0Uv+ft+ILto5e8c73sEv//Ivc/bs2adjPP9X6PRAYljUKWkJagRRErE5YbC7mNCz84ymXPKjiMnmKjuvfTnHz/wtV9RCNF3cjZeLM1kkjmar4KtcMxlQyjfxfZupxiHaFdGWn7fqtHuLAhEha4zcNq7XoztYztwFEWs0RRT5LCzdg6Lo9FLw6jYE9+DuF/HYqU9nsSxW6tDJkkK1tCNrEy/lpzLHa/suceS2RZt/7FPKi6L+Qho1palWhgvZdhvyaWH3NnpiW3ESsbb5OJpmCdcrdOgPhfO32TmNPWqJwl9JYau7gOfbWVSUplqois5guMZkbX+GF9luJhg6bSRJYWXjGJKkcNmeF2UYEk2zqJbnMdM4Hs+3qVd2MzN5hCBw2Gg/iaGL5otCvkGpMIVllKgUZwkjHz1FedRKOzD0QtaEUcjVGYxa2EOBAdkuxhdQ4H7WKGEZZRRFE86mUaKUn6KXFlb37FXsYStzBzv9RSrFmawAeuR0GLltmvWD2KNNCrkJ8d2Fjojm6p7JnJ0w8jGNMp3eYnYXXyvPU68KZ07TrAziu93AoKdokkJugsv3vgQAw3QIdCiUpjm5eBeV0ixR5GPaMqqiE+ctFFWctO2Gj12OcUKJZi5GiaDSi9FUK3V0l8T4UofhigPfzWC4huKHjNwuM40jvHA2QClUiVZE88fhWpA5bo+tldBMUXSuyQmSojKXTzK4rFqq4PmiwLjni5O+pgVseRI5VfxPGEvUzYQwDnHCr/phUGIcz6AfwA1NUUAf+SLSLkzjgbb3IXu0iSoLq2XotEVjhqxkjRiF3ASGViBn1ggMhaC7Qew7uCMZWQFVVukHKW4jdIQLenQniqyShCF6ij0p5acwRgHrm4+TxBGqlWdPWViEqh/S6pwkjHy8TzyEpMoYik7kDAhiiQPlBEkRxe2R4yCZCtgBy0PhABX0mCB0aBSnefD4n6eNDH7mtsqywsqczDWH/j1qlBCFPpYKnj9kWADHE1NefujiNqsU9Zhg4xyhM2QiJ/AuShjT2PSQDYtvn09QdZ9KYYacVSVn1qgZoMoSq5MatfI8hlbAyNuUbvgOauX5DNGz7fabRpnJ+gGxnVNsRRA4YoYhlrAMD9frE/s+SadLUUvQZNjyJG5ohuhajie7CnFevO7i6j/wy7ctUKi02V8WuJp6ZVd2nlKLNSLHJtloZ0Box+ulTTPzAjobRkhBmDatCLe0Ud1H3qwRBA6t9kk0zSKy9Iv9afmm9FRdMyVtCFAUhVKpdMHyL12c/cf/+B/5n//zf/L5z3+eubm5bP3UlMC9/GOXbGNj42vctEuh3/qt3+LDH/4whw4d4sd+7Mf48R//cQ4dOsQf//Ef89u//duX/P2+EV30xdl1112H67rs2bOHYrFIrVa7YBlrrLHGGmusscb6p5QkCa9//ev58z//cz73uc+xe/fuCx7fvXs3U1NTfPazn83W+b7PXXfdxc0333zJx3Pbbbdx4sQJvvd7v5dut0u73eYVr3gFx48f55Zbbrnk7/eN6KIvzn7wB3+Q5eVl3vrWt/Le976Xd73rXRcsY/3zCuOExY6Ihlh3JOyGTy0/iadLaHKC9rC4YyhtjdhXCWlXRSD58lBFkePsbnw7cinniPoITRIBzuU09qd66LQAH8oqtbKIT6pXdtMfbmDoBWrleZI4wvdFILk9apGzajSqe7MajFKhiWmWaXVOEj3vJnbOXE8UBaKmrbeIpgk3an3zifS9lAzBsR3+HUY+xbyouwJwvR5+GilV3Y6XChwKuQabHTHmQeqAdfqLdAcryLJCb7DCzOQV1Mu7AOGijRwRHF4pzTJR3UMU+dTK8xRyjSySyNDzSLJAR5SLM8KZSHEk29FApcIUQeik22gXhl7g0ZP/G8froSo6I0egGpbWvsLs5BXIaX2Qquh4wZBCrs7QaRMnAmEgSwqeP2Rl4xGC4HytydBpZ1gSz7fpDVYzB6XdP0eSRPQGK1hGmWJ+MnPjHK/HXPMqUUOVn6I/XKNe2Y0kKxSsOl17JXP09BTwm7dqdPpLmEZJ1GvZItZGT6OZHE/UL+6cuT6LsbKMMoP0tX3fJokjVjcfp2+LuCxZUvACsT5n1ejba+J5ScSeuZvpvODabD+PFeGuDZ02i6v3M1k7gOEnnFv/CqszOTTNwsmpGPkhKDFuKJNTE2rdNExcs7LIIxB1PYCIJJIUgmGfenmngA/LIKkaiecTD/rkdSVzcp3TM6i6z+q5+Qwye6Ino8nCPevWLTY7p1AjWLFVakaMokSUNHFcBbGEKic0rRhd0dHkJItvUiwPy/AoadC0IoajnPg8nHeBhdtZxtDzeIGd1UaK2KwJOr1FysVZ9LTeMmfV0LwISVEJuxsoSkIcQeJ6BLHEsZN/TRA4uG4PadcmiqzCyCHxfXZMXyPQDp02g1FLuJOKTDWXo+9LhP0upfwUhdwEZ79iZtlUwdYKlppwbighy8IRjX2XxBV1sAsD8TxNTlKsTMxlu18MiNihZv0gICKw0EPhRFsyYeShyVApzqBW+8xMHkGWFHTVxBgFbDgq8dIqWqHMXCEhZ9bolzTaVR29OUfZqqJpfgaP3eqdoe1BTjeJai6t9kniRIxxsy7c8iB0OLv6DxlK4/TS3USRz9L6Q5nzq2mifvWhLZmdJbG/BXaPxPNRZbAUgQ35kaOz+MGI3aUIOYop5aeYn76OI5NVdk30cUKJvFUjjPys7s42IOxuQH+YITZkWeHc2oOZq48XMDr7GOtbx7Nz0baDCpCzahRzDZZnrW/qN+ZiJSsSivrUlovt1vypn/opPv7xj/OJT3yCYrHI2toaa2trOI7YBpIk8bM/+7O89a1v5S/+4i84duwYP/IjP0Iul+OVr3zlJd8Gi4uLTE9P85a3vIU/+7M/48///M9585vfzMzMDIuLi5f8/b4RXfRM8913382XvvSlZ20edqyxxhprrLHGujTanpp8KrpYCO373/9+AG6//fYL1v/RH/0RP/IjPwKINCLHcfjJn/xJOp0ON9xwA5/5zGeelpr33bt3s7q6yuTk5AXrt7a22L17N1H0zOdTXbRzdtlll2VXt2NdvAxVpr/VwDNkHm9rWKU+hqLjWVAzYmqbLrGj4xUMSnpCvywhSQpLQ4mtteksiHp64hCSpDC57nDg3k3WHIkkfUzTLI5MeGiaRW+wzM5rX04cRwzdNjmzwtrmE3i+zVbvLNXSPK4rup420ju5bUcKSOOGamj33cvjpz9Lzqpm0T4g3DrTKNHpL+J4PSop+BFErdk2zFRRdBF/ouj4oZt2360xcrtomugWnZu6miBwsm4rVdEp5CYEaLJ+gLXWY6lj1vmq2qweC0tfYmCvi3DvUYu1zccAKOQaVEvCIWy1TwJkrpfoylyiWpoX8M/UUVIVPQ1rn8ugtfXKLlqdU8w2r6TdW+Tsyv2MnDZ9ey0FytbYaD9JvbyL9a3jrG0+nn3fYezT7p7NXtvx+llsU62yE8ftsbT+EI3q3qxWr5vCNPv2GpZRxvV6LK0/mNUAypLC+tZxSnnhbBZyE9ijlghBDxyctKZwqn4ZUeRnTplllAhTgKnrDTD0AicX/w7LLGffkaLoeL6NlIadN2sHmPvVl2aB0duuz1Z3gXplN7dc91N4/pDTS3dTskVtUxwpSAWX0Hc4evB7xbYNxD5x9eX/FrsWYtvrDHMK5YpwJUeeziiUGObEr4Q92sQ0y6LWTbUo5CbQVRO5WmPX7A0MR5t0+kv0BivsLQXEnoOUs2DkkNNNhin8Nvqr/wbAZfeJujNJt3hyy2Lgy4QxnPrf7xMRQOmPUxDDkQkv69gTDltCzYjxIx8nlIljhSgWp86CHtG0ouz5shJhd0UQ+FZ3AUMvCNcm/W6DtE6yN1jO/t7+7qwU6uwsPUniu0Tra7hD8asX2p1su0BaU5VGXpGz8HubdPrnePzUF1FLFbGveH1sb8DId3FDmc2OOAZURefJxwBDJ4liEl84XFO5hP07VpieOIykqCSO+EF6oiWc/rqlcPSyVyBLMq1vu5Y4iej0F2m1T+J4PcLYp76sYhgl1AisUoO6mWAaZUqVDkHgIKV1pnIUszGSoW/jE4q4rNAhP4ro1RIeW30CSy9gmi6mWaZvr1HITQhnS8sTOzrl4qw4XiPx5W13R+6YujqDRe+Zu5k4jphpHMEebdLpLyJLCmEcsLJVYcpKuPrQvyX2HfB8pkplcmpC3UiQux1KpRmx/ftdDuz6NhFbl0S8dN7nxqkgi1azjDI3TXk8utEiiQIS2xPd5Wm3+WRtH2F0Hrgdra+JKKnIx/H6nFt9gGHaMV0qTOEHDm75q7L8vsWUJMnXXbYvzEC4Z3feeSerq6u4rstdd92VdXM+HeP5eo0Gtm1jmubT8p7/ki7aOXv729/OL/zCL/CWt7yFK664Ak3TLni8VCpdssGNNdZYY4011lhPn+RL4Jxd7LTmvxb9/M//PCAuBH/1V3+VXC6XPRZFEV/+8pe56qqrnpWxXfTF2UteIjqyvv3bv/2C9dtXns+G/TfWWGONNdZYY128LgVKQ5bh2Qk5emr6yle+Aojrl0ceeQRdP98hq+s6R48e5Rd/8ReflbFd9Ffy+c9//ukYx/9Vih2d4Mo13EGRSrlL7FskisLyUKGz+AgcvZqlGYP9MZR6CY9vHWfLvYnmWQXHKLO2+Xiao9gnVmSePPX/cdB9nsAg9BdF0XssidZxLcfCAYXSXQIk6ro9ZptXYo9azE5eiefbIrMwLUYNI596ZTelwjQnznyOamkHQehwcvELmEYxK7Rv98/BcB1Dy4vcTskU023tE9RKOwgjAXqUZCWz8t20ld40ShjbhetTNSqlORaW7mZp7Ss06vs5vXQ3s5NXkrNqbGydyNAZ20DP2ebRLPcyjqO0cL7P8sbDFKw6llGma69QKcyIqb7QoVSYEkDXzkmCwCFOIiZr++kNlinlp1hpHaNcnKGb/r2NPVAUnZWNY5QKzWyKrV6ZB2DodqhXdolCY6su8vWsGqqsk7NqbHZO4ro9Crk6AJpq0awfYOS2s+nfrd4ZgtCl1TlFo7oXKc0i3c5fjGORYep6AjC7jb2QZEUANSM/m2ZOkojBcINiXtRNaJolIKH2evZZDF1kp07W9uP5Nrtmb2Cru0DOqtHpL6KpVjbN2e4tkiQR776uw+vSKV7H62XTvSOnzerl0yhf1siZNTxdploYMvLSbaeKJpG8JWC25UGI5wlshesPGFkSOTkmX98iCDTAoVdLKLclrjv8gzx+6tPZZ9j+7uNOm+WNh1neeBhF0dg5cz31nIYcmmDo4PmUrTqVwgwjt801V/wgS3LI0q4SmpyQ+A7d9m5MtYsqQ72yh63uaRpOTNUU00i7ijGWcj5bs6QnVM0IVVax1JhKbZMoutBqcEKJKFLElK4SZd+3QJbsYLNzmpxZEQgZSckaUrbxJdv7pOfbPHbq0yTR7SStNs4oIU7xHSU9wUrBzn17jefvsIE8pDfEa63HOHr5d3Dkpb9IrbQDy6wSxSE9N8JUY9TKbs6tPiCK1As1CAMAEs+jpCUU9YQtV2Fl42E6yVFkNyaxA5xhAUpQscp4/jlCe0BxzmUDiKKArd5ZZhqHsUctKh0fOS1liJwhJS3BHrUoWR5h7NPpnaNZPwCux5YnPpeOiiaJc4+xugl7GtyzpnFo2mCq4PN4HJG3amKq3kqw9AKaI5O3aqxtPkYd0YCyjXlpdU5RyE1Qr+zG8236wzWuPfKDoozCaTNy2tRKO1AUMR09esHNyPoKUt7C0vJMWjamGhN7DkF9ii+e1JiK2hRnD/DAZ/8bj6xPckWzSBSHIisTBLKjYPJoKxDFQq5omukOlgVoOo6yKUxUGVQlPTe5lApNgsDBC4bkzSq18i5O9b6ApT0zRoesiuWp6LnqnG1fz7zmNa/hd3/3d/9Vzfxd9Fdy2223PR3jGGusscYaa6yxxnrG9e53v5sw/Noav3a7jaqqz8pF20Vf737hC1/4Z5ex/nl5YYwUyWhagGm6vGKPSxxFHDp8gi1PQtdyyEpMrEAYw8gSd5fr3SKFQYCq6NTLu2j3FpmsH0Dp9llaf4gwltg1eyMT1X3krBr3nm7ygmt/As8boFheVqBcLQvXZ7vQvF7djev1GDkd4jjC9fpomsVW9zQvuvkNIg7JKPO8o6/mtutej+P16Ntr5M0qllEib9WolnbgeP0Mi7Edq2KaZVy3l0FEy8UZNNUkb9UYOm2Gbht71GJh6W6K+SkqpTmiyOeK/S9DVXQ2tk5gGiUBaazto9NfEtvwqzAYiqIL90zLU0odI0kWsNauvZI2ExzM7lw11cogsNuA0KHbplHdi64KVMXIbbPRflIUb9trGV5ku0heUXTa/XMUchMEoUNvsEy9spu1zccY2Os4nohGEoDK3ZnjlbNEtBMIEOl2tNFU/TIMLS9iXgKHgb1Oq3OSkdvOkAzb4+4OlrPi+m33qlqap1aep1qaZ8fU1eQtEXekKjqypJC3quTSGKu+vUaSRHRtgShxvR5JIpAqcSIgowvLXxZuqGax7/95M3vqk+ybvzVzJrzAZuSmBeoNn2b9YOa87ipF5AwfzXSIQp8nz97F3u98Pfu/62fIbQ2RZQXJV6lXdqNEoMoJM/UupukyCgElxvRinlj4LEO3QymFI69tPk6rc4qlta+QxBGu26OUb9K87d9TyzcItlaQcrnMRfICAUjdfIWNokTYtZAglpAUjWLlfByL92+/U7grBRlVhkEgs7ccYKkJJT1BS2uEC5qEHAvTY3/dQdcCkkghjKWsGcB3z6MPDu97KaXCFLKkUCvNM9M4jGWU2eycFq5xCtWtFGfpDVaolueJ44jNzmnxnUQhyXpv++MQdjewFNEQsI2WqBsJumqA5yMpGnvnbyEIHKyRcHQUVUeRVfY3ZghjiSj0MuxKOVcGLyDyPfB8Jq2ImhExl09o1g/iBCPiMCEJEuqPiO64KIlYWLqbyBnQrAzoDVaplnawb/4W/FDgcOyihlwoYjcElLVmxAKQLCeMnDalQpO+vUactzjTV0jcEL+3Rc2MBZrGGyD5KldNiP8/XI3JWTU836ZSnGXSEhsk1OHsyn3iO+wXqbUFxsYLbCqFGZI4yh6vV3bjTU9gGcIR1jSL7mCZcmFIEEt4FihWAXIWZb1Mw4rYWzVQizVaEwYvO7yG2pzlyaMq+3fezkeeyDFZnEFXDEZuF10VjVcAn1/RkPTz+0Eh1xDol9AlSvEpANbl12HohayxqpBroMoahl6gXJzJ1j8TkuUERXlqy3M9YvsHfuAH+NM//dOvWf/JT36SH/iBH3gWRvRNOGf/uPUVLoxYGNecjTXWWGONNdZzQ4p6aWrOnsv68pe/zDvf+c6vWX/77bfzxje+8VkY0TfhnHU6nQuWjY0NPv3pT3P99dfzmc985ukY47eUvDAmUVLQpeWxPFSIfZdXHXBZG0mU6jsx8jazqwFrI4nqodNMNQ4RPyFaugejFl17JXN1okqJq1/1W6hyQrkoaqzWNh/DPFVB0S2mGodJIiVFQuymb6+xsXWC9a0TdAcrOK6oIZqsH8hgmZO1A8xNXcPGAeFabLRPcPK2ErniZBZ8LclKBq+NIp+8VaVcnKVZP0Cnv4SUBpRvg2qjyM/cmG24K4haDc8f4gU2g+FG6vCdZmn9IaYmLqdnr2JoBZ5Y+FuqpTk01coiY+I4olKcZeR2qFd2U8g1RBh7+pxSvimCuZ12FiElAsFr2f8PUnikoRfo22sC4hlH7JsXVOh6ZXd2FxtFPoNRiziOmJ+6JkOD5My0HmbiUFYLBhCELmubj7PVXSBOIvrDtSzyauS0CWNf4C1iH1lWsEebjNwOiqJlgfGj1F30fJt2T8AQt90kXS8wWT/I2uZjtNons7b+bWdxfUuEMA+dDlHkp6H0fbqDZVHflkbLbH8Hvj8UNXXlnQKWCTgWOMGQfG4CWRJjlCUlA9KCcGH3zd+K/qW7AeGGWXmbwXBdbPfrV0huPsvS3gr53ARSweX0NdOokQg831EQpcQdVwElJjcKufLA96DKGlvdBbqDZaqlHUzWDrDrwAszFEkh10CJEkzbIT51Flk3ScIIXTUo5aeQJIVdVQdNC5B8lTAGfXKeOFJwQ4kwhkOXnWTPjudj+GRB6M28hioL1yxIBF7DUGUkRaasQ91MiGIZSYkY+qr4vGqCrERikSPq9X10B8sois7a5mP07TUkWUHX84SRT2+wSpSiFaqlHXR6i1hGGU018UOXeDQEVSZKZ1okRXTFG1o+jbU6x8GqjxYh4Lu+iGqTZYXh4hN4gY3nDcjpeYppDaHrDzC0PJZZRlM0ks0RSRRCFFE1Y1Q5oaTHrG8dR1cNIg8kSxF4k7zFpt3nqsu+H0nRuGMuwDSKdO0VuoPlDL+jRAmxkv6slMtUTbE/bn/HpbxwnuUoZrNTha5LsLXMTD6kWT+Ila9jNjfZWa0hBSEHqwGGXsgQMGcGKo5vo090KOQmMI0yiqOy8r8/KM4rss5W7wwASRJjj1r0Bst4uozn25TyAvLdqO7jhmZISY8xHFCtFB3ke6gy1PKTYpuOIr7/YJ7AUFD0gOWNhzOMih95VEtzDJ02Oet8Ok7iO+AKoPTIbdOzV8lZ1Qy5QRjjmSpB4KCrZoa6Mc0yW90zyDNzjJw2inY+uu7plCwnyMpTWyQ5eUbG+nTJ87yvO60ZBMGzhg676Ovlcrn8Nete/OIXYxgGP/dzP8f9999/SQY21lhjjTXWWGON9XTr+uuv5w/+4A9473vfe8H6D3zgA1x77bX/xH89vbpkZmSj0eD48eOX6uW+pSVFMoocU9Rj/m4ph1au0sxrWGrCmb0lDNPBGAVYKriuSbkwzfTKCM0R3U6GlieOI2rleeyixtasuOLXtVxWZ6Tddy9x6GPvnib2VQq5RtZZVK/swvUGzE9fQ5JGjMRpkLUICDcoHb6RXkN0W5byTS7bcwYUmanGIfr2OnmzxigNCwcR41LMN1jfOkG9vBM/jZLaft+cWWOzczp1CzYx9ALFXIOR26ZcnCEIHIr5SZI4QpIUZiaPsLb5OBPVPWiaxc7p67LOxJHbzkCSnf5iBk4t5Br0h+tsdc9kYNih22Gl9SjF/FQWL+UFNmHkUynOoqkWhibCu48v3INplKmW52l1Tmbh4W4aXJyzarhuL+sS23bpOv1zlApTuF6PuebRLLIlZ1UpFkRI77bjVC3Pi1qqwhR+GqDe6Z0jCER0VCnfFGNKuzWL+SmGToc4ibJu120HbmCvkyRRBgzWVItW5xSSrBAnMdU0aLlR3ZvV6G2H1I8c4cjNTF4h3ESriiTJWfRW114hiSMsB/zQxyo1si5Oz7eplnYAYJX6LK0/yGC4wbnVByjpIig88HVMvZjGFXkMh3mivZsoVp6d84uYc+vYDZ9centYNgO8UMEq9RnlVFyvn22DemU3YewLV1ORs3qy7mAZ99i9+KsLJCtt1Mokkqrg+EM6fdFp+oo9Aj4rRzCVl5AUlRvnRd1fx1U5UE54/NT/h+HHWOlYFFnBCSXWHIkTXRknlFBlmSSKqRvn69AiX2MwKKGmrkG50jkPRNU0+vY6bupMKulxefnuF6fubSVzZFdbj2bA3YnqXlyvj6SqSAUDRYXAk0ki0VlpmmUqxVkkWSGIJeIoyursioUp+vY6Dz7xPyjkGllnbBiHuKFMuTiDoRcEdFlRwVTwVk+ReD6WIr43VRbfr6XlRZeoKhEpErg+1VwOy6qiFco0clF67ORJ4og4idnqLlDsukgDGyM/5MyuHFUjQVEEYNjzz0dbJaMRoa+DKWYOLDVh95GXEvrCpeg6PRJNpWrAXPMqgtBBVy2+sGyw2NnAMEXc2rWHfxDNhysuezlHD34vXmCTM6s4Xg9dz7Nr9gbiOGJ9p4go8wIRm7bSOsbVDY+iFmP4Cdu+j2Qa5HUFXTVIopDWnoBGrslGXSNyDKLIp//IHqQgpO+K+trt6DdLy/HiOZ/YdyGMefELfgXPt5lpHM7O/Yf2fafYBnGIouhMTRxCUy1GbiftSM+j+hFeMKRY7n7DvylPRZJ6vmPzm12eq92a23rLW97CBz/4QW699Vbe9KY38aY3vYlbb72VD3/4w7z1rW99VsZ00c7Zww8/fMHfSZKwurrK29/+9nGk01hjjTXWWGM9h6SkDQFPRc/1hoDnP//5fOlLX+K3f/u3+eQnP4llWVx55ZV86EMfYv/+/c/KmC764uyqq65CkiSS5MIv88Ybb+TDH/7wJRvYWGONNdZYY4011jOhq666ij/5kz95toeR6aLNyIWFBU6fPs3CwgILCwucPXuW0WjE3XffzWWXXfZ0jPFbSiVTRY7AVGNRAA0QxRSMIgfKCZECuhaw0bTYkU8y2KW/ucrqjiKaZokMTVmhb68xzCmU6puEscRwrpHls8kpVbCy5WCUBinkUEz9DZ021dIsB3a/iJWNY9l0YW+wTBiJItTFnUoKBxUIiCCWuP+Bj9LpLaIqOiutY0RRQCPNjFtYuod2b5FCboKh28les9U5lQJZT7Fz+jp0vZAWlrdw3J7I3ExRG1H63pudUwSBg2mUSOKITm+R/nCNwXCDTn+JOBbF9fXyLnJmDVXWWN54mFbnZIq3cFEUnYnqHgwtz2RtP8sbD2dF1yOng5oCWXNWDXvUotNf5MqDL8L1emxsnSBn1gjjgO5gOcsD3OqeAcDxekxU94kcRK9HsdAU06W+nRXmb0/3ypJCo7aPnFlFlhTiOMIyStijFrpeSHM0JyjkGqxtPoGSZorao5bIhox8quUdWEYZMwWQaqrFZP0ghp7PGgW8YJhO/ZhUirM0qnvZ7JxiZvIKOv1zgGjX79oC21AuzuIFQ84u34uhF6gUZ9k5cz0rrWMEocPhvSIJJNq7yclORBIELK0/RM6siun0UYuR06FS7tIfbrBz7gamJi6jbiR4ocJktSeaI2SdKJaplfvctLtFZzLP/kpEPj9E0QPm8gk1Q2RYGmpELjekVxTTv0Ho0KjtY2XjGO3uWeanr4NeL9uOpcIUnjcgCUOwRb4mOYsoDqlXdjNR3UfZkFFSKOzQF0Xp/26/KH73A1FKILI1JZyQDD7rROLUaPsKmpzQcwOSKGQ2HzGbj1DkGFmJKRb7uKFMEMO373CJI4XANelM5jH0PIVcgyB0iCKf3mCF1dajdO0V2j3xnRTzU9QqO1FlnWp5nk5/Uez3ngdhjJWTUNSE2HdxIsibAseSN6ssDlSCXgvCCK3cwPP6hKErGgZ6i/jhiNXeIqqs0siFeNMT9Ifr9AZr5EwLqVkm2mpBu4epSmw4CjP5UCBATh9HThEhpfsfgShCkVU2Np8g0VQ6rtg+2wBkQ8uL3FxLY+XgJFbeJiiEGKosyixkmGseZb19Ai8YIhsmVt6Gri8+K3DyQI6zy/cQRwqqLHN26ySGKqNpOeqV3UiSQuexPXQ8iXxuJPATpQrlQcTJ20pUGnvEdP9wA8soUyvt4PiZzxHGAflKh0KugeP1yZkVpiYuB6BqxkSKROQ4MHKQJZmcbtIbbRGPBhQqbbz2GoafgBJzxYHvpvNn7yd0hjzZkcS+mMTiWE0iDjUsiCKSMCb4f7p4/lDgb3ybqYlDWM2dJGHM3YvraJrF2uZjJElEuTiDquh0+su0J0w01eT6mdEl+tX55yWmJpOntDzXGwK+Wo7j0O/3L1ieDV20c7Zz586nYxxjjTXWWGONNdYzLEkW+ZpP9TWeyxqNRrzhDW/gk5/8JFtbW1/z+LOBCPuGLs7e8573fMMv+NM//dPf9GD+b9Cu+j40H4p6zHLPIgg0JEUmSiL6gYArGmpEb6+Il3GXmuyfNQhcm1rHR5bkLBYGRUeJElzXYmi6RIaMLCt4QcBguE5+zxHkKMHKC2Bob7DC/vlbSdLYmHZ3AdMocWT/y/jMF99Go7qXUkG0mqPE5PNDLKNMFPksrgnAq+fbaKpJuThLp79IN4UvTlR3sdU9Q7W8A1UR8UVR5JM3q/SH65SLM4SRjywpKVKgkMW5qIouALWaxUb7JDmzkkE6u/YKABoW1dIcU41DPHH6b1AUnaW1r1Cr7MRMC9UFFHOOqYnLWNt8nHplVzZmQ8tjmmVGbpu9O57PEwt/m931CxTIFGubT1DI1bO7WFmSBdjSt9FUiySJ0TQLWVJY23wMWVIyZ2TbKbSMMkO3w66Z6zOUxfrWcaIowDLKeIEt3MLAwXV7eMGQcnGGjfaTTFT30OmfY2ricuIkynALiqJTyDVIkohW51TWpLDt5plGEU016fSXyJkVOr3F1O0zGTltioUmrttjvX0CyyjR6S0ShC7FQpNO71zWVFEpzlIr7aBvr7G8/jA5q8Z1Oze5aqrC228oo31RuHLrW8dRFZ2J6l4KeiRiwLwBPXuVRztzXD/lsdCX6AYeW70zHNVFQfpcPuFz0xJTVsKRCY+Hok1yakLfl9hdSljoR4DPVvl8S/swBZcqis4Tpz/L/NwNVMvzrGw8guP1mJ2+GniYeNURWAhFQZHVbIymej1RpBDp55P/dFXHUoPsb02zyI8iBr5CkERYWo4wFsX029gEEJiFoh5nDQAAfqARxBDGEk4oISsRRDK9okIUBfjpPiFcmx5hLI4JWZIZOZ2sYSYIHcLYF38n538IdAP03Pmxe76N6/WQJIX5YkgSBjB0kBUFVTHI5+oCBh266GoOP/QZ+UM0GVavcOAvoFiYxLQspOkGydCBMMZQReODJidIkkL8yBOEnoQ5YdHqnMze/8zKl4HbebyrZg0bsqQwGG5QLk7TruqMplz2FkcMusIRi5OItZFEf7iWxU95dod8LqB/v0Pl2yNO9TSkgsuZlXvZsfn9PNJaYk855sjMIYLgCfJWjfWt41z9yAZzPyZzxUTA45HPZjOHp8tMTJ2lM7kzAyVrqoUfOtTLu7BHLWrlPse7C+TNKnvnb+XYk39FQbsZN0wYTbn4WyskPZvEF/FfURwS+w5BoBON2qhRgma6WHP7OXPPO1GtH+bsQGVm8gpOnfsi9miTgWuzf/Iy+seeIG75vP6KEY/UD2Su+kR1L3IUI6nCaQURzxbGAYVcg4G9TrU0S7smEycxk+Yzk1apqAmK+tScr+c65+yXfumX+PznP8/v/d7v8cM//MP81//6X1leXub3f//3efvb3/6sjOkbujh717ve9Q29mCRJ44uzscYaa6yxxhrrOaO/+qu/4qMf/Si33347P/qjP8ott9zCvn372LlzJ3/yJ3/Cq171qmd8TN/Q9e52fdm/tJw+ffrpHu9zX1FMoENZF7Vl5cKQgTcgikM0GQxHRODEK1XaHuw649KZFvEpq02DI/tfhqLoFPNTXHvoB+jVEuKVKnk9RA0TCrkGhdwEnj9g4XIJJ6dm7f1zzaMcP/N5wsgninxOn/siqqKz2TnJzOQR+sM1ltYfxLKqyLpwL86tPSjaxV2LHdPXMDd1VYYACEIX1xVYAl0vUK/sQpX1LLx7ef1huoMVaqUd2KMWsqxkdVFJHJHEEYXcBFoGYuxTzDeYqO7NwLGF3ARRGhhs6AXOrd5PvbKLQq7BdONwGnuip7FKGmHk0+qcAiBv1ZhuHML1+uSsKkkcYY+22OwuMFHdQ7k4i6EViJOIdv8ck7X9mEaZkdOmO1gWtXaBk7pmEdONwwILYtVEDZhZJggduoMVLKNMELqEaURLuyfcqM3OaSyjTLk4Q3+4hj3aJIp8claNXBqzpKsWE9U9uF6PnFllY+sEsqRgGkVkWcFKA+0FLmRCBMpLigiK1vPkzCqGXmBq4jK8YEh3sII92hQ1ZqmzGcYBqqyloOECE9W95M0a9couES8TCKjx9raTZYVW5xRBDOuDDrv3nWZm8gocr8dwtJW5PZaaoGsW8swcqqLTdmWun/QZ+GJ8M40jzKUAUlVO2LH/FKNQombAoYaTrgdLgZIuniPrIXKhyNTEIVxP1Jj1Bitoqkmve45Ob5E4ibGMMvZMTaAkwhhSoKofugyGLcLIR5EVRqM8KDH1nEbk2Ix8lyCWslq0JI5QI4GSCGMBF1VlmMuLujSAsqkhKQI4O5WXsvWKHGf1aZaaoGo+KOLzFnITWZyZPWqRN2skcUR3sIKmijizOI4yaHEx16A3WBG1l2ndEoCWT0PYFVHvmG17JUFSNZItAQNudU5iGWUBe1ZNVNVAV3VOthYzp8b3h6iyRmFXAymXQzLOxwRNWhGqJGLBkiVRZyNVTMqFGVDEMT0zeQUbgxXqhhiT6/WJk4hCrk7fXqfW8ZmYEm53vbHOTFk48XUzrV/LT9EbrAjXWY9YPq5DFLE0FNswTmJ2nfH4vS/tpJrLEfQ65HMTrLYeo9NfwvMG1PN1rqyFwm1UJGrdAEONWJ+WaNT2M9U4hBfYWW2rLCtM5qIMEm3qRYEBUWUebetUG+tEdgc8n9AZUjTE+VatTKJpPpHdodQPyJd6dKs65cIUke9x96pBMT+JZZQo5ZtsORHDJx8UnyNM2F2fwfF6GFoBTbUYOpsMN8+BKvPdBw4Ip6w8n8Gsy8UZ/NBFLg+xjBJTuWco+PxSQGil53bNWbvdZvfu3QCUSiXabVG7/YIXvOBZi6V8SmZkkiRf07U51lhjjTXWWGM9N/RUmwFEQ8Cz/Smemvbs2cOZM2cAOHToEJ/85CcB4ahVKpVnZUzf1Cb96Ec/yhVXXIFlWRkP5GMf+9ilHtu3pJIoIrJCcZctJ9zQDDnZWsTS8jStmMmtgCtrIbEiHAUnp9I9JO5iPQtURac/XGe2eVTUFZVs5lY83FBms65QzDVE4HN3gXylQ3GtR/yEcG0mqntTAG2Podvh4O4XEScRhl4kn7pB1x1+JUahiqREbCzP8bwrXsXzrnw1AKpisLLxCJZRZm3zcUA4MrKs0Omdw01raoLAodNbZLZ5JVMTlzN02jSq++jba6LmTBLRT5KsZLFO246fZZTZaJ9AUXQURcdNOzp11aTdP5d2O4rQ9v5wjU5vESPtemxU9zJyRazL3h3Pp9U+ydLagyIgXtGJkwhdz9NLna4zy/ey1TtDzqphaHm2emcIQgdDL2CPNjNHTvy9haroTDcOZeBJ1+2Rs2oZeHa7A6yXOiNR5FMuTmc1goZeoJRvYmgForRGrVragZ9CLLdhlMJNFF2ZObOWxb5IsoLn2ySJiJ2yjDKSpOAFQ0aOgO1GUcDUxOWU8k3Wtp4gZ9Vod88y1zxKGAestB7N6uy2ugv0h+sZ3LaQa2Sg0jiOKOWbPHRugmaxyk8cHtEdLHPoO3+OWmVn1l3bcZXMnVNe9u9ZWhVOiRcq5HMTbHUXuLwaocoJbVfmyomQfgBtT3RoVo2IphWhyQlBDJYaYxV7dOsWB/d9B2Hk0x+uC9BwMMSyqni+zf7529jYOkG7IiozJEtBKVZJVls4wQhNNUWdn5YTB14k03MDolGfMz1xQ6nIMUEs4Xg9NC+iPygSxhJ+6FPSYmbzIYGv44Qyli5eR5WhmisSxTKxoxMEGm4o4UQSRT1B030UW8cth4SRj6ZZ2KNN+vY6a5uP43g9DrzptyjkGpmzI1yTWba6C+m409geN6DdEmOVdZOcmjByO3jBkOFoC3X77G0HxFGELCnpPjaFFwwFAFjL86U1g4EvM/2IRbk4zcjtou2uii7X1KGr5+sAOJEkQu3dCNVISMKY0+e+mJ2/Or1FojikZsQp1HUoooYUHUPPo231KJsiOP7maQ9Lzws4cz5BTo/7nFVlcfU+Xjrv4/uQnFsjp0Ds6NRKOzBsj1O/8Rvia3MG+MGIJK3DG442UWSVfVUBdq51fJSlFZaXdmBNtKmWdnBu9QEcry8C5BMR8bYjn1AtzTGw13no+F8wGG5QNAv892OTlCyPeJA6hYqK3+tg6XnUQhVZiUhGomvSMjy6ZRnTLKMViuT1kOMLf5sBhk0FopVlUBUiD3TVJI5FZ327t0jemqDVPgmKgrO6QLW0gziOyFtVVjaO4Xo9DC1Pvtijb69TMZ4Z40NSREPAU1me6xdnr3nNa3jooYcA+JVf+RV+7/d+L0s9+qVf+qVnZUwX3a35zne+k1/91V/l9a9/Pc9//vNJkoQvfvGL/MRP/ASbm5v83M/93NMxzrHGGmusscYaa6xLrq++bnnhC1/IE088wT/8wz+wd+/eZw2uf9EXZ+9973t5//vfzw//8A9n677ne76Hw4cPc+edd44vzsYaa6yxxhrrOSJZSTKm3Ter5yLnrFarceLECSYmJvjRH/1Rfvd3f5diUdQbzs/PMz8//6yO76LNyNXVVW6++eavWX/zzTezurp6SQb1raxg2KM+u8x37PAw1ZiSHvPQpk4Uh8zkQzQvoqjH6DOb9H0JaxQSBjq9wTKJEhNGPtMTl4tC8VKDF16+jGGLlvVKL0bTcilotY2iRHQ6ZzD8mPnpa9FUi50z11MtzSNLMsee/Cs836aYb7Jz9kbWNo+z1VsgCQJo5yGS8cMRi98xAYgphXJxFoCZySPsmLoGWZLp9JeolndQLc1jaAVGbkcgPXybzc6pFAFxEk2zsuL6/nA9QwzkrJr4fGn25+7ZG0W+n1FGlhVUWUtzOsU4Wp2TGZbDNEUBtKroDB2RuSmKb9t4wRBNs9jqLmRTRVFasH966Uvkc3VK+SaqLIC0hpZPmw965K0qYexjpgX0ObPCVncBP3DIm7V0GqeA59tierW/yFZ3gZHbIWdW6fQXKeQa9AarWSt9vbKb/nAdQy/geD1GToeN9pNEaYMGgGWUsn1ls7OAPWqxvvkETprv2awfzB6XZTGNFQRO+tkCcmaFjfYJNFWgR0QxssnS+kPUy7tELmsiIL6GXkCVNVEkbZbpDpaxR5tsdk6jaRb94Tqa5lMcBpRNMXVtX7/B/re8hpHToTtYIYwlrtj/3WLftmLiWKHjylw/5REEI3JWDYD9lZCaGdP3z+e87CvHWGqCpSZiSjA9GymKKO4+eWVdNDBo+bQxw0TTrDQf8gmqpR2oEVm25OmoB55P3/WoVXYShC6WXiD0dbSSjSpLJFHIhqMQfhWloFKcRW53ME0XVU5ww4ggBk0GZ1Bm6KtYWh5ZUbB9GccfoWsBmiMTBDqmmlDUYiYt0URjOSD5KppmCWSKN8DQBZRWUy0mm6vsf/FP0B+u4Xp9On2BM9k9dzOGLnJeBeIiodWSSUKQFI35YkAp38QySuh6nryuCPAu4Mgh59a/wtrmE8hpQ44sq5QSk9l8yEanzPK0huP10fU80dYIBqKRADegkqtT1GPCON0Hp3IiWzOMGLltiCIKRhk/dGgUZzJ4b728k5HbZeR0yFk1kmKBqZz4Lq9q+Ohps0NJj/F8m3NrD2CPNjm3ej8vObCHqZ3ns0E1R2botEkUGVmSaRRnkBQVqyRwI1EU8MDj/x0nGLI2jNk5cz2qH+E4AhVULIqpSdMoocoaM5NXAIjjMoKTi3/HRHUvjdo+apWdWFqe6idXCWOxTyZDj8gZEHQ3snFX8w54PpEqE8UykRWSxBFe5DNXiLl873ekZQ8tDFUmGTpIuXTbIaZeJUlhunGIRm0fi6v/QLJlo9dFqclq61HCyGf33I34oUsU+TQrA/JWlZJ50d7JN6WnOqUpK8/N+Cbf9zPA7Ec+8hFc132WR3ShLvrb37dvH5/85Cf5T//pP12w/r/9t//2rGVQjTXWWGONNdZYY32juummm3j5y1/OtddeS5Ik/PRP/zSWZX3d5z4b0ZQX7Zy96U1v4td+7dd4yUtewm/+5m/y5je/mZe85CW86U1v4jfSIs6x/mklUYiuBcxXJ7F9hWsmI5aGElESieLqqk7Dipmqt5nLJyjdPrIcifgfy6danmfotInjiG7rNN8+69HfOstMIcTwYhy3i5S6R4em+sRxSGfeZ8f0dQShw+lzX0TTLHJWjamJQ+zfeXsGvSzk6iwsfQmnUaLSE9ZC317j5oPnkBRR2Lp3xwsELHbrBGdX7iMIXfbN34IsKbQ6J5mo7kFTTcJIuE7bxfhRFGCPNllcfYDJ+kFkSWZx5R/o2isEgSNipdwOQ7cjCqM14X4pip4Vn0eRz8jt0husIctKBpxsdU4hSQrrmycoF2fSqJxlSvkmfXudQq6BPdpElhR2TF2Dploc3P1t6KqJoRcYuW2itHg7jkVzgmmU8X2b3mCZvr2GFwzJWTXOrT2QQVvjJGKUfhfi75hycYZKcZaR26XTW6SYnyRJIkr5KTa2juN6fYZum8GwhWmUmKjuoVKcFRFCkY/nD4mTiK69wmR9HwCV0lzmkK1vHUdRdOzRFt3BclrQP0BTTeanr832s+3t1UvjoVyvz9rm40iywmbnNINhi432yRRFohFFPmraeFEuTtO318ibVfZP9pEUlem2zUtu+c8cnenzs9e2MY0SUxOXU9AjTp37ezxDwbRlJpurTOYiNAkssyJgyUDTSpi0Inq+oF40LTEN0rDOQ113F2MGvoKmCUCsPNGnVJjC8fpUyzvEOlXHHm2m6BQd72/+AnSdxIkomRaUC4RxkqJE6uiqAYCVt1FkCUlR6fsyYSyhygn9AHFMjTaJYgFiBRHr44QSsa8yVfAFlDQSjpqu6kwVfIKyj6b5hCmEdq4oE0cK3g5xN97pnUPTLOanrxUAYn+YOsEJ/aKaAZknaweI4wjH7RJGPt3+Eng+uCGxUkBSIbK7nOppGfBYUXTCOJ1KChMc3+bIvu/KmmtK+SanFr9A0N3gtl1NwkAnKbvIkkyzdoCwNSTxfDB0CBNG/pCiJl4vjHyk3dMMWiq4EZ4/zOC+rtsjaW/SD2RcVzTG1Co7yVlVfN8mVmTqRkLdTNhZNpAQoFVLSRi5XQByZlU0sjzxAOXpAEoF+gHkHIECihVZHLNujyQKWdpVopBrUC3NYhklylYdN5RY2XgEL6cRJxGxo6PIMUNnE1XRCeOAxdX7Kean8EOXMIaevUpvsEw3denLVpXhVUeomimywvaJRgMS38HfdrLVmMTz0byIshlAJFMtz+OHHtdMBDz4xJ8zctpomiX2P8/PjkFDNZDTpieA9t4mjdo+kqUhim4gS0qGA1pafyj7v5KesHPmhvPNLE+zJAUk9aktT4378Ozo4x//OC996UuxbRtJkuj1enQ6na+7PBu6aOfs+77v+/jyl7/Mu971Lj71qU+RJAmHDh3i3nvv5eqrr346xjjWWGONNdZYYz0NklQJWX1q85KS/Nyb12w2mxn9f/fu3XzsYx+jXq8/y6M6r2/qevfaa6/l4x//OPfffz8PPPAAH//4x8cXZt+gYs+haoYUzDKOZ+CFMQt9BUVSeLgtrpXzupLVf3R75zDOlTCMIormo9aEW1QuzlBp7KHjyQydLXIqeIZM315jo30CWVa4fUY4bYom7tyK+SbN+sEMFVEuzlCv7MZxOjhOh6sP/Vuuuuz7sAYeapigWB6ypGCpCUmkpG3hKlHkYxol5qevoZCbQJYURk6bIHRZXP0HVEXPkBjbjk+9Iuqdds/dmMUHmUYpq7Ha6p1BV01ARNR0eucYuR0qxVniOMIPHVHXYlaolmaRJeV8bY0kkyQRk3UBr3W8Ho7Xxx5tUi0LAK5llNjqneXJs3ex1TvDxtZx4QgAiqJnNWBxEmGPWplDEUY+rtenXt5FnKQOWRwRpTVvhi6wGPZoU7TBm6LGqmDVRQSTLeoww9gnjiOm6pdhGWWqpVmSJML1eqxuPo5llMlbNTTVFAgEo5TBd5NEvJ8X2FmcFoiImlK+yfTkIUyzzFbvjEAVmFW2emfY7JzJAsQLljjpWEaJnFlhx9RVTFR3E8bnX2vodpiZvIJhWsMz8do38p3zHmZjhuDj/4fW9wsEjKUktHuLlAtTaHLCtdf8MNYoxC3EzBRCTAUe2hL7y8jpMPAlgliiagg3KoglakbMwBfQ16Ieo6UQy20XTYpkokBnfes4pUKTIBAoksC1iZMoQ6jMX/GdAERuwnR5PoOq1ko7KOQa6IpO4JrISoSpKsiGRRjDdF4EtK+NpKxmzzI8+oH4kem4Mo93FVBibmxGApwcCVC0peXJqSArMfnciLYrZ+OOIoVqfRM5ErFQra0nxeeRhUtmjzaZLUTYtRBNszLXEqDdXxTbvbonc2DiwCfyIOkPuGddRdcLxElM3qzihTGSokIYUzArFApNyoVpVjYeYaN9UhxnZ54k50O4Xs2+5zDyaZ9eAddHKhZBlWgPN8jrMkUtQVV0pGqZ5VMydD2C0AXPJ5dGqkWDTuoWBvihS2vrSfr2usDN+KLubspKUNLjs17ZjRNJTDcOUy7OEIQOu2ZvIF5epb2kg6ETxBKRIrG88TDyUKBl/vDhHrHn4MwKNzmMBKZHGdhsOAqeP8QYBVSnDyJbPv1BEU3LCTevtANZUuj0FxnYG8zlEyaqexgMN9LzzVniJKbXSEHEfRvCmMR3MKb3im3vuzihjKQq2EWNHYUYKZLZNXMDOT2PpSYUchOUClNEkY+l5UFRkHSD0JOQglAAtgOb/nCdfkFm7pYfJO4E2OEwjWhbZrX1GJXCDLIk4vemcuI7iOLzMWZPpy6Fc/ZcR2ksLCz8q7owg2/i4uyFL3whH/rQh+j1ek/HeMYaa6yxxhprrLH+r9ZFX5xdccUV/Of//J+Zmpri+77v+/jUpz6F7/v/8j+OBYCkitiX7W6gjifu1C29wEMrJfp7bQxVQ5Nhy5Mw9SJ2OcbzBpQqHYZFnbwlYmBGFQsnlLCMCqMQRpeLyCNDy+P5NnNF2DgwRdgpoSoGYegxM3klfXuNPbM3UqvsFgBFWaE4e4CTi1/ANEpIUYzhx6iaz+5v+1H6vqi9qZbnKVRnRbxLElEr78TzbRbXHkDTLEZON6u/8nybydoBuoPlC4Kct3pn6PSXmGkcwTRKKSyyn4FXg8ARXZ2aiLfp2wK2CqILKwhdHK+f1Wj5vs0orbMbOh3COMDzhzSqe9HSmKjteJxSfpLmxEGC0EVThQvghw5B4AgQrZ4HIGfVcLw+mmqltW0TBKGDKovAcllWcLx+Gp9UyDpJg9DBHrVYaR0DyDomc2YNe7RJzqrhBTZrm4+ze+7mLIYrb1bZ6p6hO1jGNMtYRpm+vY4kKTTroh5poroPQyukgeYWQegycjv0BiuMnDa9wQpJHOF6fRE8b1bZPXcjUeTTH24gywp5q8rI6eD5Q86tPYgsKVmHrD1qocpa5lRd/T2/ytSBkzwv9gkdh+GpgJnykCkrIUzge1/yLibrBwliiVHFQo5iFF8mp0ItZ3J2cR5VtygWmqw7Em2PDJoaxDAIxB9hAmcHGqosOvxUOSFn+CR6iKREXHf4lXi+jT3axDLK9AbLlIszhJHP2ZX7kL/nbNbtF/V7YOg0Cnm2umdo989l+53nWiiyQjQSgeZ7G7tR5Jir6jHt/iL53EQWyQSi5mzTTY/NNI5JUlRMNWZ9sJn+LeC6a46U1rDJmKbo+Ir0mCSOyOfquF6P1taT5M1q9vnrs8tZdFh/KGoaVVmnZ69mdXoAUiLck8Tz2eqLoPG8WcU0ypRNDdmwSNyIKA4ZjbbEcWKW2TN3k+iM9nzcs4+x7+EtpJ6ZfddBGIKqiG3nRiiyQjVXRJVBkhTkXJ71NfH5a5WdEEWEjkO1PI8+Oc8/tMS+U8o3ReeoVcU0ikhRTJCAqSb0XfE51tsncEIJ1+vR7p5Nj899SKUCJx+WIIqYy8eECtTLO3HT80jflyAKKVbaIoYpdarD7gZnBrKIHhvYxPaA2NHRdD8Ne3czOLOhF0TQuyoguOXiNCOnTbU0R9gR2yuMQVIVMBUkRUO18uiKTjgQET4YOsOcQtNKUKt9FNVg5A8Z+DLXHXkVnm/jhy6KrJK0B9l3FzrDbOZge1ZgZScEQ1EjqKmi9neytk8cf4pOzqxhKaJe8xmTIouD86ksz8FpzX/tuuiLs/e85z0sLy/zl3/5lxSLRV796lczNTXFf/gP/4G77rrr6RjjWGONNdZYY431NEjSpKe8oDzbn+JbT9/UTLEsy9xxxx388R//Mevr6/z+7/8+9957L9/2bd92qcc31lhjjTXWWGM9XVKksXP2r1BPqYxvbW2ND3zgA/yX//JfePjhh7nuuusu1bi+ZRV7DgNfIXIchv0yG45KUT9PxJxobNAeuQSxmP6QZIEo0LQcihLRrqj4gYPrD9CW1wljiXJlB31fYqreppBroCg6qqKT13V6tQTVT4GlRpGt7gKV4hyFfBO11qB7eA8jt8uwqItW/DiEKEbzIuJIodh16ftQbikicw8w02nGqX034/lDaqUdaKpFsTAJiIL+yfpBosgnSdEUrc4pMeUma0iSjOfb2eP1yq4sY1OWFSrFWWYaR2h3z7LZOU2rc4ogcBgMN9BUE1XRBcIiiegPN3DdQTYVJPI5S/SHa8RJxGbnNH7oCkRFHIkW+oLIu4yTCD2dWhg5bTx/SCHXwPdtLKNEz15FlhTCyGfodgRoMp363J6miOPzOZdRFOB4PeaaRwUyQdFTKG+bSmEGe9TC821yZpUnTn8WWVIYDNdEoXPoisJrBBqkVGjiBUM83yaMA9Y2H6M/XEOVBUpisraPOI4w9Dyl/FQ21TfbPB81stk5xZnl+9g9ewNDp5NmOM4wNXE5u2afR5xEBKEj0B39FUyzzMjpMHI6hLcsYqox4bHH6MU2w7bKwFe4eSbixp2HWfvuAe3nCchnu6IhDx0iPUaTEwpGicQ22do6ie8L0GkvLf6vmwlz+YRRKKHJ0HHFLffyUDTDlPQEU43R8iMiX+OJhc8ShC5qOlWuazl2Tl+HZZTZOXM9P365kxXPR84AQgFLrZZ2cOWB72H7JyOOFLwwIPEdRpHAHADMFwMso8yDj/8ZQaDhhBDFCW6K1FD0gKIeo8gqimWhyrDppHmXcoQXKvR9kUmpyAqKcn4K39DzRFGQYmVK2KNNpiYuJ6fCbNlheeMRclaNKAqyLNTJ2n76w40LkAzpQcX+yRTR0V9i5LYpGEVkXUzPK7KKpuVE/qghwMyd/jkkVSFe22Bl9SskZZeevcrI7TDyHIHRAFBl/NBHVwxUWWJ++jqix08QGRPEHVGETxiTRCFHL/8+kijk8bMzWSlCITdBLm2EIYoJYjFVmNd1vPQY7wciw7SQq5MkMcND+0j6No48C67PjVMBtW5IEDpp88uQQ9WIsLtJHCmst05lTT6RMyCIJTTVwvMGSGnjwaBbo2evZAgZTTVF45Ak03ZlXE/k9FZL8yL7dtTH7KnUTcS2cCPkXJFYhtZglcjuoMoJcqWKY0FRT4g3SxiFKn7oMghk9LQBoZCboGJVkVSZJAqxajHB1gr2aBMtbaSIU3cp9AQ6abvRpztYyZ4ThA45NaFe34cTeF/nF2Ssp0O33347H/3oR3Ec519+8jOki7446/f7/NEf/REvfvGL2bFjB+9///t52ctexokTJ/jyl7/8dIxxrLHGGmusscZ6OqRKT315jjtn1157LW94wxuYmprita99Lffcc8+zPaSLvzhrNpu88Y1v5PDhw9x9990cP36cX//1X2ffvn1Px/i+5SQbFqYaE/RaRIGOpQhkRk7PEwQ610wGDAKJnArLtoJZbRIpEMw28QON8iDCC0Tk0mbnJGdsBUkThcz7KxHN+mUYegFNFQXQM0sxoS4AiFa+Tr2yG9Mooms5YkVmct2hlG+yshMGw3UKhSbOcAul2ycKdMJ+l82RTm8qEBDYrnCJtgvq55pHBaTVtynkJujZq5TyU9ijFiO3nUJlz1DITWAaJXr2GiAaA3JWLStwn5o4hD3apF7exWDUYqu7gKJoFPOTVMs7sIwyup4nCF0URYAnfd9GU02aEwcA2DlzPb3BCiCK8Q29gKqa5M2qeJ80PgqEO1Ut7aDdP4fn2wShi6Hn06ikPr2BcM26gxXyVo1CbkLEQakWfugydDq0e4vYoxa6XqBvr1EtiQirvr2Wvb89aiFJClu9MwAEoSucr/oB4iTC8foZMFZTTXoDAeX1fBtdNZFkBUPLCxcufb3J+gE2O6fJW1UURadrryBLwqlb23yMIHSyJovpxuW0e4s06wco5adYbT1Gb7CMPWqlCJE+cRJTzDfoDVYw9Dxh5HOw5lMzYwgjamadKJK4thFyYPIyhk8+yE8c7aDvX8H2FZQoYXNnFcWXaVoJtbzAvZxc/AI3Xf1agCy2SZMRrwtUDQF1LWkxj3XOP67JCarug6+y2nqMqYnLcT3hGmlajvsf+yRrW0+w2TnJdCkPqoKsSsJFiiIsPY+i6JTyTWLfR04L+od+hKRb5BSBX6maAg0Sx6K5BaBmQBgnmKpoUIh7wilVZIU4iS+IfQrSAv31gUXflylbNfJ6iOuaSJFMMT/FzpnrSZIISVaIk4hW5xS7izE5FXZMXYUsKUxU94pi9cI0/eE6plECRYEwIZFUEQXk+ezIJ4ycNpIkkzNrNIrTACROlGErLKNEb7BMb7AsBqko4PoYehGr2KNcmKaUb6IpKgwdJN0AN2Toh9TyDfK6iuN1iR9aJRgMkIqqgOLmTUK7w4mbhEMWDAUg1Qvs7HhSFZ3AtdPtGDNf3k17uMFk/QB1Q0BoRaONSbsmQxgxP7GDZKVNyTTwDDnD2+TNqgACRxH1kk2xWMcySiLCLYq4vCpc3688/t+RZAWl4KCbwvUwtHzmQsdJRM6q0fbA84dsdhbY6p3BHrUIey2xzdQk3d4x0aBN4npsDrsknS5hLKFP7iRWRGPInlMjEkUmikOCGBTdQkkbjgCSMCbZ3EJt6ER2F0016dvr+KHL5OUnyde3GLZVFEk0FXm+jaZZyJIiMDhWjb4vcfzmIsozdMEjKTKS+hSX5/jF2Tve8Q6Wl5f56Ec/SqvV4tZbb+XQoUP8zu/8Duvr68/KmC764uwv//IvWVpa4t3vfjfXX3/90zGmscYaa6yxxhprrGdMiqLwPd/zPXzqU59ieXmZV77ylfzqr/4qO3bs4OUvfzmf+9znntHxXPTF2R133IEsP8eJc8+iIrvD4WqMYhWReiZFPc4QAwD7SiGaLOJPdpUiztwSEFgxG3WNOFIY5gTwVcuXeOTJ/8WJrsyJG3XqZkJJE6DZKPJZXj/Gud6QwkqbRInpF2RGgw0RdRKHOG4H1Q+RoxirPoNieQIya5h43gDZMKkuCsyG65pYpT7FfBNNy2HoBeG6rJ+l1TkpQs6DIfZok51pTNRm5zRDp0O9vItqeQd9ex3X61MuTFEpzqR1YetZfdja5mNoqollCsiq6/VFHVUckMSRCDeXNUZuV4SU6wX6ww1K+WYGljy7ch9xLO6Uu/2lzE3yfJt6eRft7lm2emcIQie7W51pHKFnrxJFAeU0Rmn7rjtnVtA0Cz90aG09KdATSSRgs5bAIsRJlAFSLbOM6/XoDlZwvB7L6w9nENjJ2gEa1X1oqkmlOCMiqlQxhiB0KacuiKHlaVT3CtSApOC6gifo+UOiyKdUmOL0ORHaLtbbabh2D0PP43oDPH+IlAbPm0YZe7RJd7DMVneBammWcgr2tUeb+P4QyyhlDl3OrDE1cTlzeeHuSJM1nNUF4lDU/W4MVom6bYp6jJyiJNQoQQ1FHVbNiEl8H7XaZ9fsjSx9Z5VztowmJzhRimYw0qBr+TxSwwkFyHUrxVdomo8UyTQnDuL5NhPVPRzc/SKeOP0ZZhqHKeUnCSOfli2cFkmFJApINtpEccRG+wRWfYbIF3U7hukQxhA7Ayw1Ieh1GPgKQSwxWdtPnCIrnPMlYwAkSkzHVYjiCC/0Mgjv+kgWoNxIYTTKk1MTFFkVNUpKRGL5jNw2C8v3YI+28P0hhpZHlsTnnLISltcfJk4iVluPZm4nQCnfFG9uKkhJSOhJJFsDSnqCplpinw5s/HaLJBLj9kOPhx7/M3qDVRG/JCmM3K6IaAKOPflXTFZ7yCkMN0j/L0m3jyJL+O0WbhixsHQPwTmPctFFUmWK+UkII5IwoNBWkRSVQlslCB3yZo2+vY6h57PoMYCGFeG2luiMBrQ6pwAoF6bx/SFhJFApycPLaKoKXZ9GcQbDE7ZkLlfH8XpsecI5C2OJglXP6rKS0YjDtRDPt+kNVohDn2Klje9aeP4gw+KIGtA+++ZvpWaAppqUC1NZvSjA9Hpa16UoYKrEjtifnuxIJCOH/ZUIvdbAcITDpjg+uB5dRxyX/e45osin0ztH6Dhg+yRhRNwJkNKIJllW6A/WKOgRk9UeUSThRx6KojMYbmAZJVH7GQu4cj+A77r2FK3hMwOhfcrNAN9EQ8AXvvAFXvaylzEzM4MkSXzqU5+64PEkSbjzzjuZmZnBsixuv/12Hn300Uv4of9p3Xvvvfzar/0av/M7v8Pk5CS/8iu/wuTkJC972cv4xV/8xWdkDPCcTMQaa6yxxhprrLEuiZRLUXN2cW85HA45evQo73vf+77u47/1W7/FO9/5Tt73vvdx3333MTU1xYtf/GIGg8HXff5T1cbGBu94xzs4cuQIt9xyC61Wiz/90z/lzJkzvOlNb+IP/uAP+Mu//Es+8IEPPC3v//U0vjh7FnRVwxexK7UhU3lxx+GFHrIcMZOPcEKJupGwNpL490dXkSKZ2RUXWRGxL4Vcg8DSqZd3cfrcHM2ZJUp6womexNDZpFqeJ2dVCGKJlYOToIfsOjMiTiIss4LrD1AUg2Q0YlAxCftdCos5wsiHKKZnr9CZzKOGCf2dk5imi7NZE26PWcgiWAbDdQFW9YfIkoyummx1FwRw1azQrB/A9Xqp49MUr48IVtb1gnDEYlF3lTNrWEaZxdUHiOOIamkH9mgTXTUZuh06/XOsb55ClmT69jpxHKGppniOnhfdknFApThDf7jO3NTVhGkdV5x2Rl2+9w5K+SY5q0Yp36Rrr7CxdZyZxmE01czqecqFaXJmhZ69hiprFHMNZptXUiw0M7ilJCmYRhEQHVbL68fY6i6wtnkcVdGRJYVifpLeYBnXG7C2+Tidvogc8nwbVdHpDVbIWVVmJo8Il7GyW3RMum2W1h/Kop9kWUFRNBHuvnWCiepuAeOM/KxbTkq7SqU0R8XQ8hRyjTRCKy/qEDWL3mCVrd4Zosgnb1axrCqbnQV01WTkdlnbeoLV1qMU9YQtF5IwIlg9i6zCiZ5EvSBcnY2RQtFyUeWE/Ei4JQU7QZUT/N4mc9NreL44kbqhjJrWkl1eFW7buiNxZqCy7ojxbscfCZgrmKZL3gbft/F8m6ErorUmKnvY6p5h6HSIkxg3AsIIVBlZt0iGHoZqoKkm3bpFEoVMTK2Qz41IzT3Rdec79Oy8iI/KN5EllShSsto4gLKegBJnjh+I36G8LuOGMnJZuCzesEBRi7PxK3KMZrrEcUSjupcgdJmauCwDJM/kQ0YRNOr78X2bWmUnYeQzNXE5vj/E9XoCEAsoSkzgiRglEIH2YeQLx8g/31nWHm7QnLiMammOKAoYuR12zT5PxFmZOvt33s7uUkS7exZ7tEkQBedPSKosQrsRnaqqotNZ0qg3JJIwzupEZcPCLovP2Xx0iWppnlbnJHmriiwpolYOWLIlBoFEnAJ/ZUmm70vkrRoT1T1UyzuQfJVgYUipUSNuuRiqQbuiCletWCDaHp+iYKoxiqITRb7oyvZ8JgrCbaqXdyGrOroWEDkG7d4inf657Pwg4sqq7CsHGHpBdGOHLoVcI4MX7yqeLyRMwhBfhUfaKoTiXLzWX6I8iJgrwqiep9M5Q9EU9Yalyg50vUC9sgtvY5HtosTITUiiENvZIooCTKOIpSbsLkUYuZiCUabbW0ZRRPe1H7pomsVk/SBNK+GKWsCifdHR19+c1GcepfGd3/mdvPnNb+YVr3jF1zyWJAnvfve7eeMb38grXvEKjhw5wkc+8hFGoxGf+MQnLtWnvkBzc3N88IMf5NWvfjVLS0v8j//xP3jJS16CJJ3/XM973vOe0VKuZ+jbH2usscYaa6yxvlUVRRH9fv+CdYZhYBjGRb3OwsICa2tr3HHHHRe8zm233cbdd9/N6173uksy3q/W3/7t33LLLbf8s88plUp8/vOfv+Tv/U/pop2zj370o3je1/JXfN/nox/96CUZ1FhjjTXWWGON9QzoEsU3PfTQQ5TL5QuWt73tbRc9nLU14dQ2m80L1jebzeyxS61f//Vfp9vtfs36fr//rMH1L/ri7DWvec3XDT0fDAa85jWvuSSD+lZW7LvMFVVi32WyuUrJtAhjAcWcrPZE0bWjEsRiGmgmH1JrC6u8u9FEcVR2TF2Nt7JA3qqx/4sRjVzIQl9mzRYt3RNprmR1+4bFV4kVmVyuThxHlAszmHqRKPRZmZNhYoKplSGN2j667TMoL3wphh8zzCms74zwA40rrzjB3NTVIi/QqhOlRcf2aDObXvNDF0XRURQN0ywTRj6KotO31wXIErKC4d5ghWppByO3g/r/Z+/Po2276zJf+DP7bvVr9/vsc/bJSZ9AEoghiRCIgKCvAloWViGdCgOlypISpEq5ClchUDrsCt9CS0W9qGXdulzuyxVMETQigTQkkP6kOe0+u117r37Nfv7mfP/4rbNCJISctMRazxhznLPXnnOu32z3nM/3+T6PajDw5UXnOfWxCeUIz65T9haI4gFJ4tOoLaPr9sTWQuZZRohxuXRl4bKJiWV/uEEQdRmFbeLEJ4z73HfkegCCsEMU96mVlsgLgR92KLkzDPwdKqX5iSGubZXJC8H6zl30hhtj4f0Ax6pgGA71ysrY5FKjUVshySLqlWVsqzLeDyZJFhHFQ1RVlh2DsCsbKMbi6SDs0u4dR9dMdrtHKbuzjII2jlXBtiqoqly/ECm7naPM1g+N998WriNtDU4LyePEp15doVyaJ81CeqNN8lzgWFXSNGQU7LF/6XJK7gyqqtHun8QyPOYaZxPGA6rlRZrVAyiKSpbDeqeCUq+S/tmtxL7Cpc0cVVFRXJezqjn9kcc5NYGxsUO/rOEFUrwtgiHn1OR54lX6zLkCV5eGs46WM0xU1kcqO6EsGaS5NJ8FJhmbQmg0eimKotEbrFMrLWHqsvR+2hYligfMe+M8zCxHNW0YJag50jxYV2RZ002wdXkNFUlMJ1LJ43Dc0AC33/dXkxK1oRayVIo0zkWTDTuWbpFkEZ6p4pkmdTubWDdoRsKsK6TFSqJTcWIcb0RRCJlFabjsdo/iB208pz4x3pWZqFuMgj1UVWOn8xCm6TEK2tKENsvR9YJcQDFK2V9OMQyHhZkLpE1I/EhZs2RVUBUNP+pijK+RVvshEALFMgmjHo4Otco+ilyQiIxis4PqeDBKEbkgaZ0kywuatVUAZvfJfVb2ZsGTZc/m/lPkSUQYdce5uTlhPKBe3U8UDxBZTDfSGSYqYtRDVxXyQuZtDkbb+FGXTu8kACIG1dIpInleLW9GeE6dZG+Lyy78l7LEHMhtnG3IBhmAoj/CMbxx+bZD7jkkqYEx0lnfvktmC6fjknMyIoi6ZLlCu39yYmjdH25SdHuoO7sseZkscWY5CMHR3ePcerIBgxHzTsF6r0+mKyxVF1g7p+DmOz9JksUyV3bYots/RXdwiiKRZr3ECbkAhEBTDVnKreyjakqrFq+RkWQR+xYvoeQ2ieIhjcoKRS7Y6x6hbBZk+bNoTfE0+Zxdcskl9Pv9R02/9Eu/9KSH9c0lRZDlzn/62dOFL33pS4+ZER5FEV/+8pefke/8Tjjjsua320Hr6+tUq9WnZVBTTDHFFFNMMcWzgNPM2VOBqqBpGpVK5SkPZ2FhAZAM2uLi4uTzVqv1LWzaU8Xdd98NyOea+++//1HMnBCC66+/nuXl5af1O58onvARueyyy3jRi16Eoii88pWv5EUvetFkuuSSS3jZy17Gq171qmdyrP9scNqk84JGymx5iQVXsgYHK/KV/XBXo2HlODrMOjlWnLO2YlPdliyBZZaxzDKbrXtobd3LjF0QZSoLpYR6ZT8gzU4rtsWokWGPVI5eoJM2q6iqRqd/AtNw0U0HozJib8YiM3VuuetPiZIh6aqMaQqXfSzPJ/RLrJQKHr5ynqzioWsW55/1Gly7hmNVxtYYVZwx05MXOVHUnzBUlulJS4wix3UaMtJkLNR3bWlJ4ToNaUqraMw2zmave5xMJAz9bTTVwLYqzNQPcc6BawiiLqZu0x2sU3KbaJrJxs69HDt1MzP1s6l48wRRD8eqUK/sI0kDLKPE4uyFsinCqo5Zv12CqCfNMzNpxuvaDQzDIU58ksRHiBRDt4kTaRWiaYaMkBmzdbZdndhvOFZlsj7LLE1YQc9tEIQ9+sNt0ixCUTSq5SX2zV+Codtomomh2zSrq/TG5qFZnuLZdarlZfyoi+vUSdOEUbBLb7COphls7txLUQhm6ofQNVOaAA836fZPTWJrQLIHo7BNFA8nbf8AtlUhTn1anSOSbUhGkyiaTqQSRw7eBVew9nUTTYd/vb9GMt7uuutiGCn7vBzDq9DoZfiuhq4WFEkojV5Vnf11H2N8l+nE8j+tUOPk2n4e7JicGikc7umE3+Qa4OogchVtfZM49ZmfOZ/u4BRh3OOhE3+PrhqYuk2zegBTN2X0jq6S9ncngmzDcCb2HuudCrpacOWBiyiCgIYto4hyobHp60TxUE6BFHnr3/TuqWo5hlIQZzEiz/BME03VWHALXFeyM5VaF0MtEHnGcFjhZYsZceSQiYRqaQmAJPGZa5zNwG/xyW8sTExZbavCFRe/mfWte2lWV0kSn3pln/zy6Jt8PSLBrAPhhCUdoWg6IpA/l+wqYdyj198gjAeoijS9LTp9iv6I+499AUeDOJVWFp7pQFaQJxHYmozcSmIsXcV1GqSxgqYVKLbcP2QCpTEjDXY1HT9s41hVdNUYN+ZIQ1fLKrO3O0fZzCnimH4kKLkztCOFOPXp9Tdo1A6gCvA7Oqqpk2cFiBytN6DdW8OyyiRXXU2aQ9Hq0LQLPKdJb7COacpjJPKMOPXRNBPVD9HUnFyD+Zlz6Q42pOm1XcUP2pS9eTqxihApLzz3ddTKS8zUD1HECYZXkadMEMJINiF0Y7Dvm6XYHnF+PUFXob2Q45geXq2LY1Wojlnr/miTJA1QFQ1FM+QxixMSX6XIMubHZtOjYI+KWXB2NUWzoNQPGI52GAVtVhYuZRTsUi0vk2QRG75KK9QwlOLb/g3554yDBw+ysLDADTfcMPksSRK+9KUvcfXVVz+t33XppZdy2WWXoSgK3/d938ell146mV784hfz4Q9/mF/91V99Wr/zieIJM2dveMMbALjzzjt5zWteQ6lUmvzONE1WV1f5F//iXzztA5xiiimmmGKKKZ4haOqkO/hJ4wy7NUejEUeOHJn8fPz4ce68804ajQb79+/nPe95D9dddx3nnHMO55xzDtdddx2u6/KmN73pqY3zn+D48eMURcFZZ53Fbbfdxuzs7OR3pmkyNzeHpj3FffMk8YQfzj74wQ8CsLq6yo//+I9j2/Z3WGKKx4Jq2nT8XVbsRS6oddjonmA7kAf/inF003ag8MIGhBksVKrooiAzIUBBOBm6Zk1sCg4f/Z98n/WvWH/gHJYvf4DhvgOYxwNsq8zRbozXbKN05vGabaDG1gWLeLtNovHyWfdcAgdUkXPlJT9Jnmf4m3U2FsEry7fhNDUxFNBKISdWPcpHdjANl52XvoCdr/wnapUlDN0hjAdjQ1ap+ah48/hRl5I7I7Vqdp0g7EzYte7gFEKkaJpBf7RNvbJMnPjj+CNpk+FYFfSxju34+i0YuoWu29Qr+1EUjTQLScaRL65T49T215mtH6LkNsdmrBHV0gKG4bC9d3gSnB4nPpbp4do1tvcepFqWVHqcjGTbfp5Kfc44Yslz6mPLEA3HqhDGA4Kwi2V649b8GTq9k6RZPGEGDyx9D+3e8XGclk1/uE3Zm2MU7FEUgijuUyktcGLjayzOXkC7fwJVUZmpn0V/uImmmWzvHaZeWWGve4xGbZlKaYH+SDJwzpi1EyJhFOyNg6hl2LMMwK4Q45PlKTP1syhyMbHxsK0qeS7QNBOzYjMK2iiKSm7kpGnI+fWUG4wEcDhyGM57AYTfuBmEQF1epGRVqTgy3ubEoQpz7ZTqUMYhFSLjob6CbZZZKQm2A4U0hzBTaFgwSBXy0GRve4ndkc322ceo2imOVlAxC4IMQr/E+oP/h2T6Bqc4tPK9tHsnAMYGxDISR1N1aSAKpG0Z3ZWQEcYDfFcjT0JCf5asIk1bMU0pLervAQ1agUq1vMhu52Fq4tV8favENUuJNM3NQBkHmZ+ORwIQucDRwTRS/MBlvjbE1mDP71EuZ9QtgW5IhtE0XFRV2kzE4xD4yj11Ln7ZOoC0jPmeS5m//xDdwRqKorLXPQbMUYxSQMewCkBhvlwnTUNpsGtVUC0HEQwpohxDwPH1W6iWF8gLQbt/UlpbZHL8Z+9/GVkOw1GL5fkX4CoORGO6Miso2VWibg97aZbDR28g2H8RbiWHmslwJDVwYeLTqA7QnSXuO/J55pvnMQp2yYucOBlRLS8RRj1EWkdXQXFdjg4k09yOFNIsYqa+Klnnhk84UHEboNkKWeizs3s/1fICQdAmXPboRCqFL5vPqqUlGrUDFLmAIMTUbeqVfQRhl9xz0LQ+qoCdvYdoVFcAKHLBTP0sTMNlzvG5/Hc/hvFnDwHQHayBtsiJQxW6kUbhPzrwutZNKJSILFeYLcmoKhMdw0wYhW1AxpA1agepV5YxzRJ5ElJEAsWPpP1JkhDGfRnflAaEmdRUihiSm78q71l2jc7gFEni02ofZd/iJYQZ1CuCIOVZwekIpqeEM3w4u/3227n22msnP//CL/wCAG9729v4sz/7M97//vcThiHvfve76Xa7vOQlL+ELX/gCp1G9zwABAABJREFU5XL5qY3zn+DAARnbluf5d5jz2ccZa87e9ra3AZJmbLVa37JR+/fvf3pGNsUUU0wxxRRT/LPDK17xCori25dtFUXhQx/6EB/60IeesTF89rOf5Qd+4AcwDIPPfvazjzvv6173umdsHN8OZ/y4/PDDD/Oyl70Mx3E4cOAABw8e5ODBg6yurnLw4MFnYoz/rKCoUjemOx5LJRk4rKvShPbShRpZDh3fpm4LwkwlyWKsIGVxKyPXQAt1dN2i21+bxCZVzJxz7miR5tB+aRvHqZMXOUf7BucvdlncDNA0gb7bQRMFmibbODMRUzgJqZOTayqG4VKprbB6IkCYOXHkoGoCw0gIBKiqwN63Qxj1qNdXmbvgCBef84NYZknqW3Ih2SinQb2yQpyM2Dd/CUHYoTtY58T61zF0B9euoypSAzLXOAfHqrA4eyGjoE29skJeSANJw3CIU8lwqWPTV8+VAci73SPMNs6exBXZdpkoHuLadSyzhKJI41ZTt1FVGXnVrK5SG0c0GbpNkkX0h9vMNc8mzaKJnkdVNUpOkygeTExe/VB2wamqRp6L8bF8hE053Z1pW+WJjmx95y7SNERRtbEmrDmJmlIUjZI7ix928NwGeSHGAejpJNx84O9QcmfoDk5Nwt5Ps0fnH3zluOtzRBB1MHR7YrJZcmfJc0EmEpq1VWkwG3YmxrX1ygqG7jAK2/QG6xNDXcv00FWDSmmeK/YtoI1ZI9/XSWIFxXMobjuBoulUnTpRJm8fUSMh0xQ6NYMr9kkGMsxU+qNNmlZB1SyompIx68Qq7UihuQt5orP/q0dp785jqIU06SxLxiruVjl26hb5/UGHucZ5zIw7VcO4j2NV8Ow6pmah6LLjT3PKYGv0gza6ahA6oGg6pi1jeE7rswCKOEYIjXas0OmdZOBvo/Rteq15ykaBrcltEIlBWiiIXGDqNqZujbcPvncxRQiNKFMZpgq2ruGZGWdVcw7Nd2X35JhlSbMIdRyRBVLXliQB7f4JNFGQZhFx4lMpzUvGNspIdzMsS/4BK0LBKB5O2FFDl92Tiqaj6JALgevU0TSDhZkL0FRDdtbONSjaQ+qVFdICZuoH2esek7FJWUERBJDlmOPw7oY3S72yjMggFwrYBs3GfoqdIf2ww0vmMwbCx9AdTm7eztBvsThzAfPN8yZsby5UZhwZvbThq+ybv4QFtyBNo0l3te2OCAby/BGR1L49ePyLpFmE6za56OAp2oMSRCkVsxgbMZsT9lFTdcleRz20MMHSBcwPmG0cmsSvtTpHyAvBrXf/ObNOzv/7pgYLy5fICLtCkgpRNZMmw5mQTKWmcf5MnXRrjbyb8kDXYLEqCQeRxMSRI2OgnDpLXkYcDyY6ONWRrE7Ri9D0AuKEwWgHz6mzOHvhxHWiv2VQbPRJM7k/VEWl5DaZqa8yHO2gq1C3H21+/IziabLSeL7hDW94A91ud/L/bzf9yI/8yHMyvjNmzt7+9rej6zp/8zd/w+Li4jPW2jrFFFNMMcUUUzzD0NSJNOBJQ3n+hQ19c9Xvn0VZ88477+SOO+7g/PPPfybGM8UUU0wxxRRTPFvQtKfeEKA9v0maEydOsLq6+lwP41E448fdCy+8kL29vWdiLP9LIE9DHNMlC32qlsoolWUL13Ao2TUAosimbhWUzZzNYURmanhDKTA2Esb0/hBDd6iVltBVEDXpL3PhwoA8z1AVlXVfxVDBL5vYdoTmyJKKa9ewzTJDfwdtZIKZkWsKIosRjklmahx6KCHZqzPsNYgjh9s2SjjeCL9XR9dMFMMgSY1xybBLf7hJuTSPqmjsdY+xtXs/rtOgN86WDMIe5XJzLFSvEic+1fIirc7DGLpDnIwwdJut3fvo9E7S6W2gqwauXZemnDA2hZU5e37Q5vDRG5ipn0W5NEeaRrh2jVGwx9beYeLUn5R+tloP4ToNsjxhe+8BXLuBqmokiU/JbQJQcmfG06xsbBiXRk5bb2Rjg10/7NIfbaMqqhTcJ7LxIQg7Y/PPJpZZGpcoE9IsYrctt9EyPUpuc5y3GLKxIz12ksSn0zuJodvSeFbR6A83xjYly+Pczx6uXZf5kvWDnNj82jg/UOZl9kfb+GGH/nCTVudh6tUVHKvKKNgdW5Lskueypb/dPyEzNw0P0/To9NcmNh+nS0dJFnHhwoC0v4tlCfIMtOYs2BpaqQ4ip25nHB+qqFqO0BRiE0rYqKbDOy4M8C55KWkujTf3eTlpDvd3NXYCFee+B6nuaux1jkDHI80V7u7Id8VhoqElKrXqMqryyB+NB479T6xxjurE2kTVKeKYPCsoxnmMo1g2uwgnw2osYNsRb75AJ/6bL6C68hrQag1sO8JQC0zT4+C+qyiNCrSRyW6oop8u0wiVE0OVjr+DyDPmykvEWcrxgca8IzDMhNbeDN1IJctzdLVAUxWyXJYy8zzD0G1cu0ac+HR6G1iJNLbVNGPSzJKJhGIsrJcbkZDFCjXpNEORwfowYxTsTbYdoBDZozyqSu4sR9e+Qr26gmWWUOfnoRfjWDVpTTE2gbYdR9ZWhQBbo0gSKJeoOtK+ZXe7QNXGJdVxGb9kVZh3BB1/d9Lkous2R9Zu4vjGrdhWhfse/htULcczTYrBkEGisNm6h4pZTK41Q3fw201EBlrFJh4oZMPORFYQBG2qJsSRvH4NFRy7TpELsjyF2QYizxAiwTRcRBLS6VeYmW0RRF0UVSNNQ6qlBRyrylVX/1s8U8M/dh+pY7LVOoyuGiAE1V2NdV+Vpr+6Omk2aPeOk2cFgxTEoA+atF/JElPKGkTOgqdyfP1mKt6CPE9FJq1cogyRKRR9eSwVRcoqAPaVdfq7GmQ5tlUmzSKG/i5brYew7erEpLtuQZw9vx94nk8466yzeOlLX8of/uEf0ul0nuvhAE/i4ew//af/xPvf/37+4R/+gXa7zWAweNQ0xRRTTDHFFFM8T3C6rPlUpudhWfObcfvtt3PVVVfx4Q9/mKWlJV7/+tfzP/7H/3jMqMpnC2e8R1/1qldxyy238MpXvpK5uTnq9Tr1ep1arUa9Xn8mxvjPCoXIEHmG7njYusYwUTm3+gh75ujy/1XboGpC05HMQa6pCDMnmY1QVR1nzLJttO4hyyF0pZHnglNgO7XJ951bzXGCDEsXCFMncBRKpXksq4yq6qyeiFBCk9jS5FvncERsaeS7O+gJGNseyd4jx9XyfPqjLRA57Y3lSZzOaXPWSmmBemUfrl0jzULSNMS1a8zPnDtmhVRanYdRVQ3XblAtL9IbbqKPRfoz9bPw3CaN2jJZntIbrFP25sZxPUM8u05RCEzTo1yak9Ycikq9sky1vESlNI9n19FVA8eq4oddFufOZbN1L3vdY2iawdrWHSRZJK0jxhFK/eEWQiTc9/DfkyQ+rlOn5M5MhP6ZSOmPtiiKHNNwCaIeeS4Y+ru0eyckMycSBn6LvBCU3Fmq5aVJhBVA2VvAtRs4dpWKt4Cu2zxw9Kssz78Qx6njB+1xdJVPnst1bLbuxdAdZuoHUVWNKB6ys/cQSeITRn0ss4Su23jjZgNF1aiWF0mSEVu7hwHJpmiages0KIocx6pQcmeI4gGuXcc0XKrlBZLER9dMaW+i6rxiKSG+786JKF0ZG5cWIiNX4WClYH2kTuwmrASS9iaFSLl4YT/Fy09gqNJyIM2lRcxOoNLqVvmH2/4zjcNrJFmAE8Lu0OXOlkUoIIhNVMHYIqRNpbxAu3+ckjtLf7hFGPdlRJhVoerUQQhSX0H0OpAVtIOUenU/Tr1HP+nT8CIWq/sJbuqhaDoXNVJUp0wQSMauWl5i38KLiE2FmbagE2tkuYzQURKdQaLwxRNynxRRjGtKG6ELmlKnkgsNQ4Usl1Yg8dgI98JDrwWYNF8Yus38zCHu/7v/gmdqnL3/pSzOXkR/VlCvrqBpxqRxAFujt20gBKhagaLD2lDHMj0Mw0HTDMmaiYwiylFsi/5wi73uMRRFpdM7+QgLlxXUGqtsBwqaZuLaNcyS8wjjpquIJIYkIREJZW+WOIE0VlB0FU0zwNZoeLPshBo7fsrq8pXUKysyyky3qXhzxKlPZ3CKPDRpeHMUccJ2oOA6DRxNmh5Xy9KUt9TRCYMCtWySZwp5KJsd/KBDFA/oJ3K/MkppWgVpGhAnI9ngM9vEU2RjRn1sm6FpApGrqIrGYLhNd7DBKGyz036IY4dK6KoKms7Rc03OWb1GsnSaxuKJvjSh1TWUkmTTTN2W90ddYd4pSFonUUJTnve5hsglQ3tAb3Jo/8s47+CrZDXBtOU6sgLLk2a0zdoqceqzvn2Y4wOVhjfLaFCgXLg0MYWulhaolGfZat1PyZ2haRXMl+sEzxZzpmtPfXoeNgR8M170ohfxm7/5m6ytrfG3f/u3zM3N8a53vYu5uTl+6qd+6jkZ0xlrzp7NVPYppphiiimmmOIZxNOhOVOf38zZaSiKwrXXXsu1117Lz/7sz/LTP/3T/Pmf/zmf/OQnn/WxnPEeffnLX/640xSPD0XTKVkyg9QxXTZ9nctmY/IkIR1JM8tKWWpmmpZ8C9cTwd6MhRGqWN4IVdEIo96YlTHoRPIwOjqkBSTxCEN3uGuzwiBRSC2NONOIXWnjUZRLqLrJTP1sAKwQKu2AOBmiWjalzQ7q7DxpKUNZ3aPSL+i15vn+Q32qtS4nNm5FJCGaE2PqDp5dZ2f3KKqiMgp2x6HcdUbBHp7TIIwH9EdbbGw9QDzWeUlt2lEM3UFVNQb+DrZdZa97jIq3QCYStltHcJw60TiOZjhqT3RfeS5IEp84lWxPGA8mrfxpFhKnvjR1HQeOizyl5DQnlhyW4ckAcEVDUTXqlX3SbNaVOpDuYJ00k2Hhg9E25dIcy3MvpFpenISSF4WgVllC5OlEA+SOGc3eaBNTdziw9D3MNc4Za4oEcTpis3UvvdEmldI856xezvbeA6RpSK2yj5I7i2NV5Bj6ayzMXEDJnSXNQsJ4wDkHXo6hW2M7BYudvQcAGX6uaQYVb57BaIfuYAPPbVDxFjB02f5/2uRU7qsteezNEvpYw1f25lDG9izWpoyRKu5ZA0DVIf6j/xeQBq5ZnpGOG5zUXY/KyRaZBmlrHcV0KFtlXjCTcl49IcoUDLVgN9DJcgW/V2dh5nwMw8HUXawkR1Plyh7qqWiaYLYtDVJXl6/As+usb9/J9t4DeG5TxgtlEYbhIMIQTBNVLyi6fRilZIUMFTeMhH7YmVh+hAP5B+g8bBTdwBoHl/eHm/jBHqkJlV6Mo+VEQhqG6gkMErD1gpJVphAZpmYx7+b045xcaDjeCF0t2PalDchuqHKwUrA0/0LCqAdAxZsjjAe4ToPtvQeIs5zdzhFpr1EZsrP3IBVvnmp5ia2WZDyDgUoyrqqIqGCQqORFLvVSgGo6j7q3uHYNRVFxnRq2VZYMaKkOWU5astnoS21nf7SNaumgq9J8dZQiwrFOL5eB9ZoGg64CliFtJ8ZRUl88UaJkKMzPXSj33WgbIZLJ9ejZdYxQpWSVQQhObCxK9lwv5LXk70iLmK/dyWgAatkiFwpFEhPGg4lNjaFCOihBJDirmrK+8w2yPCXPBda+c8lCn9n6IY6cuAVF1RBCQ1NzsjHz16ztp+LNAZCZUHXquPvOwZvbJYz7FEWOOtskGLa4ZimRZr1ZTpEJdoeb+EEbRYeyWSB2tinMTMZljRyqpUUKkRE9dKe8F+9fmLCUytlyf+tWQdEeEYQddNWgUVukH8njJgSUrv3/sDh7Ed5pHZ7hsDh3IZ3eSeYcgSgEc843xXdN8azg1KlT/MZv/AaXXnop3/M934Pnefz+7//+czKWJ/W4++Uvf5k3v/nNXH311WxsyJv4pz71KW666aandXDfCZ/4xCd44QtfSKVSoVKpcNVVV/G3f/u3k98XRcGHPvQhlpaWcByHV7ziFdx3332PWkccx/zcz/0cMzMzeJ7H6173OtbX1x81T7fb5S1veQvVapVqtcpb3vIWer3es7GJU0wxxRRTTPHM4enQnD3Py5r/9b/+V17+8pdz8OBB/vzP/5w3vvGNHD16lJtuuomf/dmffU7GdMYPZ5/+9Kd5zWteg+M4fP3rX58I5obDIdddd93TPsDHw759+/jYxz7G7bffzu233873fd/38frXv37yAPYbv/Eb/PZv/za///u/z9e+9jUWFhZ49atfzXA4nKzjPe95D5/5zGf467/+a2666SZGoxE/9EM/hBCPvLW86U1v4s477+T666/n+uuv58477+Qtb3nLkxqzapcIU9mhVbKqtGOFpqNJM0lNJ8uhbkvWoGIWZHlB7BrooqDRE6iqIE0DMpGMTVJtBikMyjqnBiZhJt/C0ixk1GvwsqWYVlN2Vm4sGlRGOYOahWLITsudeRuhQeqYlL15QMau7MzbOPUe4aCCHecgVEIBC6VEdl1Vq5RrHfywQ5yMqFVlx5I2NlsNx3qmUbBLrbxEvbKPlaULcawKmmZimR6W6dEfysgdIVKKcZxQGPcBOLB8CVE8wLYq9IabLM6dO2ZEHIoip1peBGAUtCcM2WkGK8+FNOMcRzUVuRiHlBsszV6MEAmqqk1MMU9/50x9FdsqU/HmGPgtLMMjigdYhsco2GWve5zuYAMx1pIFUQ/XruEHbTynjhApnd5JVEXlxMbX2N67nyDqIETCbvfoxDizyGUslKaZlL25cfj2gO32AxNGdBS2ObX9Dbb3DuNYVWqlJU5s3Ippyo7DanmRankRz5GaQFXRaPdOMFs/RJ4LhEgJ4z7dwRpRPKTkytw4TTNZWbiMsjfHXvcYeSFkGLWqyRgop0ke+pzXNBndOiSO5Y3XP5pKdqHbI0x8Hu5JJkoTcOKSRVITGI5QLYcCyX7oCpSNnHCsn8lyBaNv0u6doL/SJIx7WHHO4MEDWLpgbXuOKLLZ/uqnx+dFwl73GBcceg2m6U06FSvePHvdY2PdlSAaaNAfUfRilsr2OJz+kVKNqqgYluy4S49KtrHsyG5NVdG4+8HPyPlEjqHCMFHJcoXKKGeYPLIevVQmTAOadsEwkbdPw0jJcoUoU0lzhWGi8gMHUvJGnUbtIFE8YOC3EHlKq/MwpumhqQr16n5K7iyqJqiWFkizkJ29BymXHsn3O40ig69sSebldKC3Ota+Kbo0sc7ylKLIMXSbNIuoV1YI6xWKLGdn3qZ35ABCpNhWGdXUZXzT+D6XxyGFH3KifQLPmQEg9AvQtUm35p3r9xE9sIKlq6xv3C7DuksLVMuL5IVA04yJMXNe5OCHVI6WKAqBrhY4VoVozI71R5uYFhSxIPZVzMWDlNwZPLcxYRuNUKXIcuoWDMYd0mkWsav65EnIYLTNgeVLSJtVNE1g67nUfqkaA7+FH3Ypihw9gZrbZK1/nEpZ6rwURcXaJ0PJHe0Rp3pF17hxLUdVNRRHI8uhGIywKkPyJMIeqYyCPdJRn6LTx/Ga7DZ12v2TAJgvfRnFKMXwFIrtgO5ggzSL6A9arFQSHNND06Q2c2v3PoKoh6pqmLrNcLRDrbKPUKiIPCMtnp0HHkXTUPSnOD3Py5q//uu/zhVXXMHtt9/Offfdxy//8i8/59YaZ6w5+/CHP8wf/MEf8Na3vpW//uu/nnx+9dVX82u/9mtP6+C+E374h3/4UT9/5CMf4ROf+AS33HILF154Ib/7u7/LBz7wAX70R38UgD//8z9nfn6ev/qrv+Jd73oX/X6fP/mTP+FTn/oUr3rVqwD4i7/4C1ZWVvjiF7/Ia17zGg4fPsz111/PLbfcwkte8hIA/uiP/oirrrqKBx98kPPOO+8xxxbH8aM6PaadrFNMMcUUU0zx3Ye1tbXvOkP9M37cffDBB7nmmmu+5fNKpfKclvqEEPz1X/81vu9z1VVXcfz4cba3t/n+7//+yTyWZfHyl7+cr35Vhs7ecccdpGn6qHmWlpa4+OKLJ/PcfPPNVKvVyYMZwJVXXkm1Wp3M81j46Ec/OimDVqtVVlZWnu5NnmKKKaaYYoqnhqfFSuO768HmieDuu++eJAPcc8893H333d92ei5wxg9ni4uLHDly5Fs+v+mmmzjrrLOelkGdCe655x5KpRKWZfEzP/MzfOYzn+HCCy9ke3sbgPn5+UfNPz8/P/nd9vY2pml+iwXIP51nbm7uW753bm5uMs9j4Zd+6Zfo9/uT6dSpU/IXQiByWbbUVF3mYYYCRVNRNY3dUJPt/U6d8+rSeNYKUrxAEFmnyyguZW8OTTNQFY3tQBqAVu1UGtJmCbP1s1l4WMczNZLZSLb7JzAoqfiuRlBzUFSNyjBDE6AnGd7iIcLBLrmmMppNyIVGadck0xUQKscHCmeVCwzdIddU9td94mSEppl4Tl2WU9OQgd+i4s3TG6xPjGCDUGaY7ewdpTtYJ8kiuoMNbKsy2Wdh3KdROyBNXPOUOPVZnnuhLN8aDtm4FFnkYix4lkLk08aNSRo8kl2ombTaD6GrBpbpUS0v0umdpOTOsts9Mj4U0iT2tJmsodvEqY9r10myCNuqMPRbGLosH/VHW8w1zqZeWabkziBEgmV4BFEPQ7fJRIJlethWBcssYZquNLAdj1tVpPHtafNJXTUQIsGxqqwsXMrQ30VTDfrDbfygTZEL6pV9NGurhHGfdv8EtlV+1HmWjI1j7bGlga6ZBFGHemWZemUfQdQlL3Ia1f1s7x2WjRHuDN3BGtWxwa0QKf3hFobuoKsGWZ6imBYL1RX8jk5SyO/MYlUalmZiIrT3E0m+a0IaJGOZE6H6spfTdA0cveDWHYO93TlaO4vs/8Y6y/OX4AYZeS7QRYEmoD/yiAdl/GGVE5tfQ9NMNlr3kGYxYdQjSfyxpcqA3nCTIhcomv5I9EwsLQ5ELktsea7hGK60xADiQCXf26OIE/I4JIhNHF0awL7kkp/ESCAz5faUzZw4k+vdvO8cshwUZLnO1C2aVsG+MvjDKqv1EF0tsPUcRy8IhcJSdYFe3cQ2y2Qikdmnhodr1/DsOiIvaLUfQlU1ymXJqmuaiapIOwiynEFHltvyccai/YUVirGRcBAOMUplFNNGRAXO+NqL4iF5kaMqGqqqccfmHkSCUTVHlOQ48lygz3qTc6jIclRLHrOHuwqOU8eywLTk8ez0pK745m2LqJRTtkusbd1Od7BBMG5MMnRnYkCdljLUHMgEwVeul+dOrhDGA4pcSDG+omFaINoBql5wTPTZ6x5DHxtshxlURuP8y6yg3TtBmkUoqsb//ZC8fwZRj0Z1P2uXZKzODIgylXJpftJA1KytynuEBkUUY+oWJVMQJyPZiNGYJYoH3NeRVjenGyTu66qTDNx1X95zl+Z2KUTKyqmALIvIhh3IBIphkDr5I80HnW3QVRQdlBmHankB16mzOHcuB8sFSRYjBER/8BnixEeIlIHfQlE08kIQxQMOdzVELjCUbx8M/rTidLfmU7LSeP6VNS+99NKJof6ll17KZZddxqWXXjqZTv982WWXPSfjO+Oy5rve9S5+/ud/nk9+8pMoisLm5iY333wz73vf+/jVX/3VZ2KMj4vzzjuPO++8k16vx6c//Wne9ra38aUvfWny+39KVRZF8R3py386z2PN/53WY1kWlmU90c2YYooppphiimcfp9mvpwJVgedZc+nx48eZnZ2d/P+7DWf8uPv+97+fN7zhDVx77bWMRiOuueYa3vGOd/Cud72Lf/tv/+0zMcbHhWmanH322Vx++eV89KMf5ZJLLuH3fu/3WFhYAPgWdqvVak3YtIWFBZIkmSTTf7t5dnZ2vuV7d3d3v4WVeyIo8pSq06Sf9HFUi7FfJXmSoJomG77Gglsg8oxWoDFMFTJTwxnGCE3B82QzgarqWGaJemWFbqSTz/qcW8tZLefEyVAKzXsygkgzElRNEDWSyduo72qILCG2VKykIDN1tFAydadWXFQtJ9+sEyxEdBoqRmXESxcFc27OKNjDGEWc2Kuw2z2KqmpS2KxoGIYzMaB1nDp+1GXgy/0XxUMW586Vb/WKStmbJYi6GLo9Ycwso4RjVal4c6iKSn+4MWGponhInPgTQ1Vp1DqDa9eolpfw3OZY1N4mTn3SLCIcv0WfjoA6jTSLSLIIz20SJz7WWGRv6DZFIWhUVjDHsTtpFtEbrKOO3267gw3SNKQ72KBcmp8IpoVI0TSTvBCoioZr1xj4O/SH2/SHW5TcGUzTm4w5jAd0Bxuc2r6Tgb+N5zaolZcouU08t4k+ZuzEmJlYmr2YKB5SLS9h6DZ+2CVJfISQxy0bs2Ib24dJs4g0CwnC3oRtkXFPNp3eSRRFo90/MY5sMjB0m3b/JKOwTRh2KZIYa2yeCzAme8HWUTyHOEsRuYpnZnhhjhfm6AIwx8uInDkno+rUCTMFkatYpyrMP2BxcuMWHjz+91ijmOMbt+AMYxZ3Yoy7FzBGOs6GhxAJRS4wDZfZxiH2LVzG+QdfSTJu7ojiIWVvTjYEBKGMGhqbqvajFNdpAFCya4hcRRQ5aayCZUImSO+6k0GvTjtSqJTkdawL2Jm36cQqVUtlOKxQGaTMt7LJfhg7fpDmoKsKIjFYcAt09dEsx/H2JrVuMjGEtgxPRmgVOQuzF/JQVzajNKqrJKnBsbU7GYx20HWb17zyf4dI0OtCHEsz2Gig0n/4DkDGfWmahihy8nCIVpLxS1kWMVNfxdRt2Vyy9wCfPWGCrTF38ASV5h5B1JNNOU1X2mNE8tzJY2krclY1Jz6wjONCpaGArmHb8tp4qK/gzHToBkOq5eVx3JS8H42CPVynLq9bMxvHSmnc+/DnKHsLbIfyRXbk94jiIbff99ckMRMT2i+uyWaHvBCc2LyNvcCk8tApimE2uV5L7gwVb552rJDHIbZVZrN1L7qRYKgwGEo2veQ0KblNWp2H5alYShDhiKrTZHfo0hts4lgV7t8+jB+2pdmrrkHJAD9kkCiTuKV79uS4zqkJNKeMMhyRiVRGNekacclCESqjoE0eDikGQxRboxifMp3eKfJckGYRrl6wO9wiiaFzd87i3IVomoHv9+gNHnEI2A4UHMPFOWPqZIozwYEDByYEy8mTJ1leXubAgQOPmpaXlzl58uRzMr4nxUV+5CMfYW9vj9tuu41bbrmF3d1dfv3Xf/3pHtuTQlEUxHHMwYMHWVhY4IYbbpj8LkkSvvSlL3H11VcD8OIXvxjDMB41z9bWFvfee+9knquuuop+v89tt902mefWW2+l3+9P5pliiimmmGKK5yXUaXzTtdde+5iZmv1+n2uvvfY5GNGTfDgDcF2Xyy+/nCuuuIJSqfR0jukJ45d/+Zf58pe/zIkTJ7jnnnv4wAc+wD/8wz/wEz/xEyiKwnve8x6uu+46PvOZz3Dvvffy9re/Hdd1edOb3gRAtVrlp3/6p3nve9/L3/3d3/GNb3yDN7/5zbzgBS+YdG9ecMEFvPa1r+Wd73wnt9xyC7fccgvvfOc7+aEf+qFv26n5eFAMmySLONzaJB1J+4Z5z0AxTWKRcHyo0rQKRCHoxhqGWrC2IsujmigQQiNNA7qDU1S8BeJ0hMhVjG2PilHgaDnpeedKY9b2JrqqomqCshNheT6VQcqomlPrJsTJEC8QVIcZoasTDFsUuUBo4G7bVEY5pVqHQpN0wYavMkwUbKtCGo1Q7luk5M4QhF12u0cnDBk8op9xrApB2GPo746NUDcouU2CqDfRe522loiTEe3+CbqDNTTNnOjVuoN1NM1krnEOeSHo9E7R6Z2kP9omiLoIkZIkI6J4IBmiQlDx5lAUlUppniDqUS0vju0q+gRRj5n6IVRFZTiSkUd+0J6EELd7a/SGG4TxgCxP2dx5eBKLtLZxF83afkZhm2pJsrMybuoAlukxGO2QZhFxMpqwibomjTzTTLITp3V6hiE1KXNNaQZ8OhDdMj2ieEitvMTW7mEG/g5B1OXY+s0IkdAfbso4oHGMj21Ja4XhqEWahcw09lOvyAYUw5BaOHgk3D0IewRRlzQNKblN0iySujhF6uJqlX3kJ9aJRYIQCpotzz/dGtNGpknZLqGpOWVTfjZzssuokaG6HnkSIpKYulXQH2sNPTOjMsxw1rZZmnshM/WDDNoy7L29cR+te/8BLxCsnggofe1OglBqmbJxAP2xFy1yYPlKDN3GND2W51+AYTjojjdxNy96IUVasBuq7HWPAeAYDkJoDKM+lpujWJYMuQ5CUt9lJ1AnBqKNXoqV5AySR26L+m4HJ8hwtGJsFN2nZFVJc/nGrZkp805Oliu0Qp21rscgUfncSYte3aQol7BMb2ybYtDrb1D25tnwJbPaG5xi2GuwuvICsixC10y2VsowSoljhcFA0idprHLb3Z+iXpExT54rmUHR3oUsJxeCvMhJsgg/7FItL7Iwcz5HN+chEpLhdINJPBhjbR22CZEg6++ieA6aquANE0oVhTQCpTK+t2e5tBdJTPbCgiDs0KiuMFM/SL2yn6W5i+kO1qVtzchGHTOohuEw9LcxVPn/mcZ+KuUFTMNF00Fteqh6waWzCZoqg+CjeMje9hI3fOVjKIbCMFUwdJsg7LK2+XX6CRRJxDkHXiEZ8sjh4VaF5OS8NIUdB6jbY9sekObf+YkHiSMHx66y1z3Bf73PnMTgkQmU5RrE0halOzhFPhTs7c5BZ8BqWdqwHDlxI34wkKa9cYIZppx7eIRr18iTiGK3A7aGiArpIwPsdo6SF4I0hyNdIfPRY0Xq89II07QnY1VUjShTcczSxOT5mYai6095ej5qzr4Z306m1G638TzvMZZ45nHGxGkURXz84x/nxhtvpNVqTbodTuPrX//60za474SdnR3e8pa3sLW1RbVa5YUvfCHXX389r371qwFZgg3DkHe/+910u11e8pKX8IUvfIFy+RFR9e/8zu+g6zpvfOMbCcOQV77ylfzZn/0Z2jfV4P/yL/+Sf/fv/t2kq/N1r3vdc+YaPMUUU0wxxRRPG04zZ09pHc+/bk1gYrOlKApvf/vbH6UTF0Jw9913P2cVsjN+OPupn/opbrjhBn7sx36MK6644jn1BvmTP/mTx/29oih86EMf4kMf+tC3nce2bT7+8Y/z8Y9//NvO02g0+Iu/+IsnO8wppphiiimmmOK7DNWqjFIsioJyuYzjPBKJZpomV155Je985zufk7Gd8cPZ5z73OT7/+c/zvd/7vc/EeP75Y+zI/XfrFpdossYdZYKOv0vDm2UnUHnJXMwwGrEd6pxXh6WLHmbYOogXCIJcRdMt7j/yPzm470qZNacLdCFz4EKhsndOhPplTdolOBeiaoIgNsmFRuDqlPoqepKRKhqxKa01Gj1pQ+DWFnDDguFyjLZhYdsRA0DVBINEoWkV7HWP4wd72PEiRSHFrsNRmzwX1CsrCJEQhB2EkOvUNYNG7QDdwTplbxZFkVmWQdglTnxsq8Je9xhlb06K8w2P/nALTTMQImU4atOo2cTpCMvwaC6vsrV7H9XSAv3Rtiwp5IJqaZFOf22SV1cpzRPGg7GIfhHTdPFDWQbtDtaIE59yaY40leVGx6rQrK4y8LcJoh6W4WHqNnMzB8bu/wkvPP8H2Wzdi6YaMoPSLOEHbYRIKZfmGfgt5hrn0Oo8jKaZuGP3ftuqkGYhSeJT9uboj7bQVAPDkBYEQqRs7t5HxZublHPzQuC5DZLEJwiHzDZXCaKebDxQDcKwi2l6dAenZINFWe5bgFbn4bFL/DKG7rDXPUYQyRJjuTQrGxfyEEXRSJIAz21gGdLWJIoHMPBJspg8AxHFqDqY7iOlGlOzEHmEq0NlkKKoGl5TNl0omo6qSXf127bhigWFW1o5e8dPojs10uV5Ol9Z4wtf+U/MNg5hGi5fvuMP+JGVl5BnCa3Og9QryzK9YZxb+u9ffw//41Z3YpuSZiFxMkIZezSZXg69BMXRZAOCSMmFxu5wi/lyiKnXsTxBkWWQCYooQwt1ymaO6zSwnRr+8SNw0XkYaoGuKuRC429u/A/80Bs+TlooKJpOITI01SYcd6apqvzPpq+z7iuEfglXH7ITqrQXcgYll7zIEXlK2ZulN9gkjoccGzbo9E9RKS3QNBLixEfXbSzTY2YvhiWwrAK1NA+skQsoe3O0+yeI4qEsC451PkUG8dYxaaWiGoRZl73uCR48disv92X0TNnM0dVCNs0oGoqpw7joUZzemHEp8uGLTez7C47cDxe7rryeSgb7Sjn7ztnk3rbJ1u59mKZH4rfoj7YwdJul2YvoDE6hChjGQ/AjLMNjfeteDEWeV0kS0KiuINQEkYFi6uSZwll1lyQNqJYWZGNLrSOTMGwNRy84uO9KHj75jzRqK2z0HSCifvn3k9zzV2hGgm1HNDdjHhgnjgz8Fq5do+Q20UYmRrWO/z/+T3LjbAxDXl/hH1XZ2fsKDftKin6AstSkaA9lioVuo9gq2mYFzjO4qJGR9lqsbd3BbHM/RRxDnJA4BvnmOp3+KfmZH6EcqJPc4WOOUmy7LK/9NCTMFOpWzlCA5cmdbxiy6ScTCRVHlmU31lcoWxq2/mxZach0mqcC5XmqOfvTP/1TAFZXV/nFX/xFXNd9jkf0CM54jy4vLz+qLDjFFFNMMcUUUzw/oWiPxAc+2en5rjl761vfOskJ/2Y8/PDDnDhx4tkfEE/i4ey3fuu3+A//4T88Z+2lz3eIaEjJrtJPHl0ODlOfvMi5sCFY8gRZXuBqkOYKL11MiS0VXRTUvRDTKnHOgWswDUfaadgCLxBkOUSZwkUHT6FpJlEypOY2UVWBpgnyXKNf1uS8po5huLhBRqZBbKoYi/sJag4zezGWN6K/kKKpOWg5S3O7tKU2G1XVuOvBz1DbkKJt0/SoVReoVRfGjIZPvbKfTCS4thQut9pHECJF10yieEAQdtE0g0wkk7xNkOzV0G+RF4LhaJcg7HFg34vIREJ/uEV3sEEY99F1myDqYRouiqoRRD36oy1URaVRWaHVPgqAH7Rx7CphPKBaWpSZnKUFLLOE59QxdZuiyGWmXTyQ69ZMaQSKfAOvlOaJE5+B32K3Iw1siyIniodkIsFzmzRrq3LfKBpB2EFTjUmDQiYSKqUFhv7uxJbjwOLlNGurE0PVuea5WIZHu7eGZZaolhcJwi5LsxfjOHX2LV6MH7Rx7Rqm6eFYFTKRIkQ6EckP/V1prml64+xPgzAe4EddFmcvotPdoOLNE8VDhiOZ9Tj0W8zPnEvJnSFOffqjbWm669mkv/6HRMEjtwhFP/2vTiJkNFkwtgx4+OIaS80eeU+yc4WhU7U1DpRTNFVjxStwvCZZxWP9fGmRYVtlludewP1Hr+e1L/vfuPfw/0OahvQG8iZ52pLk/LNexauXl9HnpfmvH3ToDtYpubNkYQhCoGpQjCRT6+hjhkgTnOxKdnoU9bAqBVq5CkKgNMrQ8AkzhbP3X0Pot7nrgf9bXouZgp8IVE2wb+EyOjP2xPIGQFM1lr2c9WFOpdZlJ1RZ9xWCTCEelKlbgn4C1V2NyignDKVdTMVbYKa+yr1HPscwUcfnZV9aQRgO9eoK/eEWezMW1Cx0DapulTRWpQ0I0OtvY1tleYyLHLJxNmYSSuY5lcxs2Ztldd/F8likxSTbdGf3KKNQMpxF9sjyiqajlauIvGBu/xpORRAwC9o4W1PXeGEjo2lJNkfTTJLEZ3t3jZm6NB/f3L2PIhcYCZStMkWUEkRdFufOpR1LNrNWWZoI9oWAYhSh6gWmZmEaLnHq49l19jUeibtLcwXPaU6ah9prKxQiZVDWMXQLr9LHMzP0XZm7m2URFW9OZloOt9h/KmajdwLFNkgjB1O3UVWNL9/+/2Wn/aA0ex2l0malF1M2Ze6tuuiwvBmBEJyVyvtBFA9xbcmGF9sj1lYsVFWXDRpJApaBsiIbhahZzNTPIgy7VErzpGO3FyGkPcpwKK/nmfpZqKpGd7BOGPcpb1j4Jx9kwX2WmLMpePvb3/6YiT+33norb3/725/9AfEkypqXX345URRx1lln4bouhmE86veP1Y46xRRTTDHFFFN890FRDRTN+M4zPt46lKfYUPAc4xvf+MZjSrWuvPLKx/VvfdGLXnRG36MoCp/97GdZXl7+jvOe8cPZv/7X/5qNjQ2uu+465ufnv+vCQr/boWg6hmDSJp3mCnW3TDcYMlvOuGYxZl+tSjcYUjELHK3gyoWUrwSCTs3ACi0aWcL9R77I+YeuxbGqhJlCaZjiaAWdTOGies79ucAfGylGQYlKeYhX7mMcd7CSnNTScO0SRZiSmhaVXsygZtEva6ycSifjFbmK3ZfaHEOV425U90vLCs9BiBTL9BglPiW3yWD0iJ1GpTTP2tYdqIqKECkltzl5a65484yCPTynPrGfGPqtCYNWr+wjMCTjsNc9NjGDldFHMqbGMj1UVcOxKmPLDsnG7XaP0qitECcjPLcp9R5hF1010DSDve4JGrUVdM0kzwW77VOU3CZ5LigKMTFrVVQNTTUYjHbIsojyOKJlef4STm5+jXplmd3OUWbqq5zY+Boz9VV5TLOIosiZqR+i3T9Bxatz7NTNlNwm5dI8nd5Jjq3fjOc2KXKBZdc4sXEbntukXJpjY+du0ixmpr5Ku3ecMOwShl1Gfg9dt2VMVhbhjg1O0yzCtevjcTuMgj0cp46qqOiayShoM/C3qVbmxjq2Jqqi0unJSDGp6RtrvERKlqegaWzcBGn0yLmr6oqMpjFlR5NnStpseOROiosvwdELaUmgGcRZjGvauKaMKdPViPVDNZZPjZhf2uaE4eDZdfJCMPB3MGcWGRzeJo4H9EablNyZif1E2ZsnuPMrrK38MKNgD0VRSdOIrd37Sfu78rrSofW1grnLCspmznDUIvZLhEIhzFRmy4vsAlq5QZblYJvoRkLHtxFXXAX3PEyltECtm9Cwc3RVIfZL9Icb+I46YZ7yJMRUmzQswdG+QcOLaEcK7ml9kFBphRrDRKV23zE2Lz80iVMa+NucOHUPF5z9UnS1QNdMzt5/DVFq4gdtSu4MmUjpL6QTPZhrOuTZIxolTdPGljBD1ByKICTP5HePgr1xfJeME4viAQgVxVC4pJlzfKgwO3MQgCLJyLZiTF3aPhQiw5w7ANEu737hEICZ6qw0XlU1FF3l6hWPL60FbPgqaRZh6DYH91/CVut+iiLHsavkhdS/FiLnNN0Ypz63PLyEabj0h9uUS3OSuVWXKGJBPt63UTxkr7PFC85fomnDYLgNWZNupLIwexH3Hb2ektPk4NEU0d7FSnLiJCAXGo6eM4h6RPEA05SaVduqyHi47W3u2Ip4uWVQP2zy0Ng2Z7t1jIW5s0gLRY7Vl9rTg5UCVdWgZrF5/9/DtRqiv0eRZWMdbILqeohejKGDaZUYjnYpBiPJyrqu3KYsp9M7yerySyaRcd1Ybmvsq7huhbzI6fZPkaTBJNYNQIy6uO4j4vRnFJoGT1Fz9nwvayqKwnA4/JbP+/0+Qnz76IM777yT9773vU/ITqwoCj72sY8Rx/ETGtMZH5GvfvWr3HzzzVxyySVnuugUU0wxxRRTTPFdBEV96g0Bz3cT2pe97GV89KMf5b/9t/82sdESQvDRj36Ul770pY+77C/+4i8+Zv72Y+G3fuu3nvCYzniPnn/++YRheKaLTTGGapfIQp8f3J+Qh0MMVUY1rQ/B0kwO1BuESUDdLTPnyCf2uuviuxqjRobI5SG7+kVvp+zOkheC9d0mxihifznjUDVlzhH0R9t4ToMsz6DjkaQGQmjoWUG/rJNp8g1uWLPJx4x0v6yRLvicWHWx7BDNTCedoAArXkE7VigKGV6cmdrEwBSQmq2oT1HktPsnJsHkiqox1zzE0N/FMjxm64eIkxFpFpHngkppnijy0TRTmmQmPq32ETKREMYDXLvGbvsE1fISIk8xdAfXqaEoKppm0h2syxBy06M32CSKhwRRj7zIieIBumZimt5Ew2SZsiOn3VtjrnkeK0sXStbJcPDDLqoqt6vIxcQQVmq6WmR5ysnNr1ErL40Dny00zaRWWWIw1sqdfnvf2r1PshdAkkimYTjaQdMMFmcvJE1Dafha5HhuEyESKt48um5jmi7t3tqks8y2KohcoGvmJGy919+eREbFqU+WRbQ6D2MZngyL1x0URUMZh2lL1vA4jcoKUTyUrFRpFteRDT5LsxdRqywRxQOURpWH7lEIgwJVjMgzUMsy5Fgdz+/okk3VXng5mpEwYxfgOohggMgztgY+IheESTDpbgzLFmFssTR7Me3+Se6499N4dp3j936ebv+U1Od58/SHm+OYqzqzM+dRrG/T6MnO4Lnm2dhWmXplmTwYgqah6gqdLQ10lWGiUi7NkQt5rfiJzu5wC72uy/l1FcV1sOyQ5WpIdKiHZZVlILbIcbQCTVXIQ5N6dT9e+IjgLI9DsjxDVwvWfZWVUk47UtBVJuzZXW2VfaWcvc4Rcg2qpQXiVJqr1muzlNxZdnqSkapVVshSU8Z1qSZR5NNc2IJRSqerY+jjWKNMoTdYZ6a+iqYZzDXOJgt9yASaraCaUmtVLs1LZjGLcJw6SqKDrrJazggzyUaFYZdiGDPYkn+Qx/JBzMYslq5y+b6D5JlCIjJUtywjs7Kchco+DlVSTo0UPLdJXggcq8JM/aDs9jU9LMOTGtbOI7F5SeJz8IsRhuFQLs1Jo2uRYloQPdgijRVM3aZeWaZSqrOz9yDzTsFs4xB5N6Uba6glec6pqsb8jx2nGIyITZVyaZY0NVlwCxy7hmV4aJqJ49SxrQqKqiGymG4sz93KIOXV3/sfce0a5x68irnGuQz/if63aRUyZL1k8cCxG0AItFKNYnuXPBcM/RaqUyY9FTPXllWGKA4pNtvSEHi7RRyooKuUvTlObNyKqmjMOzmbvo7ryjD7sjeLqqj4QQfTcCm5MzhWBV3I8yhInmdhlc9j/MZv/AZ///d/z3nnncdP/uRP8pM/+ZOcd955/OM//iO/+Zu/+W2X++Z8zieC+++/nwMHDjyhec/44exjH/sY733ve/mHf/gH2u02g8HgUdMUU0wxxRRTTPH8gHT5N57a9Dwva1544YXcfffdvPGNb6TVajEcDnnrW9/KAw88wMUXX/xtl/vmfM4ngpWVlUcZ3D8ezpjLfO1rXwvAK1/5ykd9fjr+4PHqs1NMMcUUU0wxxXcPFFV76mXN5/nDGcDS0hLXXXfdGS/3yle+kn/zb/7NJG3gn2Jvb48rrriCY8eOndF6z3iP3njjjdx44438/d///aOm059N8fjQy3XSXouz6xpauUHDgiCJONI3KETObHkRUzfpBkPCTCEUCqZmMbMTyBIFkOeCTv8kO+0H2d47jHu4QWHq2LpClKnMubL8pWkWYeIjSgm9zgwwzucclzTjqkOnplOYGVlnl6iaYdohmoCyE2HaIXVbMGpkuDose4IvPbSAH3axrTJmdzQpISqKimV4KIoq8xrTEEN3OLD0YireHKOgTaO6Qpan7LQfIs0iNM1AVTVpGTF/AXkh8wFdp0aSRPiBbI2P4iGLc+ey25Ylu/5oC9euYxgOu3vHsQyZXShtLRoIkRJF0i6iXtlHXgj8oIOqaAz9XVkGTHwOLL2Y7b37x6XOEo5VoShyuoMNFEUlEwm18jK6ZhDFQ+IkIEl8DMNhbfMuKt4Ctco+BqMd+sNtkiRAUw0ykRKNxewAveEmi3PnYhgOlunhBx36Y7PMOPUBCMMujlVhbfPrMjNTNXCdGo5VHefuGRxYvgRFlW9d1ZK0LtE0gyIXqOMSr2vXZH6p05xkeZbcGfJCEIQ9NM3g5OYdRPGQZm2/HEMSEKc+Jza+xtDfxR3nDQox8UyWhqE1C0VXMWpzDKMRjg6DREETBV6lz7xTQJKQ9Xfph21CoeAnCUe6ciVWkuO7GoP2LJ7TZK5xDkvzFzAK9ugNpX3G3Q9+ZmKgq6oao2CPYxc1KfYCOjVpmNsfbqGqMkNRMaWJp6KPNc26QtnMESLB7piUjYIkNdjzeyglQ2YiWiba/AK2LcXX2Y60RphtnEPcWictFPpxjj1SmamdhRXnpLlCITIUTUdXdcpGQZDJhp6dXpmKAY4OilDpRjrnVAWqqqEKeYylxUoPXTMI4z6D1hyeXcd2ahjbHmkaypK05aBpYmL2m2YpuVBIYwVNM8lyaZ/S7p+kEBnqvkV5fMIhmUjZat2PyFNcu4YQCYWToNgaq9WCMFNZnL1AljstTZbeogTNkgd7o3cCXVUxMxBCIRUJRZZSr+yDKGWtc5SzmnMcPrk0vr7tieWMH8jmI8ssMddOyeMQsoI8F9LiIx4Shl15/eg2M/VVTAvSoTwGYeoTRD3mZw5Rryyz7iusb92LosN2qFAEAWkaYpolXrGUQJRQGWZYhsfCrXL/J2lAmkUMhtsUuSCIupN9nOZAnBAeP8yJKw88YuNjV9kJH8186GrBcNgGy2Toy4YTMepBZ0CtvITj1MkXlgi6Gv2yTr93ioMrL4IopRjFk8YC9iL2LVw6aXIqG6ebOuT1FES9ibzgtNlyGA+YPSUrUK757HRAKprx1KfnebcmwJe//GXe/OY3c/XVV088zz71qU9x0003Pe5yN954I2984xv54Ac/+Ji/F0I8KeuxM35cfvnLX37GXzLFFFNMMcUUU0zx3YhPf/rTvOUtb+EnfuIn+PrXvz7pqBwOh1x33XV8/vOff9zlP/GJT/CLv/iL3H333XzqU596Qt2b3wlPiot8sk+YU4BmlyiSkOX6Knkc0rBz4iynE0PSb6MAjuGxPoS6LY1lExGjJBneCHqteXTTwbGqrG3exXC0y+ypARsrJbK8oG4LSoZCu3cc25Ii2nMOHYeOh2Em6KIgNsGKBUJXiaoyxkadncep97DskFS+6JFEDq4OTr3HTqCyv5xh2eHEykFRNRZnLyBNIzynTpanlEtztNpH0TWTOBlx7NQtDPzWxCDTMjwADN3GMjz8sMvQ32W3cxTL8KhXlnHtOs3GfvYtXkKRizFr5aOoGqOxEeuxtTsYDLeZnz1EuTQvjVNhwt55boMokoxFngvSVBrBOnYVQ7fxnDrbew+QFzlx6tMbbrLVOoxr1zB0m8FwF8eqsLFzN4uzF1EtLWAYtjQANTyajf3sdo/SH20BUK8sM9s4hGNVSJIITZWsWRQNybKIK17wVo6cuI12b42yN4uh24g8xdRthEho1A4QJz7V8gLDUYuiyEkSn8FoG00zJia7SSKZtp29o0TxkCTxadZW0TWTNIsoubPYVhnbrhJEPVRVI059hv4upXGslRAySqg/3GK3vYZhyGNR9mbHjQkpRSDf/k1LIcvNR05gXd4y4ixnxSvY6ZXRRUHZiZhzBMVgRLHXxtQsshw802SYyGUyTWFQUlE0yaRFcZ9KaQFDt8lEQsmdoTvYQFU0Kt4c61v34jl1mB+g1GzSqmQ6bKuMqmgYuk0hMtCkHcTqZRFKzaJqqTSrq+y/v4VnajhWjMgLsDWKIIBKCaO5zKVzMVkO+249Srt3HMeusdN+EIBupKEL6PRPUt7uTza/SCLiLGbT10hzacLrD6tUzHFjQAI7m/vYCVVUVafRk9Ys0mx0FU0zscwSdl++FyuGwerRASJPyQvBbOMQrY19kBV4nrQq8ftjG49CMBzJWCJNNciTUNIw42MiRCqPvVVBVTUpMK+MrWtshyxX2N57UAr8Y4FbeYQaLeKYJEswdZO4tfbI/cqt0BtuQlZg6hYNb1ZGGgGd7gZ+1CXNQmbqq+RFzsbOvRixQNENGKU4VoX+aBu7Pk/Zm5NNQoUgiHpouoLVlH/EkixmOGpPDHKDDGrVBRRH4/hARdVNsixiFOzRCiVLowtpedF98DYGKRS5wDQ9DN0iiHpjo2bZrDRIFYoTfe4/dj16fUBvsIkQCWkaEmQKZIXcF5FgzhG86V/9uYx0UlTIcoogoMjyyf773MNbqFpBcm6bm+/6pGQQswIiuT9jXyXfClicuUhuT9QjyxWyXGE4BMMqJgw1yLEHYY80i+i0j6JoOqb2TdfdM4lpQgAf/vCH+YM/+AP+6I/+6FHerVdffTVf//rXv+Pyr3/967n55pu5//77ueqqq864hPlYOOM9+ulPf5rXvOY1OI7zmE+YU0wxxRRTTDHF8wOnrTSe0vQ8t9J48MEHueaaa77l80qlQq/Xe0LruOCCC7jttttYWVnhe77ne/jiF7/4lMZ0xnv0qT5h/q8OzRlrZEY+iIwlL2OUFugqFCJFFDmaqpPlY2PGbPxW7JgEC1KfkXvOuC29yfzMuQTDFuGyzzBVsMelf00z8RzJlPzg/gRRSjCNFN/V2LcZo4qCTs1AC3VEKSG1NLLEJE3k29qcKzDtkDSHcnlAlKlkBczXhvT6kt1AU/GjrrQ0yAW6apAkPjP1VamzUTVcp4Zr11jfulcyYGON1WnNUMmdYaa+iqFbDP1dFEWjN1jH1G06vZNYpmTCFFWj5DSxrTJ+0KZWnUVRVIb+LkUuLRbixB+HkUv7iySNGQV7zDfPpVFbZhRI/Yjr1IkTH9P08Ow6SeJTr65gmS6jsI2iqNi2N2EHW52HyXIZk7Sze5ROfw0hEkSe4vs99LEWCKS+qFFbxnPqkh00XYJwiLbvAGftfzHl0hxRPCCMB1S8ObZaD7Gx9TD94Za0wxAJRZHLEGvdlm/SvVNSAzNGb7CO65QJggFxEuCHHTa2DzNTP0i7dwLPqZOmIZbhEScjhqMWZW+WTCTMNc5hpr46jtAa0qgtomkGo6BNXgjSNKQ/3Ka4WxrUzu7LcRtNNB3yXXn+KZpOlo+NT3sNtCwnyxXqdg5RQtHq4JglokxF5IK0UDAUCByFXAPdSCh7cyRZxIUv/SlK7uwj22XXCEIZC1YuSdNiVRMo561Sae5RFDm77RNE8YDNnYfI2tsouk6RgTH7iEpjo3UPt9/9F5OfT4+XOEGpVylEyoIjr7sw6qEqGrMz51EtLwHQCjU0UXBk7SaSeESWg2KaoOloqsYwVVnrelTNgrwv2eCNkYxrOniX/KokDXCDjNbeSYKoB0jGWNdMYgfiZESRpnRaD5MkgdRJ+i2q2wZFL8Z1wdANRsMCVZfL+sFAsjBZNNHAAehVuQ9FnuIHbY6fupNW+wiu65N3E6rjewEwYdTdupD6O1uBOKEdpGiqTnrkwcm8VmN2Ek0GUCQJc+1UxqBV5jB1m95gkzAeUOQC16nRP34XaVtqKi2zJJnRQY+t1kNkIiUeG1Z/M+IspdnYj2V4JFnEpc2cwXAXbI0sVxjMlbCtCsNRi51QZiBlmkImEgajTdJcIUqGNCor9Idt8lwyWJ3+GkEgr53oAR/LKKFqAs9tsLN3FMss0Y4e0ZwVWc4wUTl2qASRvKaLXiQZSmRQeZz4XNTIiAMV1/X5not/ghPr4799tgaZII0VojY4XpMoHpIXgp1QI8gUokjFqeQIIdlSy/SIk4B6ZRlNNWi1HyQfDnCM754Q7n/uWFxc5MiRI9/y+U033cRZZ531hNdTrVb53Oc+xzvf+U5+8Ad/kN/5nd950mM644ezp+MJc4oppphiiimmeO7xXAaf/5f/8l84ePAgtm3z4he/mC9/+ctP89Y9MbzrXe/i53/+57n11ltRFIXNzU3+8i//kve97328+93vftxl/6mVhqIofOxjH+NTn/oUv/Irv8I73vGOJzWmM96jT9cT5v+qyAvZsaNoOqpb5vJ9Bzk5NKgY0uCyiGLCVAYy162CNAeRC7QkQzMSLM+nNe9Qr+ynWl6kVl6m3TtOrbHHKFEZpgqWrtKo7qdcWSLJIsloCJWqnRKbKkJXUUVO6IBwMgw7YmvOIM81PM8n1yDMYN9smzRHGtGqknnIcoVD+78XQ7fp7R5jOGqRZpGMVrKrYzZr3CU5jkHqD7cplyXrZY71XK221Ez1R1soiiaji7xZonjAbPMcwnhAFA9lYHl5gXZnjWNrd9LaO4miSr2R69SYqR9ka/cweS47Mk+PBeDA8gvIREKcjFBUjQeP3TqOM9obd0220TQTfaxX0zQT26qMOztVSu6MNMs0ZTddtbxIudykXpEB3IZuM9tcHRvCbtAfbU0MYcN4QH+4ja7bkuVydaJ4wHbrCLZVwTAcWu2jVMqzLMytIkSCods4VmVsbGvgWBV29o5Tqy7LzkzVwDQ9TNND1232L1+CHwzZ7RxlduYgnd5JiiKn1ZZauCgeoCoaQqR0eqdwrAqtzsPsdU+gaSbnHrwGIRKSJKDkNplrnEsUDzEMm6KXoGmQZxCNY00Gx6GIMtJeC11VaMcKeaKzeXlAGFuUDXmOFH6MyDPqtuAbO98U3jw/QJjy/DcNF3/MaKRZSH+4ia7baJqBZbrEic926wQAqiaovOgVXLI0QIiEWnWB73/pL7N/6WIQgiKO0WyFrCs1Wrqq0KjuZ3H2Iizd4BXLySPB5bqG6nrEJx4gyBR2Ax3PnaFcWiD3HG76+h8yTBRu31URmsJM/SAiiwkEhGmIoulYmomjFaSJydnVnEpfbuNet87MyS5GmFAxCvywjZ4Imo0lNM1gffsweSE4uXn7+FpK8UctuoM1PLdBuSS1iNVhRjF27S2Xy4Q+GFaOppnMNvfTqO5H122KLJWaO8BsLiGE4Hve+YdUSwvMNlcwjDFL72jYKQRfPUS5NEcQ9SiSDL2mQZyQjQqwTHZDjTAJUHQNy83xTJdhPGRj5x7QFZIsJgt9lLU1DN1mY/sIA7/FvoVLKLkzRLE8Pl+79y8pxnKXNAsxTY+TG7dg2x4LM+cBsLZ5r0wNqtjkQqEfCY6v3YWmSfb9ooZkThVdxdFzhKbQ6W0wU5fxU2gaQlMwdAdNM2laBf6469dzK7hOjXZvjSAY8MCxL7BaEvgdHdNwyIVGkvgc2n8ljdoqo0SjiLLJafrwYFx+0GXnOVkuo5miFNuqUC7N4Zn6JIzeD9vYtmRPiQR40jh676RJb7lGrbJEkgTc31Uw1IIsN8kFDP1dDN3G0G1su4xllkjSgKOnvgLBs2f0rqoaqvbUpidT1vzv//2/8573vIcPfOADfOMb3+BlL3sZP/ADP8Da2tp3Xvhpxvvf/37e8IY3cO211zIajbjmmmt4xzvewbve9a7HzdYEaSP2WPjxH/9xbrrpJu65554nNaYz3qNP5QlziimmmGKKKab47sHTwZw9GRPa3/7t3+anf/qnecc73sEFF1zA7/7u77KyssInPvGJZ2ArvzM+8pGPsLe3x2233cYtt9zC7u4uv/7rv/4dl7vxxhtpNBqP+btLL72UO+64gz/90z894/GcsZXG+9//fvr9Ptdeey1RFHHNNddgWRbve9/7vuMT5hRTTDHFFFNM8c8PQohvSQmyLAvLsr5l3iRJuOOOO/iP//E/Purz7//+7+erX/3qMzrOx4Prulx++eVntMx3shdrNpu89a1vPeOxnNHjrhCCL33pS7z3ve99Uk+YU8AwGqCYDiIckschlm7haDnzjiAPh+N5Rsy6Al2VrddxlhKX5AmepSajkqxx1yv7MQyHo6e+zGpdivdHiYqfCFynQZELdoZdykZBZa6FoxcECxG+q6GKHHVmAJqs9+SzPrY7wtIFSilCV8HRC86tFmS5QtkUpOMmBV0zCaIeum4RRT71yso4t/EYRZGTFzndwbo0p1U1dM2gWlrE0G2SLKJWXcBzG8w1z0ZTDda37kUIKbjXNIOdvQexDI99C5eQJD677RPMzxxicf4sPLeMphoYuk3JnWFn7yEcu4rn1PFcuc0yM3KONIvY2jlGd7COH7RZXjh7UvJUxuW+jZ17EHlKEEoTTVVRWZy7gDgJCOP+pAEhSQMGox1URWPgt+j0TpIk47zEyvLku4tcMNc4Z2J5AbKU3alpnH3gGsqlOlE8YHfvOLY9FmbbNRRVmwiHPbc5tr6Y5Sde9wmSxEfkKaqq4QftcenRodM7ydL8OSiKOikHnzb3tS1pdxBEPSzTpVZdxnUapGk0KXdt7d43MbjNC8Fe9yjl0hzDUZd0K0HXoLerYpflOLvjLEazuUSWF8w7BVqoc/H+HWbLgSwdCgHbPv2wg61BJ1bpRCppAQvzO2BmxN3q2HD0PKx+yGzjbFynLrMZzRLV8iKtvZMszK1OLFLu3DrMS+ZSHEcaxqpL+2j31saOngIRPbq0EKc+eSGIs5SyWdB0DVly0jSKJKbo9qmYOSJXx3YrGbFryOObKtx/37ksbgbSKmX1IIYKYTJC0Q1EkePoBYaZcKCcMrMX04lUop0Z2u0j5HHE7bsau50jxK31iVlrrTqHa9cZjtqogkkG6p2HP0MQ9rAMmf8amzKXMQjktmRjI2DL8EgSX5r29rdRdAPVtCHL0RwH1ykz2i+NWE3Tw/d7mEYKWU7aa9FezsaGxeOyXZZDpYSiA3HC3R2dKBMUfkguIBEZ/bBNUeRgG5zsx2TDDo7XxDI9LjznZRi6zdrm1+kPt3CcOmkWkyQ+imVRjFLavTXSNOT+Y1+QtheDdbIsQoiMJC4Qg4gkVtgNNeZm9uFYVUzTo+nKcxJdpWnDzgGBbXsEUZd5Jwddw3c1Tm7cxZ2HP0PFLFiafyEld5aS28S16+hjE+gw7nPZvIJh5bR7x9HNhGp5kaNrtwCQpIa0wfAjyAq+ePdBUieHUSpNnyMhjWV1Vd4LEp//fJeGphW4VsLa1u2US3OTfaruW0TTYW8LMl1BiJQgHLEXmJxXT9HVhDxTMHQL167T6W1gWxU2du6dyBmKTEzO/WcaiqY+5QlF4a677qJarT5q+uhHP/qY37m3t4cQgvn5+Ud9Pj8/z/b29mMu83TjR3/0R5/w9J1w44038lu/9Vt85StfAeAP//AP2b9/P7Ozs7zzne98UnnkZ8ScaZrGa17zGg4fPkyj0TjjJ8zPfvazZzQ/wKtf/Wocxznj5aaYYooppphiisdHMZ6eKi655BK+9KUvPeqzx2LNvhn/VEx/Ogby2UC1Wn1a1vNHf/RH/OzP/iyrq6t84AMf4IMf/CAf+chHeMtb3oKqqvzFX/wFzWaTj33sY2e03jMua77gBS/g2LFjHDx48EwX5Q1veMMZza8oCg8//PA/q0aDbrBHIytQyg1Uy0EM+gxTlbKRyzgWTZu0/c+X69y1N+T0paNqgjzXEKUEXTNRVWmwmueCMIMNX8dQZROBquiols0dLYMfPFTCMFK6kUYuVNqzoGcOXmWTwdhx1nZHJJGDXu+jGdK4Mcth3VcIYwtdLchyaHWrzNTPYnP3XqJ4QLUyR6vz8OQtzzTl23+RC4Zhj8W5JpEq7TEatQMyeipoY1tlRsEeWRaxOHcuo7BNJhJm64cA2YLf7p3Ac5sE4ZBR2EaIFE0z8IMOM/VV7n/4y8w0Fim5M2zuHGZ+5hDdeEhpzBpF8YALzn4paRYy8FsEYY9yaZZ6ZYX+cBPHriLylCIX9AabGLq8kWiaiWHYHD35DWYai1TLC6iKtP4wTY8iF5MYJT9o0x1s4No12l1pyFxyZ7j2Je9h6O9QLS9jGC4nGxEL9bMnAmBgwmCkWUSSBAxHPUzDHTMLKc36wUlThaJqEzZuOOriuU2UscHsTP0gRSHYat1PtbwwXp8/3geSjc1GLfzxfgcYDHeZbUrj0DSNmKkfZDDaQcfk8hf8C+DYhLHRdclApLECUYoYx8pUxuL+NIeDlZybty3OsUywNW7fynjJskf7VEaYKZK1jeW5ZoQqt93zKUpOk8LUmamfzfr2nQz9XVRFozvYkIygqhEnPq7rc9eeyQ+fU2M4amGZHnoiJmxF4YcoOoQdldPmPmHYZW3rdrJ8HwBVp06R5ZLRGVNSg0Q2yeSYmIZLHkvW09HAqvcBeT5YQUqYSTNoF8jyjEGqEvol0rxDvrvDdqigCmnL0dp7kMr1VxLFA6JkSK+/zeLcuWQioT/aotnYj5HAzt5DXHnpT5EkEa5TJi8EQqS4QQZqThSpmCWHwUAHBDt7D+G5DZI0YKaxnzwYopjyxTUvcmyrQnN2hy9tPsDy4jnYtoet5zK2atRl5cBJDkc9bKtMPkwQVoEx20TVFRCCw32dly/FLNx2kjRWSUVCkiX86Gt+G8X+/3Gsb/Aib0gwVCfnvGxgkXYatlWmUl5gu3VkYvFRryxP7lPdwQa2VabTO8WB5ReQxBC3RwBs+HKerd3DGGOz2ygaTu6bXq2LqkiW86JGCkcTsjEBuDh3IfvLKV8M9ljfvgtDtxiNm01ct8Je9zg7fspZlZw48Qm7NUZBG9O0CaMeLssUoaDIctAVtI7NxVc8ADdLE10yydSBjM7LC8H9v3overNgzhWMgj0ZX6Xvp9iLMOZWENkthAHoWUEQ9TiwfAkrlYQFT2XXy0ljhfP+tz/koeveTaU8S5L4uI6M3OoONlD0lyDyR5oUnknk42rHU0FBgaZpVCqVJzT/zMwMmqZ9C0vWarW+hU17pvAjP/IjvPa1r8U0n5rZ7+/93u/xO7/zO/zcz/0c119/PT/8wz/MH//xH/O2t70NgFe84hX80i/90hk/nJ2xiu8jH/kI73vf+/ibv/kbtra2GAwGj5q+E7a3t8nz/AlNrjv1eZliiimmmGKKf04wTZMXv/jF3HDDDY/6/IYbbuDqq69+VsbwIz/yI/T7Mv1D0zRardaTWs+xY8d43eteB8BrX/taFEXhiiuumPz+JS95CadOnTrj9Z7xw9lrX/ta7rrrLl73utexb98+6vU69XqdWq1GvV5/3GXf9ra3nVGJ8s1vfvMTfhJ/viDOckSvQ56E2LP7UDSdMJPaMq1UJx318UyTLIdRPGTdV3FNG6GrlMoDdCPBq3Vx7DqqonFi41b6o210FToxhJlCK9SolpcQps7tuyqOWULTBLaeo2o5aDmRpTJbDijVOtKU0fMRYxYtzzUZup6pBOOXN10tWBsaJJGDpllst46RF4KN7SM0agfY66xR5GIciSI1L83Gfva6J6h4c3R6O2y1DkuTzdICUTzEtevEidTIVEuL6JrJRuseeoNNRsEeIk/RNRPPk5FKQTDAdWqTOKOZxiK2VcaxqszPHGKr9RDV8gK2VUGIZGx4OWLgt2jtnsJzGwxHuwz8nbH9xTauXWO3vUmlvECaxQiRMhzt4LlN9i9fwMLMeaRZxGisvREiYRS08YM2aRpOIlj6w23OXr0STTNpdY5gGC6OXadUkdtVn93BD9uUvTle8ZL3YFsV0iwiiocTFm5l6UKysSZucfYCbLPM0N+RRpvDbYajNq29dVynNP7+CEO3Wd+6Fz/sMtc8exLsLmNycjy3gaKoNGv78dwmSRqgaya16gJ5kVNyZ2jUVmi1jyByGdh+cJ+8OVqWlHRlWYrIQNWRMT5jwt3RCopqJKVLBsy5OYrnoCyUcPRiEuHUl0Qsg14dhMrqXVsysHr2QjJTp7rvAo6t3UnZmx2PPcV1pDav5M6wWg85r55QznSq5QXixCfvdijGRqOKrqHqCr1tA3QVSzdo1A4QhF0AfthNGcUDlJIx3iABmaATwyjRMLwKSRpgjCJWFl8EwOqXDZK9LVYWLmO48RBBplCyZBnE1EyiTCFLpaWGyGLakUKtn7PXO8bt9/4VbtsnigfEyZA0S2j31hgMdxkO2wiRcODEaKL9W5w7l5HfY+jvYlvSdkVxNGxbshkLK+eSZwquU6MocsreLO5Ye6do0oC3F7RJs4iLZ2IW58+iWl7C0G3agxLoKnngs1ySMVLbrWOke5KxMuZWpF7PddjemefetkkxfISxyfKch188B5rGnCOw951HkgbSADn1J9dC2Zul05N/gITIyAMfdIVR2GZt817i1McPBpzavB9NM0izCCHA7w/QtILjQxXbKtOorlAtL1J16qiqBrbGdqCQ5xqLsxeRiYSGa4Nl0uhlzDb3UysvM+vA8fWbsa0ymmbiOjWq5QUWZy/E0G1ODg2MFYv+UDI1mmZgGDYPHLuB0bBCEeUQpSgLLoutlEubOUWWS3uaSKDuW0SZq6FrBkkScPa5308WK6S5ZNN6/TZkxZiBGxtSxxBZ0taoP9riaNuT9/8xI724emIST6dphryvjXXHlEuYz5LmTOSCLM+e0vRkmLdf+IVf4I//+I/55Cc/yeHDh/n3//7fs7a2xs/8zM88A1v5rZidneWWW6Tu8KmUU6MoetRzzT9tgrAsiyw7cxb0jMuaN9544xl/yWmcaTvpc9VSO8UUU0wxxRT/K0DkAjF+0XmyeDIPZz/+4z9Ou93m137t19ja2uLiiy/m85//PAcOHHhKY3mi+Jmf+Rle//rXoygKiqKwsLDwbecV4tvvH0VRGA6H2LY9ecgbjUaTSuITqSg+Fs744ew7tY1O8fhYGyicNz7Qu8EO1VQegrKZk4dD7LkVxKDLrAN+khFmFiIXWEFKpAn5tu6NSJcXcFo1yt4c/dEW7vhItmMFYgX73Bei7g548OQKIvdZqSS0Aqk5M7wAdsscO7WPpcVNWpF86nfKffxER1UFu0OXQ02fTqQyaM9S99a4fVfFtENUVWN58XxURWNx/iC77Ydp1JdRFY3+cJu55iGprxlu49hVwnjA0vw5YwZol7wQNKr72evKjkVF1QiiLmkW0evvsrx4PsVYa5VkEaqiMRztIsadZsX4RmCZHobhEESdSVxUb7BJEI6oVedYmDmP3nATIVIW588ijPpYpsvu3nFmGvupV5Yl4zS7wmC4PX7738DzaqRpRLO2n4G/Q6+/jWnaVMsLBFGPwbBDuVQjUyLCqI9pyvL7TO0g9zzwd7z44h8iTQP8YI96fZW8Ucc01qnVz+ar3/gkekOa7ea5IEkiVEWl7M1yavN+TMPCdSts7R5mdfklZCLm4L4rOXz0BuZnDmHbMgi9Wlqk018jSXxs22Mw3CVJAzy3ScWbZzhqYVtl0izCMj00zaRklhiOWjJ0WjPo9bfxx0HyhmHj2jV6g02is1fRRgqmBWNyR8Y3ZUCWE+2uk+XynC1GcoYsh0OVFNrSqPbujs7lMgmJjb7DjB2Q+i52X6fVfpDl+UtwrBqhqyM0hZWl8wFY37oX2/bYv3g5QiT0Bus07YIL5pbI2h2CqIcQKXc/+P8w9GUcV+GH5FmByIAoQ1M1jp/6Okvz5wKQ3vY14u+7chJurdRrFEHI6w8mPNzTSR2TztpxsvaDZCImFPMcPXw9JW9emvRmAYZqo6nji0zkUtepCnQV3NoCcb6NFefsdo+iKCqh32bk99jYuQvXKVEUObbt0evvsjR7Mf3tIxi6TWvvAeKxPlCIlN5gk35Zg0gly+SbfNWtoFvFRDPZ6Z3CMl1EOMSZ24+iw2hs2nzNUsJ/jvqU3JnxcU2lwWqSsDHSUFSN2eYK6TBC1RXs2X30BCAE6aA0uU/lmWRM4yyncBLQNXS14O/XT5BkASWvRpIEtLs7VEr1yR/nwXCbpflzIJF0ab2yj62d4ySJz2xz/5iZbjOiDeb85Nw61jPxgw6eU2fgt8hGQ6kBHYe650JjFOziWBUZa5QJvGGCEJJd11SF9Z27UBSVJA0m2rbNnYfw3ApRpqAsuFimizHSx/eaFtVykzRyZMeqrqKULIxY8KpVqV50nDpFKLAPXEiw28a2KuRFjxOHKgQPqLg6hFGfZmP8h11/pBila4y7Z0PanU0qX1ngvvMH5JlCMJBa3u3dNVb3XczQ32W2cYjhSJ7Tem0Gx3h2mLPnEu9+97ufM3/UD33oQ/yrf/WvOHLkCK973ev40z/9U2q12hmvpygKzj333Ef9fNlllz3q5yfDyp3xw9k//uM/Pu7vHyva6bEQRREf//jHufHGG2m1WuT5o5+8pzmdU0wxxRRTTPHMQhTiKTcfFE+xoeC5wvnnn8/555/PBz/4Qf7lv/yXT0rn/lSqiY+HM344e8UrXvEtn33zU+Hj0X/fjJ/6qZ/ihhtu4Md+7Me44oornrX22SmmmGKKKaaYQiLPs6f8cPZUuz2fa3zwgx8kyzK++MUvcvToUd70pjdRLpfZ3NykUqlQKpW+7bLPVDXxjB/Out3uo35O05RvfOMb/Mqv/Aof+chHnvB6Pve5z/H5z3+e7/3e7z3TITyvoakFjFt39/wejeoq0MPWC1SjjEhiokwwU6oQJgHtSGoCjpzrUk0N8r6HM7+FluXomsm+hUsptgTtSGGgQpipvHhW8OWzFA6uj5h/oEoJMSl7Vpp7DFpzCE2Bjkf9oKBvS4O8JHLwPJ9KTR7jNIdBaJEnOq1ule892GFnGFEAQiQ8ePyL2FYFU7fJc8HO3lFcp8xe9wRlb3ZsKioz5/rDbXTNwHXK2FaFIOoyUz/IKNhjd+84szMHSRKfRm2eNA2J4iGW6RHFw3EO45BGbZ5MJNJk1pubZPn5aYjIUyrlWQBM0yVNI/yoS5bJsqFhOIg8xTLkeGTm5xZlb46dvaOkWUIQjjB0kzSN0DWD7mAD03CplGcxDIfeYBPTdDm4cil73RMoqsZMfZVR0CbNIw4f/QL7Fs/lonN+iDDqMdM4G4BcUyiZAj/qYltlMlOThp1pyFzzbDq9k+RFTrlUw7Gr+EGHWnWZPBeUvXlObX0dw7DRNBNVUaVNid/iRRf+S752z1/xqqvex50P/F/0h1sUueCh41+hUVtE5FKY3B/IrNNu/xQLM+fx0PGbmZs5wNL8Bex2jpIXgigaoioapumys69A3FlgWgqmVVB1q6j65qSsmWweh5kZdLWgGJsYt2NFGr1qsrnhRTMpo3hIxVDpdWZo7F9DSXSiUk4W7DEKdgnCDnnzh1k9EaCMDXaXFy6gP9wiTQPCeECaxVQMMHWbQmTUK/topUeoVZaxrTKKrlN0BoQdlcqsAAxELmjUFjlx6h50VUHcvAXfB+gKquMheh2USomZUgVdTck1BVXV6XWP4dhV0hyOnvoKQ3+XRnWFNA1I8waaqlFoOiKJMVRwvBGRABH6DEILLJVef4M0TegPN5lp7KczOEWeC+aahxgFbTy3zMmt25mpn4UQCZZVpuTOjC1i2mQiJV3wUbY14lhFJBlBHKLpBfsWLyFNx9dq4lPEMQNFNpBsDiMUReWFC4vkuZA2HvGAl+0L4DbZALH7jXNQFRVFUfH7A/KsIFfB8BTIBIpQ2QkVyHJyoaPrBpau8n2XHIWWbAq67ovnEbb+D2yrwvbuvczN7COKZFm2UVshiHrsddbk+mydTu9hFmb3EycBjlMnCHvSTDYYoDkQRCH1/YJuewbLdMlzgWV4ZKMu1fIi6AoX1XOO3VVnFLal+bRdIwGU4QjbKnP26rWIfIvW3klq1VmiyMe1a9SqywxHLQzDph0rKM0SjlP//7P35+GSpHWZN/6JeGLPPfPk2erUqXOqqqt6qe6mupvegGbrhU1sUJoRN1CQ+SkiKOLrz23wddgcwEsYVByXEUZGZ4RxGacBFQSEpll6offaT52qs+a+xPpEvH882VmUIHbRm83kfV1xVZ3MyMgnI57IjLi/9/e+kdWAXq9BuTRNlkpSqZM9fG3iuejNFtXcDEEgaXdOQVIkbpxGK+ZJZESaSuR8lzjUGCZw3dN/kjvu+x8QJCqHMwqQUgMyavUN7hs2mJ3ejbPRohdp2IlGcysllYI9uw7S7p6mkKvTH26P54nst6HyxFzwKM3Z/53M2cM4ceIEL3jBC1hZWSEMQ2644QYKhQLvfve7CYKA3/3d3/2WrzsXPdm5Njee88XZtzJuu+GGG7Btmze/+c189atffUTb2bFjB4WR8/gEE0wwwQQTTDDBk4Gf+Zmf4YorruCuu+6iVquNH3/Zy17Ga1/72n/xdeVy+RFX/R5pVfFhnHta6b+Aer3Ogw8++IjXf8973sMv/MIvcOLEicdqCE8dyDPt1tLvU7AyTD1DG5l9OiPDQ6EL4lRjECVUl09gmTG5PmxvTdMtmkSxzx33/QWeUyVIdE5sVShYKVUn5ZILDxPHQ4qbfTKZMEyg5zvUiqqFPtzZJSsFTDkZulCTJlfskLMSZKpTdEN6kY4QEt1KEEJi6tDvFakUF8eGkVvbx5RRqFulWt6BYxcJQ584CcZWEWmWjm0D0iyl21tnMGyy1TwyNtSUMsIwHNIsJctSgmBAGA0QwmSmto/pqV0kMiaKh8r+onmEQn6GXn8LQ1hE0ZAoHrK5fYJ2R90ttzuniJOQOAnHDQaaLkZNFOvESUinr8T+9doi1fIcQqi4qfWtFXRNJwiViWgUDUYt85tsNo4QxxGDQZv+sIEQJlOVZQzD4ZJ9L8UyPXqDDYyZHSSRz9AzcI2M3NweoniILjM1HtOlP9wexRWtKlYtCdB1gRwZluq6wer6HTh2kY3thwijIUO/x6n1w1SKO0lTqYxrZYRjF+n01tm3/AwlZI+GBEGP+tQy7d5pgrDHduso5VId1y7SH26T86qkqaRa3kkYDci7NXK1BkmoYVkw6PyzL568iWbb+FIjSHQQKUVLsazA2KzzmsUFBlGCoYP0bTZ8DWNkqXFq8+tUS4vUKsvE+YTNGZdGc4W5+kWE0YD+oE2aSQbDJsXCLDOupB+0kZ1tVk7dRaW4A8+pIEbxPFk/JA513KIEx0CMrElq1VkKTp6ok1Fw8hBIZdoaRmQDn5Jbo+qkhLaglJ9ndeMu0lRyrKszP32AYmGWJI3RdYNGoCmGodcik4lqvAHiVCMMezRWdlI/2WWqssTBi27m1MZdbGwfw/dbCGHS6a2haTqOU2Bz66SKMZIxhrDH1i5xEmIIk0K5CWUbzfIQlkEpV0AXGZ3eadrdVXRNsL61AkOfow3lzfRgyyIIBpSsEi+74TcJwi6aLnhaPVJC92IB57Ofo9NbV3YqholuaPSCjhLDS0kmUoaJhj7nIRMwhcUgkrxqfwpCcPXiMppQJqxpJllaOABAsVAfC/ODoIfj5MjCCAwNy8phWTk8t4yhm0SRMlg+b0lVTIaRj52TLH7FUtY3sbIgSUMfP+yizVcpWhm7v7ZGHCuW0NWVTYFuWPQGW7Rf2afo2Fyw99lIGeM4ubERc96rYRoOrgBsi25vHdPxmZveh2MXyXk1kN/8Mzh+D12Q9DOSk8fJun0arVNIGfMTV60A0AoEw2deq9jCvLJySSMfITKEAa/YqwyPdU2QFfJcPRs//BOAP8grqyCvShgPSJKA7dZxZeLd7ZH4w0fwY/Lo8XBZ89EsT/Wy5uc//3l++Zd/+ZsMaXft2sWpU6f+xdd9+tOf5h/+4R/4h3/4B/7wD/+Q6elp3vrWt/Lxj3+cj3/847z1rW9lZmaGP/zDPzznMZ0zc3b33Xef9XeWZaytrfHOd76TSy+99BFv54orriAIAnbv3o3neZimedbzzWbzXIc2wQQTTDDBBBOcAyQpMnt0VhpP9bJmmqbfktlaXV39thW+b9Sb/fqv/zrvfe97+YEf+IHxYy996Uu5+OKL+dCHPjRODHikOGfm7GlPexoHDx7kaU972vj/L3rRi4iiiD/4gz94xNv5gR/4AU6dOsXb3/523v/+9/O+973vrOW7FYaWoRdU7bkTpqSRTzPQMTRw6gtIv4dlWFjCxjU9TD0jSTO+b1+fTrvCYKRL7OZ16tW9aJqO66hSc5oKpYURKVfPKN1Jt30S6ffoRhr+IE/BSkHqGJaiMVwDLDNmMMgxXxow46UIPVXrjZBGBrqQuALCQQ6mppBpjGV5FAo1hkGb1fW7GAZtwljpT7YaJ7FMDyFM1jcPE8cBmi7QNZ2ZqX24TolCrk6aSnqDLdJUjrU3UkbMTe+jkJ/Gc8ocPXkbxihSybELdHrr1Kt7WNu8T2mzMkm5OE+aSvYuXYlju6M76ILSEMUR280V1jePjvVnlumN91sQDBj6yl4iCH0sK8eeXQcpFxewrRzl0ixSRjhOgZxXpNXZppCvUSzUsawcvf4W9ZG+7OGoGtcpszGj2EJvmLAznyH8iJmp/aRCoz9scPX3v5PzFq/jGTf+MsuLl9Jsr9HpNbjmaa8m703hOiVOnv4yVxz4AWV465ZxnALdfou8V2TjmRdz3dN/EnNOWRRM1/YpfU37OGmWUiyo9n7LcAjCHvuWnq00NzKmN9gkSQJ6/S0Gwya9wRa2pRiHVx7YVsHX0WiRCWNJSlvNmyDR8BMN3UroRjBMGDNWAG5qkKQq8suttIlT8HwVQ7Zv6bkkMqLVWUG4IaGlsTh/KVutI+z/ifeRz5XJuTUKORVrU7BS/vZInywMmanvoe83uPvBvyROArIkgUAijIzV+2yybaXJ0kb2JEITBF1BL+grg9rpxdEJ1CdKAk52LexQEkQ9LtzzAh489vc0Bw73H/k7BsMGS/NPx7YKdAIT13TRLAdNGBzraphmTJBouLkauz53jPX1r9MbKCZLGf1Oj9mwUmFuZPFQpFad5b7Dn8C2coRRDzFifh27QJqluHaIVnZwCgWMwijqy8jo9bdIZMx2c4UffOlvk3X75Cz1Fb460FhauIzEV+dfImMGgzatQFc+J0LwlXv+FCljgmDAHXd/Eb0gaA620Nwzx+2SmiT/hh/DzmXEMmKlJyi5FWW18fXbefp5J5kq71ZMcqZY29W1hxj6ffxQmUTruoBuH/ImUsbjKDGAWnWRnFdlvfHAme+XRKN34l4K+WniJMCxi2jCIE0l2sIsqwONIyufHetX434Hhj7Stch5NW7e4yN0wWbzEIVcXelJu5vKEHtk6pykgCGolnYyP73FiVNf59jKXePnx5AS4ebUezgCIUySUCPbbKIZgl07LkXXBdfuVGNxjJSgGuE4ObTFOpqpkUl1ssgEdpcSquVd9AZbbM64zBSUebAQkLSKbLeOY5sqEi6MhliWh9BNsjAiGbR5IvBoWbPvBubshhtu4Ld+67fGfz/sVfZrv/ZrvOhFL3pE2/jiF7/4LfPGr7jiCm6//fZzHtM5M2fHjh07629d16nX6zjOuXmyfOELX+CLX/ziObFtE0wwwQQTTDDBBI8l3vve9/K85z2PCy+8kCAIeNWrXsWhQ4eYmpriox/96CPaxs6dO/nd3/1d3vOe95z1+O/93u+xc+fOcx7TOTNnu3btOmvZuXMnQRD86y/8Zzj//PPxff+cX/dUR5KdubPqRTrpsIepZ5QcgZ+GyGEPS9j48YDt0Z1TzhLsL8cksYVeGhAHDokFUTykkJ/GtUs0O0V0XVJzMlwjo2pL2t2TuE4F2WspBi622F3IEHmfJLJwCx2KZoaUglxuQCsw8IyMIHAwddWpGcUmwg2xzJhuDHZugD9q/dQ1QRQN0TVdxaEYDraZY6a+B8u0x1FEOa+I55ZVdMzWCq3uKn7QUToNIOdVSZKAdncVUMHjre4pomjAkRN3oOvK3Lbd2UTKmJxXJQi7mKZDHPtE0YCtxnFM02Hot8ZdX0I3MU2Xuel9lIrTTE/tIk4Cjp38GpXSTgbDJrqm0x+qbRVzM5y/W/n0pVnKA0e+oLRbsdJ+lPJzeG6ZuZllev0GhrCU2atT4NjqbVx1yY+w2TwEgCFs6tshhuUy9AxqdgZCZ6txCMtXupPW09rs3XM968/ssLV9DNOwuOEtH2d277VcfemPMTd1EXuWn8vczCUEYY/p6nkUc9PMzSwzVV0kt+s07k/P0b5+AyFM9i89HyFM/KBDpbiDYm6GhblLOXbyTmwrx9GTX8D3W2iazsyUMn2tlneS86p4jgpdBrh0KiEJdWSS4Q8y/HCAbqj4pixIQEqSVKMZ6hRO2fSiEWNremieB6sqgsY2dIYSPG9AN4J+Xum0oniIrgk0TWCYEVJAf7hNMT+Ddd5pXLdCtbysukjDHnO5jP2VCISgN9giSyXPuepNrG0cQ/uGmJSt9QySDKEbNFqnxqHvusho+FKFWrsuD+fnNAdblBx1LByrgK4LpUP63DyXXfh9o47jAoPhNrYh0YAsCshkQiswqObU/F7fXaXTO80DRz9BnIScOP1l8rk6UTQkTSVDv0ejvYIQJr3+JjmvptglQNMEQdgdHwOAvCXBNhk2VXh3nCQYdoZpOkxVlsnnyjS+vw6GwDGUJgogjPok/RYPHvs7DGEihMCXOpmvPq9l5UaxRRa1uUUwdIJEkvYk2BYi0tlViHndrxQo1mP6rSa+1JX57iCAKOJ7lgKiZEgYDVk5dT9ZllIpTSkz19H5bpke2BZa3iYIezTbG1hWjjAejLSQg1HEGpjCxLAzwqjH1vYxgkB1aeu2y2DYxNt3GZdNJbS7p+h0NxHCIlw7AklK6JlsbR8jSVXHYaW4wDBoc2r9MPlcmTgJx9rFe1s6GII0k1xel9Sq8+zZdZA4CdCiEUeRpFDM43e30C0HzTFwbFXSygYhCMGhY7fT67ephDoyAdfIsHMDpmt7YeCDo46rlBphBCs9wXbrGMXCLJ1qNjYyjkJwZrbRNH2k4UuJ44jNrZOqy1pK0vCJ+X1M03ScEvCdLlmWPSFjfbywY8cO7rzzTn7+53+e17/+9Rw8eJB3vvOd3HHHHUxPTz+ibbzvfe/jgx/8IAcOHOC1r30tr33tazlw4AAf/OAHv6Nq4DlfnL3rXe/iz/7sz8Z/33LLLVSrVXbs2MFdd931iLfzzne+k5/7uZ/jM5/5DI1G45wD1CeYYIIJJphggkeHR3thJlP5lC5rxnHM7t27OXbsGK95zWv4wAc+wAc/+EFe+9rXnlMW+Ite9CIOHTrE937v99JsNmk0Gnzv934vDz300CMujX4jzrms+Xu/93t85CMfAVSC/Kc+9SluvfVW/vzP/5yf//mf55Of/OQj2s4LXvACAJ7//Oef9fjDUQfn2nY6wQQTTDDBBBNMcC4wTZMwDL8jI/y7776bAwcOoOuK51pYWPi2fq/33nsv+/fvxzD+9Uuvc2bO1tbWxvXTv/mbv+GWW27hxhtv5K1vfStf/vKXH/F2Pv3pT5/Vhvrw8vBj362YclKyniq3zOUydK9AwVJll46vyhiulccSNo4hqDlg6DpVz4FmDsfrIyxViklkSDk/jxA2g3aFQbvCJdWEupviGBk5bwrTySMKFZaLGZbj4xoZhXITXUjSVOAaGZ4dkbMSHEPd/SSxRTPQiWOTbqNOodyk1Zjiq2se+UKXrZqBaThjEX0YDZmqLGNZOUzDYWPrCADN9gYApcIsQdhDyphaZYZ2ZxPXKWGaSuQ/GDbRdEGpMIdt5lRZwqvR6W7iOjkKuTqFfJ1aZQdhNKDdWUcblYXy3hQ5r6a2ZTgEYZepym5AZd5JGY3MTAOieEgQ9jANi2b7BDmvSrO9wfLipcRxQH+4zR33/R/SVNLtrTM3s4wQqrVaG9lbxEmA0E2KhTqJjBgMuzh2kasu+RGsiy7n1Mbd9AYbOJYqh5w4v8bGQoZjZIR5m8X5KyAIVYt+ZDGs5SgWeiwvPh3LcsguWmNzxsV08gyDFmnOpT9fRdcFJ9fvpFRQGaZhPMA/Os+uYoJnRzz/+b+KObdI3q2haTprmw9x8MJbGPpNZeybBKRZysLsQZ52wctY27qPRMYcOXHHyO5EjstAQZLRWjOwbI3hqJt/3BCQZOhujm6s0401pjd8DD3D1FUMTDYc0r83QFg2RcfFE1B0Q/xER46aTEr5eWUh4FYxzIjYTekNtpAy4iee1iAIu1hTc5iGQ7vTQOgal2Cg2TZSxsRJiO2WWNxxgSpRJin9psAaVTiFJnjuVf8/LCuHa+VxqyklW4dAEsmIrKPsZIQuOHpygaFnYM4t8sDRT6m8zuPHmKrsZRi0GfgNesNNCpYkAxAGhptjMPTYmVefx5AZjlWgP2xQyNXJe1P4QYc4VobJxUKduekL6fUa5L0avb6a/2km0XXBYKDyQsN4gK7puEYG4egc7wWYhoGwVeOKlBFCWCzU1XfF8tQ+klCjE2n0/QbCLdDpKQsZzy3jijOMRrtzikpxB0KYNE8fBSBnWcggI+v2cX1lDaKOt0bB6apeAt0g66uyXt7UOLn2VXRdMD21QPoNXX7qc0QkSYBWzJP1Q9U0lC/T62+O5AcraLrg1NoDyATafgfDzvjfn37XyEJG4oddjHyFcmkHrazP3gqsbd2rzmm/Rbq9DYbOZs3k3/3ghwHoBiHN9gl2zj6NYr5Cs72B65RGdhnKjoOBz2DYoOqkyNHclzIeGylj6Gg5l1Prd+CfuBfKFu3OOqkE2gEYgtnpJSzTJjz+AMJQ0pRqtcHa5v1gCDTHwCjVx+eLqUMcB2SpxOnr+PHDDRtQ/HqF2an9dHrrlPKzmKZFziuo5inPJT56+F/7OXlMILOUJH10S/oUL2v+9E//NO9617tIknMz4z148CCNRuMRr3/NNdewsrLyiNY9Z+asUqlw8uRJdu7cya233spv/MZvAIrx+tfYrm+8ynwkkQfncpU5wQQTTDDBBBOcG1RX9aO7uHqUL3/S8aUvfYm///u/55Of/CQXX3wxuVzurOc/9rGPfcvXZVnGr/zKrzziTM4oih7xmM6ZOXv5y1/Oq171Km644QYajQYvfOELAbjzzjvZu3fvt33t43mV+VTBVM5DKxTQbZf5Uh3Za2JqGb1IZ7XdAdSdqmU4DKKE5UJKkEgswybfz9gz06JWV4yUYxVo908jZYjoK4bHMVJsQ2c2p7PdOkKcd9AtF1fAeXPbNEKNghugC0mh0KUbqSlg6BlVJ2V9qGGYEYPIIAxctI6Da4fI2KJ9eBdCSGJX3WkW8nXiWJmmrq7dQ7e3rmwB4hDHyVEtz9BsnaI32CLn1dB0wdDvU8hX6Pa2xsa01ZJiYtNUEicBrpOjN9jCcXJ4bh5NF/T6W0pIrgtM00LKiLWNYzQ7K6RZSrW0k2brFJaVY337QQr5aWam9iFlzGDYxDQczFHMlBBC/W26CGHQ7a2TZSnLC1cjdAPTdNE0Hc8pM11VkTdSxmy3jhPHAabpkiQBV776/fzASz5At7eOZXoYMmPn7EEKuRnSTGI2OkrgXmmrVn7Atc8kbKTbxfExe/qBH+KCPTcgpaBTzei2T5LIiOaUw8ATXHnxDyJlzPm7bwRU/NTuextcPpVg6Bmt79kkXluh019n//LzuOKX/5xw1w6e9ZL/l6GvWMvFucvZNf90xE0vGwudX/LcX6DV3iKKBsRxRK+/xRfXbQZdjSjMGAx0ghHTmyagOQJRqBIkGkUzQx/4bLZKmDqstjtonoffHbGao89adVJc4wyDoyxWbFynrOxfin0uv+iVJDLiqoUam1snOXSpoZjW6ixFxyW+/XaQkqHfZ37mAFkqGfrtsZUGgOup6CGZSWy7QBQNiJIAv6kj00xZO6SSrNmDMCJMYjIpEDLD9CPSTLK8cDWJDDm99XV1vlb2UC0tMetlSN9X/ggoA9HLRvs+EYptarbX0HTBxvZDHDrxj2qemQ5JEnBs5cuUS7M026eIooB2Z504Dsi7U8zPXKDYy1SxlyULsnaAbp4xxJQhDIY9tlvHWd88PjIAFiBTDDujGejYZg7DzXHFDW9R0Vaaji91ZKB+OW3LozfYxLELCJGqfZVKjLKARFLsJUy5Gm4vpN8yqNU1upGOHykbEs22eaglqJWXEcIkjoOx4XOapcSJMpIWwsLYuQyG+m6Zq1+AlDFbjdOYhrINKZfqCAOSJCYJNSrlOrlcmUK+xtBvozk2WSq5Z7OFoeukWcpMfY8yqV7bIuuH2FHGc3/6GNfOQ9Gxcd0KR0/exvzMBcxO72YwbNJoriCERc3JyDpD+oM2ppYRxwFT1TmCYIA5MubGEBBGfOGOj5BubIBjEicRg6ZB1g4hkXhOmUKhRra6DsBmq4ShZ9iWh75vN8yqH3WZQJJoOEZKtbxTRYG1E/J2CcPIKBRh7TN/ymbzMFmW0uycxHEKzEztwXPLZEMfWp1H9qPyKJGmGfJRLk/1hoByucz3fd/3cdNNNzE/P0+pVDpr+Zdw3XXX8eCDD3LHHXc8ouWaa655xDq2c6ak3ve+97G0tMTJkyd597vfPQ4EXVtb4yd/8ie/7Wsfz6vMCSaYYIIJJphggnPFH/3RH31Hr/vMZz7z2A7kG3DOF2emafKWt7zlmx5/05ve9K++9uGrzEeKc7nKfKrAj0M0oXZ7x29RlwkVR2Lo0Ap1RLmAadhs9U4TJBnzuYT1QcbOSomhq+EZIKUgcyMSGVHMzeCHHab6GdmubXqRPtKcCfLetAp1thyWCglLBfjatoFjpESBy9P2bNGNFXPTCUyKVsTpTg4hJEJXTIcZQbNZI40MSv2MnJVQnFMMmaGbNONTVCtKBxUnAb3BpopaSgI6vQZ7l66m0ztNo7lCEA6plmcAKORrbDVOUsiXWe1s4rl5RH6OZnuNhdkLGAbtsb4mSyVB6FPI1wnCHo5TwDQcLFOJjBrNFeq1JWzbVbqzYEAUrSCEGNkjFOj1GzhODiljur02g2GPQr5MIa9igIKgx96l5/LQ8c/Q7pyiWt7JxtYRrn/OL/OXf/tmSvlZDh3/CufvuZYTp1RXcnzJOubJPMXCLIaw6RQM+sMtBsNtdF0Qhj0unI051HBVjJGhc+L0l9m3+3oVKePDqTmTa/MpJ0b2EsEwj13pMPAb3H73h9l/81UsHtJwZi4h51UxhI2UEZ5TJs25VBzJIDIQeorjlnnulT+j3nvvCZL9kubXd1PI18YsYGHv0yhc/hD3A6bp8JV7Psp0fec49sYyPXbkJFKOHScAZaMBQN5EuAXiNAQgS9VKw0TN32yk2Uh1xrYBnqG0N7npLQabddJMImWI68wQ6xLDiigVd9LpKTaiVp1lescqd/fW2bP4DCxhk967ib5/N7XKDo6tfJmrLvlRBsMu2XYTHIFuSHLFjLQnydsl7n7wd4iTgH7YpbBHB8ceMUUJBDE4BoNIUjhlU2z0yOKYS/a9lPuPfhJjz/ms3v1fKeXnmKruJQx7uEZEGp1tGVR3JY6hYcgMw7BxbJdefxPL8hgM2hTyNXr9BrlcGcfJEYQ9LMvBEKZicEwH0/Rod1fHTKam6SzkFKuVxurmtDPosSjUfpEyplyq0ennwIHEHyAcjSTVSDOJZlnYnQGd7iZT1UVODUbFEaksPeq1JZrtk0i5OLbY0EwVfF5sKIFhNhyShBquBxu+pkLnDYG7+xIu6K8SxT6N5jrFQhnPVTfnlunhuTG6Lhj6PbyF84iMz7G2cYydsweJ44hKWcU8xXE0/rwlr4RuZEqLN9hCCJNSYZYwCYmTAEOHr2+lCGGysXVEMZ+nFKPkhCnHezov3b+DftBmffMw8zP7WF27hygOKeTLCGFyau0BupGGlrOxbfV74jgFPKfMMGiTK6oIK83Q0SrqOyELIwhiTGOkOTV0kJLeYJP+oE3W6GHaGUJIduQlmi4oXnQ1nV6PeO0EwoAgske7PkbTdHKrW+Q5Uy47tnqbCml3CzTbG9SqHn2/QbuzCUFENnxiyIkk5f/6sua/RXzHYq777ruPlZWVb2K3XvrSl/6Lr3k8rzInmGCCCSaYYIJzg8wYyy6+U0wuzh57nLPm7OjRo1x66aUcOHCAF7/4xdx8883cfPPNvOxlL+NlL3vZ4zHG7ypYhoHuju4a3QpZFFJ3wRUZm74gk4kyddUFSaY6OnuRTj/sjLVe1VyA5ls4VoGdswfxgw6lXkIYuCwWJEma0QlilhavpVs00Rwbx0i5dlGxVjUnQ0YmRROOdXWSVCOKTbqRRioFupBEsYlhRgT5lGSjgltpq/d2UkwzJo7PGCQO/TbN9inCaMD65nEAOr0GtcoONrYfJE4CLEsxXY5dHGnIGtSq8wz9PqWC6jBsd1cp5CtsbB+h2V5jx8wlWFaOZvsUzsiUMgiUgeWRE3cghIFleliWo7ooR3fXU9VFatVFbEvFR6nA6dwousmhUq4zO72bMPQp5WdVJ5VTIJipcO3B11LI13neNW/BNC3CvI1hKG3c0sIBOv01cl6Ri867npw3JA76dHvrbLUOI4WGH3YwDJvVjTux7QKmrroVg0TDDCWd3jpZIc+u+SsILUhHyTm2XWBl/WvousR2fGZ3XYGmC0Tfwh7GnN4/TRQPCaMez7riJ0kzyaFLDZJU49q5kM2NOU7vnyb+sQquU8GzI/ZXI7S/+1ukjOj7DQzDZm3GJkk11jePInSTZnsD28wp7Y3hkHMrGLr6po0UOUYaR1h2Nu5A0y2HgpURpxpx7JPLjTrQUk2ZZyYa6WCA0A3WfY0ZV3VzmlYEImUYtFRQu1VACEkqBVGi9ISWcSZpZDDsUS7uoB/2GDwYobs5Gq1T5HNlNhsPMju9V7W9GTppAvmqZOVrFp6V4/jJrzMztV9tyNDZmd9J1o8Vc9aPydb75CyBITMyoZi1ux/6K4Kwh1g9zdb2MU6cugtZLhLHQ7qR0pVJvwdCR5wuUnIE+2b2YocppukRhD5BMAqPz5XH807oJlOVZWplFR2VZim27dLubKquXRmz1ThJu6OYw6qdQiDxqrVxfFMqQdd02p0GQ7/Ps5YUe+SfuJc0yVgqKsPeftjj47e+GYAwHmBqkCUg8mWEEAyGDcqlHQBoriBIJFreBEOwvX4/qz0IZirkKhLdgE4E5tppaAekrurAlTKiXKoRj5i9OA5Y2zg6MtndIstStoYbaIZOMV9h6DfJ58pq7uiCbr+l9vOZ1Cia7VOkqYqDOnn6PvpBmzAaUDBH34upZG5635jJIm8iZMZtKyX0dgvXylMtz+HaJfrD7pihlzJmeefTqDkZ5FzC0MeXmop46q0TRUOu3NEf6+PM6Z0EwQAGPlre5uCFNyOlRtZX3bNxElKfWgZDYNoZulDG33Ec0PZbtPepTnGvmKJlCZu+MR7HfYf/lqTfIknUXMqylGKhzlRlN/XaTqJoSBD0WJi9QH3GIOaJQJI9+uWp63L2bxfnfHH2Mz/zMywvL7OxsYHnedx777189rOf5YorrpgwYxNMMMEEE0wwwQSPEud8cfbFL36RX//1X6der6PrOrqu88xnPpN3vOMdvPGNb3w8xjjBBBNMMMEEEzwOSFLlb/doFvkUL2v+yZ/8CWEYftPjURTxJ3/yJ0/CiL6DizMp5bhDc2pqitOnTwMqc/NcxP7/t6Li1dGEgRz2iGSI7uaYyhcVPZxqpKGP9H3V4v4tDIvjVOW5ZW6Epgv0keg6OfIA1WpjrB0wdI0Hry3QLukkaULdBT8e4Bow62aYTqByNBOdGS9l0C0x62UMeiVSKQgChyhwMX2dmc0E2/GRQsPUIQgcVtceYmH2afSHXQbDrjJQzVLqtXn8oMPepasZDJukqRyL9KuVHWxsH1NltHBIr9fAc/Osb60QBAPSLFUlBaBansNzq/T6m3huQbXrpxLTtOj21jlv6QoK+QrtzjpSxqycup/N7VU8r0izfYr1zcN0eg1yXo3N7ROkqcSxixRydbq9Ji987q8D0Pcb9Adt2p1NBp5APu0g9cqekemsRB996zQ7J+n01rnu8p/kyot/kAue93oMPRsJ/31q5WUSAWE0IIqHzNcvJvDbDBNlUzIclTJ0XXDogEW7dwrPz8j1wdQz9HyBPTufgZvrowvJ+nyOXq+BLmHr2Fexo5SlHVcShF0qlSW2GsdZXj6OY2Q8dyFCRiaDPFy9Q4m6e77DJdWExYWrWN9aGTVV9AhGxqnlUp0kCXBsj95gi26/xan1w1y490XKBBUIQ0jSM3YOugEEkjQKSFJohtDpnWJ7fZ5upBGnqGxNVPnPyYQy/0R9xvbanJqbwqbRPoZleoSBS77QxTI8Gs11CrYy4RwMcpRLdQo5VZ4KB2I8L4Z+j8FwG9cuqrImkEq1f0+fUGOdm9mNrglkKglXI3q3/wPpVqTKmoZO1g7xLIduXkeLEh66IM/CzKWcv/x8DGGxf/d1eG6e2BbKzHlU6s22G0jfx44y5kblQUNm+H6LKFIWMs3OyXGua5pKonjI6to9bDaO0GpvMRx2CUOfnFckqVcxhImUKganVJjF0DOyIGGqMEUaJcRylP9pF9k5fz7V8hwzbqpKyCdWEXnBMFGlMzjzbxQN6caqJCr7baSUdHqNkeWNmgcyzciSFAzBnQ/8BX922CG0dAr1BMtWnzk5fRL6MZawELpqenm4ZNvrt7Etj3ptns3t1VHebcSJVhMMHdO02G4dpdNrIGWM65SolKaI42hcNgfVICSlmqOFfJk719tsN9eoeg5VO2Xo92h2ThInEdqOEmwHSKGRPjCP7LWQaUKaSbqDDRbm9tFsb6Bp6udNCIuLqzFatUS5NMvqQGeroSyaTMOmZmdoBYMsSXFnVelZXLAPUFYqAFms9oXrlGg0VyCI0Q0IA5e9xWS0LxN+/Us69tL5pFLDrc2wOdQ5vXGIanknmibQLZdU5EfHKaLb2+L+w58fNYt4lEs7OHT8KxBGql74BEA1BDy65amuOXvNa15Dp/PN1iW9Xo/XvOY1T8KIvoOGgAMHDnD33Xeze/durrrqKt797ndjWRYf+tCH2L179+MxxgkmmGCCCSaYYILHBQ/HRv5zrK6uflufs8cT58yc/fIv/zJpqu66fuM3foMTJ07wrGc9i7/927/lt3/7tx/zAX63oWDn0W0XszzNartDJhOEJsYsmfAK6jFd4BgaFc/j1MAgSkIuv/Qhak6GZ4CdGxDHQ9I0IYz7HDn5ea6aiWmFOkc7Bkc7Ojt3nUCXYOgGM4UKADU7w9AhDhziFNY3ZmgEGjK2WO3ryL5LtzHFoF1Bxhb2qBk3jiyq7RjPyDCtiCsu/l6EsMh7RaRM2L/8PIQwSbOU83dfz86Zg8pMMUvp9beYqi7i2kX2LD6d46v3UMiX8YMhYeirbYwYNstyyOXKKtpGEwyGXUBF15img6bpSng82GQ4eq5a3onr5JitL45E/xamYVEtzzEYNijky0gZj+w5YsqlOq25AksLl7G2cQzPKxJFIbmhJBEaSzuuBsemWKijy5TLLnwFaSpZnL+Mcn03O5euYW3aJEwEUTzk6oM/RJIoGmB54WrCqIcftgE40sjhGhkj1wIu2f891HacYu/ideSGEiEzOpGGJlNqpWVMM8Yf5OnMxti2y8LpkFMbd9Hd00fXBNZFl3P0xGcRQlCwUoJEQ+gaSHUqf+54iU7v1Kg5JOHUeTWmqnNousAyXZy+TpgIdE3HMBy6/RZCmFRKU1RKU7S7J7l908QfZEgJumnhVWvj+ZuuKWauGegME421zXtIfYuildGL1Rik1IgbilEvmtD9Z7rmRIYU87MIwyYOXCwzxjI9pus7OdE8QhD6CCG58uIfZHruAKu9BLco0d3CSIw+y8BvsjKyNCGQ5CoS0854uDKxMHMppza+TpKm9LYM0s8/SPrPmAjXzCGrKlrnhmvvp5ifI0p8hJtDCAvL8ugUDDRdYOggiupLOmqcZuhqREmAoRsMPEGxOI9ME3Rd0O40cO0iW9vHxvM3nyuj64JiocyeXVczVV0kigKkobPVOM2OufPIeUWGQZsk1ch6CaYwSMMEz3JJQo3TG4eUXU2/wUfvVoyiVq+OP0+xMEveyGEaNn4wVM0DiYYuACEoFupImRCGo2YeQ6fojDKvBj6d3jrWX8xjR6li2x5uAJmaIgskfuwTJSF9v0G31yTv1SiX6qxvrdAftFlaODC2ZHmwbUKSomk6cRJSqyiWMQh7BKGPZZ1p/AhGpsWOkxsZ9DbY9NVjlmFTsFIGwx5xHLFn8ek4z3k+WTuk2A7xnnZUMXsoxnDoq/OuXFIMuWk6NNsnKFgp5sJukiTA1Bl9N3RJs5RurKmmiBE8t0C6sUGWpFQryySh9vATdHtbeG4B+jFCZCSRhWtkSKmaTZJUw8hXMOwMwzApWhmWaXN64yG+du//wnBz5CvV0XkQY46MhoUw2dw6yam1B5ibWWZ0kvFEQGbKiuXRLGl27rmU/xZw8OBBLrvsMjRN4/nPfz6XXXbZeLn00kt51rOexfXXX/+kjO2cmbObbrpp/P/du3dz33330Ww2qVQq31Fw6AQTTDDBBBNM8ORAji6wHg2eqmXNm2++GVAJRzfddNNYsgVgWRZLS0t83/d935Mytu/Y5+zw4cMcOXKE6667jmq1+pSPb3gioQmTTCbkLB2GKui85vUYbmoIt4CZL0C7QcXzELpBkia4psf3LLW4c8uiC5TKLUzTo5CboVZexrbyGDo80FJ3awUzpWBJTuYTekGHvFNG6IKCeQxD19BHmpN44KkoGJQ2SpM6RscisUBEkBtK7FAqY9qRoM0yY7JMYgib85aewd0PfIpKcYE4Dsh5D98VRuxdfBZfvecvyOfKhPGA/rCh2IN8BU3TmZ1ewjQcTm8col7bOdZdtDubCF1QKszjuXnSLMU0LYJgMDayHfq9sfltpbjIkRN3YBoWaaq0O+XSNADtzhblUp0w9On22gTegDiJSAyN9e0HmZ5a4OLzXsyhlc/i9hTtYi9eDAOfS/a9FK3XZ3bXFZQe/Eue/syfYuiZuL0Qz88Qeopl5ljacTWN9jEAqqUlLNPDsQp0+qcJBpcyNdfH1KBdsSjm5xFCYrs1Cu2A07sUgzksuxgtmyDVCQc5Lr/gKLlLfhiz0aGQq5OmgpxbpXFxj9s/9FFM02JraACK2rSLPdxcn/baHPsqBq1AGd/OP7jJxftezEPHP4MftNlzvE/69Jj1rRUs06ZSmqLXbwHg2C7eTa/krr9NuTiE/tAZbz8KNYTIyBLIZIKhw8ZQZ7q2j37exzPATzQ0yyBNIN3eJt0l8QzF9N7b0tGtBGvLQcqIenUflp0nlTrdXoFK1mRt4xifW5VUy3M4TsC9q19gx+KVnB4YnGdk6LarzFujIWGpT3/YhaFPFpwJK+4FRZI0IU58du+8hkEkSbYMptohMgQBoyiejH7YZWo24MFrF7hAbJJza+TcGl/40gfRNUGv12Doaui2w6yb0ehvYCWSLApIBWz0til7NRKh1inmK1x83ou57+gnOXT8K0xPLQCMDVttyyNOQly7xF33f5LpqQVCS6demx/FjHUBxbRlwUgTFiXEIwprfuY8+kNlalsodEEIsq0msi/pRhpL808n2Fplz+KzCKNPnPm+MQAp8YMOhXxZnSOhjpbXqeamiQFCZQz75ds+xPkveCO6ADE6plkUkrZihC7I20XiOKBcqrPdXEGmEtfJUa3swDQUs53zavzl4TwvTlIGwy6FfIXVtYdwnRylgoeUCd1ekyQPyITulvoZiuMAx8lRLs2yv6zoVtfM4RhdyqUapmEzU9vPh08O+D5DR5cp186FZNt9oiRgc3t1ZNdTIAgG5LwCOa+mrHIEGIUqnZ6KD1RmtzXCaIj/8PRJJInvMzN1PtnAR3MMgpkK8tiZ4wEw9Htk/Zh4xKg5htKeRjJkc3uKcHOFJNQwhUXFljhOju3mGnMzy8goxBQWQigrjaHfp1goj7W201O7aLROgW2B/Q1eI48j4lQtjwZP1YuzX/u1XwNgaWmJV77ylTiO86+84onDOV+cNRoNbrnlFj796U+jaRqHDh1i9+7dvPa1r6VcLvOe97zn8RjnBBNMMMEEE0wwwWOOH/3RHwVUd+bm5uZYuvUwFhcXn/AxnbPm7M1vfjOmabKysnJWRuYrX/lKbr311sd0cN+NyAAzX0ITBo4hMMrTeFYOoQvOr0QYbo5MpgyjQN2Vmjl2FRJKXo1LZufG25nNRxgzO7DtIpahjCG7MUx7KXHKWP8DcLqzjmu6GLpBnGn4iUa+3KQbK61SmAhSqRMkOpkbUW1LbB/sCLyjqzQrFrpQoqkZN8M2JHsXn809h/437f5prr38VQhhM13bQxD2yDK17urGnQCE0ZB2ZxNjFJbc7bcwhNJ4bDdXKJdUpI/rlDANZxwJk6YJaSppd7Zw7AKOkxtFslgMhj1WTt0PwGUX/wDFfIV6bYn+sIvn5omiIc32GtNTu4hjtS9zXgEhBJdddDOhpXPR3hewd/GZTNf2s9VYQZMpXttH+BFJMcds/SL681XaNZc0k6RCRyQpab/H3Mkeg6FHmkrSVOI5FewoI+9N0RtssPLsvZiGi5vr4xqw7mu0Szqzsxcz5UUUivNsz3i4lTZbQ6VbMk2PVApy5RZXTydUSotoumBt6z5k32XH7EHmp7fI5co0WhsASo8TpUxPbTNfGvDiKw8R10pMHXKoeg6yXOSh459BCJN27xRJt03NyZitL1KrzrMwdymO7ZLzikgpsaMU++v3AoyDt107R/wN8pek1wRgvVGlN1DjMPWMaVeqbjSpka1tkYwYuWGiYsdSqROPmj9npi8kzbmj4ywQwuJFz34Lrsi4+tJXI/SUmdp+jhz+e5qBjlVTBs2qW7fNA0c/S60yQ7atNHBKI6WRr1SJkpBaeTdSRuQsQRxA70iKLiCSIclaiDblMIgifvt5Bi++/AhVJ2Wz+RCF/CwPHvk8puFSKk5j7NxGWgYFM1UGuQOfTMakAqZyZZI0GRvZXrz/Rezdcz26JpitL7K5vcrm9ioyTcZ6zDSVHF75PAtz+4jjgM1pwfqW6hz0gwGmYRFnGvFAUREyijFHcW+9wRaDYRddE/zI+YppyR5aRzgaNSdjz+J1ZEnMP331v42CySM8Ixub0A79PkO/T6uzTXV+NxiaithKMrAtur0t7n7gUxTWOwhHsUL9SJCFoWLfOh3yTgkpY4JggB8M8dy8GnMSsLp+P1mW0u6corWlNHFRFKJr+og1U9rFYqFKFIfjeLDWlkYYDdB1QZpKVk7dz1wxR6U0hWvl6Efqu6zZ3uDOB/4Xf3/SAUPj8L48B2qK2bUMh/27r1L7LI3HofPHVu4i702RpOp7d2ZqmZqdEUUDpiq70XWBO6IoNEdVNLqDDRj4YFucXFDfU3pBhaKLh51zA0kcasSBQ8HMyHlVWsMh2skKWeQThRqWMPBHWtDZ+iKDQZvUtclZLq6njbtJg9Cn228xXd9JkgQIXaCV8hB+Q37a4wj5KPVmT2XN2cM4dOgQz3rWs3Bdl127drG8vMzy8jJLS0ssLy8/KWM6Z+bsk5/8JJ/4xCdYWFg46/HzzjuPEydOPGYDm2CCCSaYYIIJHl/EaMSP8uLqqe5z9upXvxrDMPibv/kb5ubm/k3o58/54mwwGJzFmD2M7e1tbNt+TAY1wQQTTDDBBBM8/pDpJFvzzjvv5Ktf/Srnn3/+kz2UMc65rHnddded5ZiraRppmvKbv/mbPPe5z31MB/ddCZmiCQNtVKrIkhhd0+kGoTL/FDqJP2AQSUpuVZUdAFOCF0GcKRPZ3YWMlZ0OVqnGVGUv89OX4CcaRTPFNVRDwKyXIXyDQZSiAUmrwbMXPaZdiZSCRqCBlRDFJkQGnX4OYcXkezHTjZhqO8YQFobMiCOL40s2caqxVJSs33SASmknp9YeYGn+KvygTXewiWk6uLayHLCtPPWpZUzTQcqEOAmxLY/Z+iL9QZtOdxPPKzIcdlnbOEa3t8Vg2GR+5gAvfs6vEEQ9Wp1tyqU6p9YPs7m9yoHzXsRW4ySWZbMwt49h0CYYtc8HYY/pqQXKxXnSVFLIV9g1/3QGwx6mYWFZDoNhD/flrwZgz+J1XLTvezD2nM+1B3+ITOh0ax6ZZWD6EcKwGHiCfC+mVJhHl+nYlBaZEgYuYpT1lyQhU9shnlfDdcoU59ap7biIxcqAGTfl66cqSDchzjsqxs+x6e7pM1tr0u6UGbg6aZqQ84YksUXdk6RpQhIpg1uAzZeVMPSMIOhx8MIXYugZO0s5jnRNklRjuZhxcEqVeYrtkGpumiMHdPYuPot9S8/FsUvolSpxCuXiAptbJ3HtEt1eG9N0EEJQO7aNbRcRBgjnzM1WoZpi2hmaAVnk0wzBb5XVrohU6acX66SRj2FnZEeaZDKhYsuxjcjDTShCWPj1IrpMEX1L5bnqBqbpEWcaU7MXYOgZ+/a/kLmpi/Al6MsFsiSm1dkm5xXwgwHFwiwPe9CkI5NfU6jj4dgF5uoXMV2YQRjQbxmkEqIkxG/qMLJOqGh5imZGM9CplpZI04QoDukPtzi1fhjbUbYTG77AjwdgCGRblXVlpppP6qf7pEKnO1hHRj6d7ibrWyvkvSLTUwtMTy2QjUqarc42ADm3gueW0UsDXCdHmkmEbhAnEUGikSYabb8HwDDySRONRmsDoQvCaIBjpMqoFJWdCaDnVWZvMV9B11X5LR514aWRT62yA8/NU8xXsIQBhsrwJVHbKhbqyDQh8Ntj25EoNsnWtog6mTq2ukHOqxKEQ3YvPo1ycR6AdmeTcmmadqehDKN9C83QkWnC0O8hdIFl5Rj6Pbaba0xV5wgCHT8cEIUZhjBptDYwTYe5mWVm7Rk8t4wlLPxEY6qyRLU8Q7k4TxA4kGSkAv7xtA3dvip/DhtIKWl3NglCnzSV1Coz+GGHO7ctIhK2mys4Rkan16DVXWXo93EF4Bij/RQQRQMerrkunH8I087I4oys2RkZ5Q7J4gwpNfZ/LaLkmARhj52VOeY2QmSvM5YB9CKN7eYarluh22+x3jmJZ6tyfhQF1GuL+MGASmkK03DoD9R3GbYF1X874vTvdlx44YVsb28/2cM4C+fMnP3mb/4mz3nOc/jKV75CFEW89a1v5d5776XZbPJP//RPj8cYJ5hgggkmmGCCxwHJY2Kl8eSXAR8N3vWud/HWt76Vt7/97Vx88cWYpnnW88Vi8Qkf0zkzZxdeeCF33303V155JTfccAODwYCXv/zl3HHHHezZs+fxGON3HSIS4vYmgyjBLE8TyYggyWgFgjRLMdwcOUsQJQEyTTivkqFbFplMcAUMJVSdFH2+RWIZFIvzCGERp3C8Z7C/HLNYSLi4miCtlJWeQdzvEa4+xJRewtQhiS2Oti1MJ2DQLVFqagx6pTEL4jUGuFtdEhmRCA3HCVg4/xC+VEa2tR2n2DV3BbPTuxELu1havBZdE2SpJJHqjn5j+yEazRU2t1cp5Mtomk6n10DTBfUpxQaV8rPoumB58VLSVKJpOidWv4ZtK8PRWmWGOA5YWjjAwtw+pip72DF3PuXSNC989q/xnNf8F7JUUsjXKBXmsEyPZvskQpg0muvsX76e6aldFAt1Wu0tioWqani4+ATCsMhSSWjp7Fl+LgQhUqgvmXjQRZaLykqhqYTtqdAx+wGJjNTnjC10wyKOh5ze+jpGlJAV8my3jtBtTHFiKc+sp4TyUeBi5obE39Aef8nyaQw9wzQjQpdxFFccuErAbCr5QPklr8Ys9rl05zZBoqPrggPnvQTHSKnmZjC1jG6vwNOnIyp2RufQVzl0gbrrnt6xyq4dV6FrBks7rkL4EaYOrl3CdTxObdxNsVCm12vQ6mxz+PinCcMu3xgzZwkDO6dYrywBzXL5p8OzOB1DxSvJh61YIItCZbkRJKTDHgXrTL1EE5JyJ0XKiJVdglTouCM/VNN0qZWX+fQpg7WdBQw9I8zbJHt2UzQzcARZFOA6Obr9FnmviKGbaDNn3LvtnGI7hG5Qys9jmh5epMxUx0aiQBzqYAgcQ/BXJ06zq5Cwq5AQx0PieEilNEUxP8srXvhO4shClymrAw0/Go7joowI7t/qqnPUH5AKnWMrX6a7axrTtNgxuxfHydFortNorjP0+0RRQDFfYbu5xtrmQ2p/SoFpWOPIJTFivFIJjbUVAt/HFCap1MYsuiHMccQWjkAGGY1Awy8opvNhY2E/GFIbRTDpbgE/6OA6Jbr9FoNoCI4gSkJ14GwLP+hgmTZh2CNLQBcZQkgIo7FR7DAa8IKX/Cb12k42to+wsXUEgIXZC5iunke5VGOufiG1LciCmNn6InESjWLemtRrS1imTau9hZQ6UXuNKARNF0xPKTZ3c+skweqDbDVOIn2fiiNZ23yIod/jsgtfSa3YJ/MlS8dDTD0ja/uISEU/yTTBsV38YDBmK4+f/Dp/9uXdNAeb4zmwMHsBp9YPA3B+ZeS0behowiBOArK2D2FEwZK4RVX3y043KZdmqVXnR+cpfOgPX4bQBXEcqOOzvo5mGEQRlLwie0oxU9U51jfVew2iiDhRx3pueh/N1iks00bXBSun7sfziuRzZRACbf6JcaZP0jN2Gt/p8lTXnF1//fXcdtttPP/5z2d6eppKpUKlUqFcLlOpVJ6UMX1HPmezs7O87W1ve6zHMsEEE0wwwQQTTPCE4tOf/vSTPYRvwjkzZwBBEHD77bfzN3/zN/zVX/3VWcsE3x5RV+lVdNslSTOMkU6kFapDMYwGaELHsxxkJvHjAUXHRWZnGIhZd2RbICTtioUsF3FzNeJRGPVCWd1xTXsSp6/Ti3XMfIF0qzG2NwClJzGsiDhw6NQl+pbSnJl+RLd9kjSJSNMEJ0zx7IhpTxKnjCJJYno3P4fBsMnQM0iKOQCedcVPAlAqzOM6JdKRSeXQ77PdXKNUqLG2cYyV1XupVnawun4/pmnh+2pcU5Vl0lQZ3N794F8jhDnSQ5msrj3E9k1PZzBsIHSTI8/L8e9efR/hvj1sNU5y+Pjt5Fx1l7PdXCPnFVg5uMCB817Mebuuo1goq9iZXsxMwUfTVfxSZXOAXy+i6YL2hV0SyyDNJEZ3QCogDHuUCzvwPQMZ+WMtGEBYUjYbUkYklsGgYFEtLSmLElfFFxWslDRVzIPXVq+LXJNmcOb0y0RKmibIVEc0HXqRjlNRdgT+jgHWSPvU6efQNB2vMM1yMcUzXf7LV3YwXJthNqezNlB2BDde9SCfO35KjTHs0e2vkctPs7Z2J/tKKQfOewm6LhAjS5MoDpmeWmDP4nUYQjEwcU9pniKZEA7UWDVDzd3yfUVyfkoUKyuLTqRhaur2OQ41NEMnkzFJqilND6DrknIrIklC5vYcJRU61XaMLiSa5zH84YCjd+3HCdVcD21Bs2xQtVPox6SRj5QJU9U5TNOi2TkJg2AcEG3YmbIviPq4uRqW4RGcuA8pYdBROi7LsPG7OlrJU4xHpvHs3XuoOCm2XWAYtHGcAsdP3U6lskQuN2B9PsdCLiNJVdi4ZtskFnxh3aLjN0lTSWwL8rkyiaHR6mwTJwGDoTJPrdcU09Ltt+j2W1x43rMol2aJkwBv3Rnbxcg0wQ+GdCMVuaRlCXGS0PY7yOQM8xdGQ/KmBokkWx+SSugE6jg+zC5mqcSybFwjGx8zTdM5cN6Lma2PPJuM0fx72Fza8iiX6gz8bTRDhclHsQm2hWErrexfPrjGxvPa9PoNhBAjRqzHMGjz0LF/QtN0dkxfQnGU2ZXIGDky0U1TyZETdxDFIUIIMs0gSS3CEIKgR6W4Y7y/ZGOLanmGNAqYzWnESYTjqO+YC6sjEeP6OtuBBkk2/l5znZya17pBr6+OZbFQBqAX9KlPLTPtJhw6/hV2zO7FNCwWCjo4SntnlSoqFq4dkfVDiiPrF80VsK30aFLGaKZGFMH1z1Dfd63ONn7Upzkyo+531Zys2CrayXPzuE6Oiqe+7/1hxoNHv8RUdRHH9uj127hOjs3tVbQRe5o1+zwRSDKNOH10y+PZEPAf/+N/5Nprr8XzPMrl8rdcZ2Vlhe/5nu8hl8sxNTXFG9/4RqIoesTv8exnP/vbLk8Gzpk5u/XWW/mRH/mRbyme0zQNKZ8Yb5YJJphgggkmmODRIfk33q0ZRRGveMUruOaaa/iDP/iDb3peSsmLX/xi6vU6n//852k0Gvzoj/4oWZbx/ve//xG/z+c+9zl+7/d+j6NHj/I//sf/YMeOHXz4wx9meXmZZz7zmY/lR3pEOGfm7A1veAOveMUrWFtbI03Ts5bJhdkjgx8NSEOfQKI0ZrqBoWc4RkpzsEkmU1wzh9AElrApuTV0TSdpb/Ks+YiKLelFOqYZMXB1+gWTzDLoRhqdSCNvlzB0yJsaQT7loY5OBhBGRMcfHI8jjkadciJlenEFIZUGJh4orVlareDmauR7MYaeMeupM9AxMnYVE+xij+WFqxEyw4gSDl7wfVRrezCERSE3w2DYRNcFhXyFnFfEdXLju8JKuc7Kqfspl6YZ+n3SLKU/7HLi1F2YpsXRqxZG5q5lNrdXCaMBO2b3orsRm9urLC9cTSYFN1Y8nvfKBymX6tSq87S6pyjk61RKU3huATsC11GRNboukFIi2l0urGQkxRxuThljruw6owUzugMsOw+OjcxH9P1t2r1TSKERhj0VOJ9JDDPCiCRB2OXuB/6W2BZ0Cwa18jLCDTEqKorH0EDfyiFjC+kPMHVYuTSh0c2zM5+S84ZgJYRhD6GnJBaYOvTKDoblIn2bJLYwdQgDl907ryEsudTsjIc2HyDsFtAlDCJJM1RGt0uFlMMdg16vSKt7EtdRbKp85nOYzyUcOvEZFuYOMF3dN94vaSo5fmPurLlq6BGxjEilRio1tIJiaDoFQbukYwgL4RvEqYr/ypIzUUoq5unMt7aMrbFmL4pNjCjBHsaq6zMI+X+vCSnsPokdqV+KgSfI+ana7vqQtNdlfuY8AHJeFcvyyIJ4/Mtiz6p7TdfKk0Q+tl0gC0OiMMMfZjg1EJoglRrkXAZRxCsv2EvW3CZI1LEF1Xm4ub1KlkpKTowUGkuFBNswIeeSJQmZG2HocO+WYojMUFIqzNFe9pmeUnNX6IJGa4P+oI3n5hG6gevkaLZPoGsC03CY2QjOmCvrBks7LybOwF0Q2LakUCiQJDGpBMuy8bwirc42S7Wd6hw+GWLmNAaDHKfmTGS/Pe6MdmyXONXIEpC9poqI8huE0ZCc5aHVCmeOVUcZRTea64q5rpx93255GUa+wv85YXPpvJrX3V6b2foiO+fPJ04Coihku7lGpbTIsS//BSQptqXm055dB+n22lRKU0xPLVDIl/GqNXTTQkqwLY/NxhHSVBJGQ7KT6zTbG+iWQ86yiKKQze1V/KBFN1IsomXn6UW6ClgXJukoti0MfSzLppBXWsog9HnpwWM0fMlg2GChoLO0cIBCbprBsKeOK5C1AzJAplJ18waSmpMhRvq+rB+TyJjhsEvakwgBSzuuVnPOyfG5lS5RPCQbDglDKNeqrPQE+mgeAOTtEsPIxx8qbWQYDxBCUC3P4AeDMetJGMEg5olAkikXgEezPJ6//G9729t485vfzMUXX/wtn//kJz/Jfffdx0c+8hEOHjzI9ddfz3ve8x5+//d/n263+4je4y/+4i+46aabcF2Xr33ta4Qj0W2v1+Ptb3/7Y/ZZzgXnfHG2ubnJz/7szzIzM/N4jGeCCSaYYIIJJniKQUpJt9s9awm/sbPoccIXv/hFDhw4wPz8/Pixm266iTAM+epXv/qItvEbv/Eb/O7v/i6///u/f1an5rXXXsvXvva1x3zMjwTnfHH2/d///XzmM595HIYywQQTTDDBBBM8kXgsujXTDO666y5KpdJZyzve8Y7Hffzr6+vfRBZVKhUsy2J9ff0RbePBBx/kuuuu+6bHi8Ui7Xb7sRjmOeOcL84+8IEP8LGPfYxXv/rVvOc97+G3f/u3z1om+PbIZEKUBBiFKiVbZ7N3mjBRdxcLBZ1BFCGjUGXYZZKyVyNv5PBjn6S9zUVTezFHR22h2kVb2qZZFspSw8qIU+iHnZGOIEPkfTaGurKBDiOywyepuxLb8RFCEgcumpBMeRGxBVnfIY6HGEJZCCB0TD/ixMoi60MNU4f5XMJCLkMXkpxbZeCp95+tX0SaRPhhBzOnyi9CCHr9Fo6tjEMHgzaLOy6g1d7CMm2kjBG6IBgZMfrBgG6vzdKFD5HzqpzeOASovLw0k2hCkveK7LnyFmbmVwnvvZMfuXTXuAyVppLBsImUkqHf48BzHiAMe9x+959TLs5TLtWQSYSpZ6RCozVXUPsGyCyDZKOCZppoukCLVIku705RLuwgsNWOT1OJTEJK5RaDNWUlcPXBH+LUnEm/lGJYLroucXN9ujFs+YK0PkCYSqC6M5cxPbNGd22Wogm7igmmExBEPdqdMpmVsLOQ0i0YaKaJcEPyD5VoBGA7Pnt2PhPLj/ETjU4gEW7I3of6HO0Y+IlGlkoOd3SKVkZycooHjn2KYn4eHJuFI20cI2N9+37qlb00OseVuekoM3B2ZgNzbhEpz2RrJklMFGrYXoq2kMMs1bGjDKoDTNPD9VUZVonPDWXamaTolktlZOXQidTcylKJ65RZqvhoUYI+8CltCTrtkyxX9lIvDPHaPkmqEVoaRpJh6pDFGZptE4RdtptrRPGQtY1jEIysLWxltzGIhtiGjR+0MISNZtsIQ6PdAgwdOcp9RQgGUUr38/+HNFTNFpXSIpbp8awrfpxKaYo49nGNjH49wjFSukGIVlHl4Vy5xQVlNT/ieEi/YOKHXRyvr7JcZUx/2GW2vohMJWHoMzu9hNAFQ7/HxvYxmu019GaLLEvPOgZFM0MbmeQKS2Vk2l6KHwzY3F5F6KrpAZTlRppk5HID9NFHi+IzbIVnZERDjWRlBdN0OL35dYJQ2XNgWxTsgrKQyNn84Et/h1p1lk5/TZ1zCRTcAMJIZWuimoiumo7J5crkvAJhNKTTWycIBuPGh9zUTj7/lQ9DIJW5rjBotk8i04Q4VrKEOI5w7RxOoYAQsNU4DahSabfXJusMieKQuLNFN1ANBJZpk3OnMPUMzdTodU+z2SqBoWOVanR7bdqdTfrDLvWaanooFGrkvCLTXkorUPu34OQ5vnqPKuenCYMoQnNM6MdEMiLnFZUWwdBUud5OlQmtLzFNh/6wOzbpTWQ0tj/53LpBs3NibA5sFhzubxs0Whu4Tg7HdrEMG89ykQm4jkeWSoLQJxlZqfjBQEk/DAHfYLvzeCLJzujOvtMlzeDSSy+l0+mctfziL/7it3zP//Af/gOapn3b5Stf+coj/gzfKm4py7JHHMM0NzfH4cOHv+nxz3/+8+zevfsRj+OxxDk3BPzpn/4pn/jEJ3Bdl8985jNnfXhN03jjG9/4mA7w2+Ed73gHH/vYx3jggQdwXZdrr72Wd73rXezfv3+8TpZlvO1tb+NDH/oQrVaLq666iv/8n/8zF1100XidMAx5y1vewkc/+lF83+f5z38+H/zgB8/KD221WrzxjW8cd6S+9KUv5f3vf/+/2D0ywQQTTDDBBP/WkYw6Lh8NZKYhhHjEZq1veMMb+Hf/7t9923WWlpYe0bZmZ2f50pe+dNZjrVaLOI4fsfzq9a9/PT/zMz/DH/7hH6JpGqdPn+aLX/wib3nLW/jVX/3VR7SNxxrnzJz98i//Mr/+679Op9Ph+PHjHDt2bLwcPXr08Rjjv4h//Md/5Kd+6qe47bbb+NSnPkWSJNx4440MBoPxOu9+97t573vfywc+8AG+/OUvMzs7yw033EBvZBMA8KY3vYmPf/zj/Pf//t/5/Oc/T7/f5yUveclZDQ6vetWruPPOO7n11lu59dZbufPOO/nhH/7hcx5z0tkikurOtuIVlLElquXa0HU6YYrhuhi6MW4EAHAydRflrx7C0DMKVspCPsN2fBILJUaPNI5vFxGaoOQIAgmFcpPTm3X15rZFtt6n5IyiXWKLYm0LXZec2KpQ7pzdspMKxbiFeZvUt7iokuIKcEVG0UrRdYlpuoSWBtvbdHdNMxw2WN24C4AD+57D865+E6VCjSDsjQ1Ee/0tZqeVGaWu6fjBcPye01MLuI7H9+0OabROIaWkUprCNnPomuDa/SfJ58oc2yfYW05g4JM1tzl44QsRwuJlN/4nhn5f3WlbDvtKKWHUo15bpNNTYmczV2TD15SY39aV8LupkQqdvQ/1yYSuLDKSiGJtG5aW2b98Pd2Sxubl+7BMj2HQouTEuAvnUcjPUikuYkaApdgUXUhMM+bOTVuxWVJQqW2zdsEcrpExn0/QpI6hw4UVZYsiZUiwMQVA0bHpl1KkP8AwI6rbAa4B2r1z5Lwp0lecwjUykkw1cZxYylOwUj5zSrFdX1kt4RgZC6dD9i09l2JuhgcvdTh0nclKz+Cm5/waU5U9XHngh7BMZZ0RRQGGntEvmBQKnAUhMsVOJRmRAU6YUig3ybtqvHEKcznVECClhn7lLjJ5RtCcpLBzNUbTBZbpUXMytrceJEsls0eblKtL+GvHFPs76I4bCbZ2x+StFL2iPleapVRKUwyHXaaqcwBkvsTOSbKWYiy0OKHTO00yOs+EgMFAV3YIKEZIMwSnB4Jss4nwivQinSDsUi7tpJCbRggTy86zNTTIlVsYOghdQ7MVGxcM8wA0Q51EhviXbXDwgldQLPTo9trjmKY4CRG6spw4tX4Y23YxTSVwLxVqdHqnFatWX6SQL3N646GzfiiFZeC6OfSRKH3H7F41tw0HDIFVUuvahkRWA7IkwXVyY4uUgpmqaKutJu3OFmE0oFqewxzFx0WdFpkvQUpWXuigazqbjQfRympOOEZKNgjRDQ1pCTw7ou5KGs3TdPstbMvDcQo4To5me4O8V8Qv2FTKdTB0BqM4Il0XLMztw3FyTFXn6PZbWMKg5CkmslKu0+psU6/NKwYxkBTzFdJhjyDJkFJSq85j2wVcQx3zY6tf5Acv2YYkpRN1KBbK+MGAvFek3Vmn0dpgc+skURTQizSaoc7m9ip5u8TC3D48p8p5S1fwtU0xnqQylbTaW2hlFy1v0wiUrQkoA+a1jWNUSmrOWzYY1ToylUiZcP+JeY6e/KKKXhrh4eYFgMGwh6EbmKMGhP6wi2E4CF1gCJMds3sB6PUaYFloc0+O+ekTgampKc4///xvuzjOI4uvuuaaa7jnnntYW1sbP/bJT34S27a5/PLLH9E23vrWt3LzzTfz3Oc+l36/z3XXXcdrX/taXv/61/OGN7zhO/qMjxbnzJxFUcQrX/lKdP07skh7THHrrbee9fcf/dEfMT09zVe/+lWuu+46sizjt37rt/ilX/olXv7ylwPwX//rf2VmZoY//dM/5fWvfz2dToc/+IM/4MMf/jDXX389AB/5yEfYuXMnf/d3f8dNN93E/fffz6233sptt93GVVddBcDv//7vc8011/Dggw+exdQ9jDAMzxJDPtKukQkmmGCCCSZ4ovCw5uzRIM2AxynBaWVlhWazycrKClJK7rzzTgD27t1LPp/nxhtv5MILL+SHf/iH+c3f/E2azSZvectbeN3rXndOsUv/8T/+R37pl36J++67jzRNufDCC8nn84/Ph3oEOOcrrB/90R/lz/7szx6PsTxqdDodAKrVKgDHjh1jfX2dG2+8cbyObds8+9nP5gtf+AIAX/3qV4nj+Kx15ufnOXDgwHidL37xi5RKpfGFGcDVV19NqVQar/PP8Y53vOMsYeTOnar1PY1UzEca+bhmjpJbwckEW77OIErwE42o00JoOq7pIn2fTCbIKAQpSdrbVOxUsSK5lHphiFHpjq0g/EEey3AoOKrNvOAGhF1Fg2R3nwLHYBBJzpvuEgUulqlMQKPAZeDqFDsZUTzEEDb9gkmcV3cvZrGPY2Qqvskzqdopu+otZmrnE9UDVg4u0CkI1rfuxXNGRrCtoxTys2i6wDQdpbkYsTRhNGCqusjQ77Fz/nwGwx6OU6Dd2cIPhly7OMPM1DIyTdi//FyEMEkzybPnQzq9BpcfOMwLFgPEvj0EeZfLD/wAcRLQfmUfPxhQKsyyc/ZpHOvpJDJiMGyy3VxTocxhwHagoct0bHjaz2vQ6aBFCYPtk2xN2Ry6fJpasU+nYHDo6hm0fEC2s0Xn4vOoVpYx9YyVKyJ6/XUqlSViC0wnICnmKJVbyFRnfzWiGeoIM2JnMWI4G+AaypYkcyOqzshwtVugVNiBlg+YWdVwTQ93qoluWCSxRbds4ycwe3qAni9wRV1yoBapyK/IIHfhiXE+nmaaDHolimbKyk4bz6lgmh7Tiyss7jhFM9DpvGIbQ9hYpkcUh8p8dNijNXDZPi9gZgGcQgEpdQzDxLRHlgL9mPXOyfE8T2RIbqgY5vlSHXp9bC/FuuTgmXVS8BOdRGjEQR8/aOEnGs3OcbJCnpXVL9GdzpP6PZ47H7Oy9mWCRCe2IF9uKqeMvEmWJOiaPmalomiULm3oGHZG1MnGwec75g4qK42hYmWNEfMkNMGINKIXq68/3XLOxCEBU/X91MqL4NgYekax0FNWG0mqrEKkRNflOJoqTSX/7qIWWSaZzye4jordKuYraJqOPZr3D5sxD/0+5VKN/qCNY51hncJQmewWrZQsSUkSje5WE1NY6AIqpalx5FDBKSld0shItmBJpWmUEtOwlDFuHBFnygIl21b7YTBsEkYDPMcdR1FprgAhOLC4QRgN2dg+AlMOcagyF7WSh5hzaA42ubyeMJ13cGyPHbN7CaPh2HpEBcZ3MUPJYNiFIKHbb+EHA0zDZjBs0u2p89AybQbRkNnqDIOBTrfXpDYyXY7iEBzFfGcyxpcaruMxGLRx3DKmxpgFfdkFS2Do/I/7t2l1tqlVZsbGuABzM7sRQnCsp7Ph68zNqNi4dmed5YVrGAZtPnr3zHg/yjShUq6j7VkkC2JlCGxkaK5AM9QxcJwCWQJeMUWXKe4oZm3ur9fV50blpuuWgWdkXHnpyymXponikCRNMA0DNwdT1bmx3ZAQFqfWDysdbirRDAOt8sTkOT7aZoDHO77pV3/1Vzl48CC/9mu/Rr/f5+DBgxw8eHCsSRNC8L//9//GcRye8YxncMstt3DzzTfzn/7Tfzrn9/I8jyuuuIIrr7zySb0wg++AOZNS8u53v5tPfOITXHLJJd8UEPre9773MRvcuSDLMn72Z3+WZz7zmRw4cABg3Knxz+vOMzMznDhxYryOZVnflJ81MzMzfv36+jrT09Pf9J7T09P/YjfIL/7iL/KzP/uz47+73e74Am2CCSaYYIIJJvjX8cd//Mf88R//8bddZ3Fxkb/5m785p+0+XE17JPjYxz52Ttt+LHDOzNnXv/51Dh48iK7r3HPPPdxxxx3j5WG68cnAG97wBu6++24++tGPftNz/7xj45F0cfzzdc61G8S2bYrF4lkLQDZUjJkcqpBey3BIpeRwR13kGrrq6Iz7PcKt06RRQOIPSCPVNZW1OuP3cEWmxJwDD7vSwdQzZGwRJQHV3PRImyZZPKpuazY+rTQ5vVhjuZCRSUEUm4SDHG6uT+gqLVGUDLHtAhtzGrEtCG2Bm1PdYUVTbev8ms4V9ZSNl+7AdHzS+oCcnzJd28/C7NNYXSqSyJjt5iEqxQWmq+fR7bWplmfGkUzHV++h229xeuMQ9do8exefRc4r8P0veAdREtAfNpitL7LRfIjZqQtpNE9Td+FHXvknXD2dMF9w0C0XmSYcvWyOl3z/7/C0aVVK3jl3GdXSIqaesTB7kLn6BQAEwYB+f0N1vAajsrNj4yxskKYShE6aKt1YZiUUrJTuSNdjjiKUkvM36c9XMXQollv4QZsHryqRCnBzfXzPQOgprh3iGhkbvkax3KIZ6CMmSMPUFMs27SYkqYZw1VjSyECMbkPNUXdn2skx8AQbPZek22Z9PsddDZ2aK9j0BW6lTRybdGOdq2ZiMqFO66sWakgrpdU9SaN9DKGnzHgphg51L8EwbI6c/BwAw1HUUPGfZsmkwCumxPGo60xY6IYKwgY43JI0y4L50gBdN/CGCSVLmWpmTTU/U7+HNtI9DSU0unmk0PCDFpXiIkUrY+A3EVHCrZ99HwNPkMmET582uf/IJ9lVTJBWShi4ihHsx2iGQbO9wfTUAv1hl26/hVZ20FxBEmokoYYfDpBRqLrgZipgWYhvaHqTmUQmkCWSDV8FfgerDzI3Ck0fDhuEJZft1nE0mZKkGo6RslA446KedRUrU3eVpssyPS6ZUsHb+0opnlekmK/Q7bdotbfGBqR+MEDoAj9QmliZShy3jK4Lojgcm9EWzJSslyClTmeg3isJtTFjmPMKbPZOK+ZrNKjtoYWMLZCSm29Q9gWFQg1Ty9RxS1Ic2xsZDo+0gMY37JgwZtbLGAx7inUyhAqMTzUVkZU3x+bWoKKomu01Wp1tTMMa67AqpSl8z1CfMclYXrwU18mxvrVCq7NNtTwzOuU8kiSmds0eQLFljdYGhnFGZ+TYBXS3gCsyTNOi22+R5lzFcjqCjeZDJCcOQT/mf965gNCN8b62LMXQB2GPVmebbqT0Xw8HlPeHXZrtY6xvHsf+k/vHOjE/GsXMPf15kKRstAskoab2s6FYW6GbpBLcYsrK4c/iWnmiOOTjn/pFLt5/E5rnMRic4T3O330jaxvHcEfxU4ZhEo2+elqdbbr9FluNk+S9IuVSXYW2f4OZ8+ONJHtsrDSeavjnth/fbnkycM7M2b/FgNCf/umf5q/+6q/47Gc/e1aH5ezsLKCYr7m5ufHjm5ubYzZtdnaWKIpotVpnsWebm5tce+2143U2Nja+6X23trYmZrwTTDDBBBM8ZfFvPb7p8cIf/dEfPdlD+LZ48lX9jwJZlvGGN7yBj33sY/zDP/wDy8vLZz2/vLzM7Owsn/rUp8aPRVHEP/7jP44vvC6//HJM0zxrnbW1Ne65557xOtdccw2dTofbb799vM6XvvQlOp3OeJ0JJphgggkmeKpBNQQ8uuDzx1Nz9n8rntIXZz/1Uz/FRz7yEf70T/+UQqHA+vo66+vr+L4qP2maxpve9Cbe/va38/GPf5x77rmHV7/61Xiex6te9SpAUZs//uM/zs/93M/x93//99xxxx380A/9EBdffPG4e/OCCy7gBS94Aa973eu47bbbuO2223jd617HS17ykm/ZqfltIQSulUP2WwjdQOiKvOzGMJUvUrEhjXyk3yNpb5L0mmjCQA67aMUCDHxKjmDK1XCNjBkvpTy3RhJbnNiqUDhlIzOJ9Q2kqEhSEn/AsKtDkPCsxfN5+nRIpb5BvTAEqaZBdfkElbUeluGh6QJ3qkkiNNbmDJX/CFTtlLxdoJqrc+VswosPnKJUbmE5Ps2qjiFsHKtAvx6xf/l5gBJMD/0mMk1Y31ohCAZsbp2kmK+MrAEMEhlz/p6b8Nwy7vIF+PEQKWOa7Q2ef/XPMXPjj1DIl8lZBg883VFZn6WdJCePU3Vq6BKO7LPwE41ivsJ0dd84xzOXn2a2fiGV0hTdfotjq19k1svwBw0SQ5Uso8BF1wXIlERG9EspSJ2toUEmUkSkowtV+jKtiNMLOqYORTdk+sBzKM+tUexk5LwhzbKBTNU+nXUzqjYsVXxWTu1ASsHqQBs3Ahg6NEKNWn2DIOwi3JDTu1MiGeIP8iTFHEYEoQWNUzuI4yHBnjZxqgTqAJ43IP/laY73dKa9lMQySDs5/FiVz/qDLWYWD+IYKUUrY3Wg4RngeTU8t4pl2vSHXXr9Nrf95a8yNXua0pwqfWWaQSwjTHt0az3l0AwF6UiLvrp+B+E3mGVmnSGmnZJ89U40yyFnnXkuMTTSVKLpAj+BrdYRhu11ivkKUmjoboE7v3w+puFwYUUyt+co0XYFQ89ItwKVkxmHYyNWAGwTzRHoArpbJsNmA+n3uPvB/8XAE0ogP6qUZb46fnGowcBXHWphRNpuYRs6A7+B65QBCEOfLI6JYhPXSNlT30OSAVEEtoWb6zNfqjOfk0TxEGdUInSNDCFMuv3WWOAudGOcnanrAtfJ0RtlYGq6YHN7lbmZZQbDLkNfyQe0gkGmGZjCoOwWiEOdWmWGqeocui6YcabHgn6ATrtCKnU0z0OfXyAIBjSap+nFusoSTVIGwx7tTmNss4FtkclRCT9JuXtb7dOXPO//D+2ATisbPwdKLJ+k8GAjYra+ODZfTVNJzlNNWKbpsFUzWF68FJKUKBqMy56V0tTYbBVQNhoHljCMjB2ze7FMm9W1h5ieWoB+jExjdNvFMc6UdJtTDhu+OmdPrT2A7LfBEYjTRWSaMFWdY6o6hx8MKOYrbDeVvULRgsNtg8GwixzJFkrPeTnT9ZEOuJgHQ6cfnrFYIsko5QfoAtKeJGmr/d3urGPmNISREUY98nYBy7TxgyF+2BmfN7ptULXBEKrEWshXVI6yaSAT1dAyVZ0bz2XHOZNrq3tnZ9xO8Pjjf/7P/8ktt9zC1VdfzWWXXXbW8mTgKX1x9ju/8zt0Oh2e85znMDc3N16+sZv0rW99K29605v4yZ/8Sa644gpOnTrFJz/5SQrfYOT0vve9j5tvvplbbrmFZzzjGXiex1//9V+PHbsB/tt/+29cfPHF3Hjjjdx4441ccsklfPjDH35CP+8EE0wwwQQTPJaQqerKfTRLmj1OPhpPEH77t3+b17zmNUxPT3PHHXdw5ZVXUqvVOHr0KC984QuflDE9pS/Osiz7lsurX/3q8TqapvEf/sN/YG1tjSAI+Md//MdxN+fDcByH97///TQaDYbDIX/913/9TZ2V1WqVj3zkI+NA14985COPKh1A5CtESYBME3w9oRFo4zu6NPSJG6fJZELS2UL6PTTDRJSmxtEgYZISp1C0Mv79pS0uWj7JoFFToutoiIzCcVxJaAvFvkkNbTZP+/0f5Lz6PEsVn6KVYeaG6EKyo+Qz7G2S86YIZirouiS0dbS8MieddhMuqKXknTJ5HPbU9/DchYgpLyIc5LnqigewpxeYqp7HeXuOMVXZg2l6dPprzNYvHH/2/rCL63h0+y3WN4+PIpuanLjJ5Pzl53PsAg2hC3RdcMXFL2PjZRnV6w7R7jQ43JI86+KjXD5q7c82m4TNdYr9lPLCKYaJEisX9j6N3buuY5hoJMUcQ79JIa/MeNe37+e6uXDMrEWuSdzNQ6lEZhmEkbp7Xjwh6fbURbzMq/2uC4nQU3RX/Z2kGqsHQ+LIYuhqzOcTQhdyVoJjKMZhqZCwr5RiOT7VUpelwog1s9Q2anaG0FP8oI2MTEwn4EunQqbqm/iewdLxIXYEpS1BEPUwzAjXyMhZBt1IY6ni466ss5BLOdxRcVvTm5LWcIhZ7DNXv4j1+Rxd3+b+psHy6P3j2EfXDKI4JO8Vqdd2srF9hP3ViGigI4MQLUtIEsV26EaG8czLSVKQVkqSwt0P/jXhKNaq4CjhrGFnpPdsk0UBnuVg6hAGLtXtAF0XxPGQ7UAj51RY2753bHtgFKrkdp1mz85nUDBT8paktOukEqUbOkjJ8uKl5D3FkhTzFeVZMBobqMgpOezh2iUSoZF1+1h2RhDZkKTk7RK6AdlmW03GMCZrdhhEKQO/wckDc0hD2V8ACCGZ9TK2eqdxvlE/H7i4Vp6cpauIIl2Q82qqQSdWFh9h6OM6HpVyHccuqAYgS9F4URwipSQK+xTzFdqdzZHlhMWpgTGObyrmi8r2Ami0NpAyJo6jsbWOVrHQDY3yfUXcYhfNshl6SvBeLCg2SyYaOAYyTZBpwnZzjc6gh5ZzsUq1kehIov2XjCgOmZ7aD0nK+rpBmAgIYjD08fH9zGmL9a0V+sMuldIUURwyGDZHcyogLkVsbR+DKYdKcYFuv4UQJq3O9plmBMCzXA77EsPIOLV+eDwPpVTvt2P6EoK8S5JmzNZVHNPA1VkfamhlmygOx8L5nScVs7/dXMO2FOvUHVUnXCfHrJtR9xL8YIBlKFuT4KItomhIqTCPPqu68Vd7CUI3CKU6NwuWJB0RlJoBczPL47lh2ClCWMhRpUYIQbW4OP58mq0YMaNYBmBze3Uc1efmFOMYBANcx0NKSZalqikJ9fuQDQOeCCTZY3Fx9oQM9XHDBz/4QT70oQ/xgQ98AMuyeOtb38qnPvUp3vjGN44tup5oPKUvziaYYIIJJphggu8cE+ZMGd0+rB93XXecIPTDP/zD39IB4onAd3RxduTIEX76p3+a66+/nhtuuIE3vvGNHDly5LEe23cnfB9DN8gin1peaVJkmmDqMIzO3CllUUg26rfWhEmWxJjlaTAE502fT9VTjMR5RUndTXnl3gAzN2SQV3d/uhD0Yv2sKJg0Af2S/URf7+L0fbyRbGeqvsn59QFX1CWt7gqG5bI2bZLEFonQ0EZaq4KZUXRcnEygC4Huh8wUKiwXM9xCh32llEHBgtlZZr2M+vLlhGGPtY1jnFz72vjut5ivIFNJrTJDuVRjemoBKSWLs5tousDODRC6weLcZUy96MdYqHYx9YwD+5/H17ZNjncF9cL8OPoqbpymfrLLv7+0Rc3JeOnzf4ljF2i84m2rKgi+YOK5VRZmLmVxxwUIYXJpaR5jZgcAJw5kmL5OKnTW53PMzlzMzFqGu9UlTQW6G2HnBtjOw3fIEtNRmqUk1Zid2aBY6BG7KSUrQy8NcA1lW+EYGUuljKqdUi61qTiSJNXwE41CoUuSKjuGdqdMlKjPk24X6cU6dS9BCo1oe43QgtxQomuCn376yC7AsGiEo3DmYpnLpuXY6kDIjH0zeymWW7R7q3RmY4SQrN99Hn6i8cBWjs3tB8YaKz8Ycmr9MEIIlgspcagjHBshlKVGOFBGr87CfpJUQ3cjepGg1dnGSDKGCWRBCIlENzL0a5eUHgjwExXYLqKEnDdFFA+Z9TJsK48hbHJeASEz4sYpasU+pee8HFOHV+4NqORG+tGCAZbF+ubhcaC4EIKsH44NRPOVhGw0J26/+8+VsfDAV3FNWYJWsXBTgzSBbLXPecURJWIIWqHO0vxVWOedZrNm8ryr34ymK6uZoqlsLwBlFSIl01Pb40i1NE2o5qaxDI9jPR1zJHIzTYv+UAW1bzVOMltfZLu5hh8MmK0vUi7V6PXXEUIQjc5107T4y7t3QN7E0CMM0xiZAKcjfaaJZTkk/ZayuABkkFHZHJBEFrrlsjktyHtFtptrdCNtrBecrS8yVZ3DMu1xfNOx1uGxFq/RPkbeK9Kfr4JjYBRV93p2vAeOIBkx+6f6YqynC0KfKA7HmjBdF8ztVKyaVsszP33J+HFQ1hFT1TniZFQBiCTTs0on+nAcF4C2o4xlupxsrWHoGp1eQ7FqAk53vkGPNWJOO6v3j7VbwTfoxmSaEEUh6yOdWq0yg6Erq4/5WptGawN9fgFnYT9ZoDR1Mk14+xdOopXP2HrIIEM4Gmsbx8h5VfSKOTpvOqRRwI658ymX6pSLO8laat5rtsCXcOi+/w2MbEZGgfXA2LS3P9LBuU4JQ5hMTy2gGSZ0z6w7weOL2dlZGo0GALt27eK2224DlJF9lj05tOA5X5x94hOf4MILL+T222/nkksu4cCBA3zpS1/ioosuOqvjcYIJJphgggkm+LcNmeqPesme4szZ8573PP76r/8agB//8R/nzW9+MzfccAOvfOUrednLXvakjOmcL87+n//n/+HNb34zX/rSl3jve9/L+973Pr70pS/xpje9iV/4hV94PMb43QUpCZNQxThp+rhjsxtBJ5AUHRtNGKSra2StNsItqI5Nw8TMl0AIBofuZFd1DzsLKTfuncfQNS6YnidX7ODMbLM1FASapGCmBImOFBrCstEN8M67jGFLEB65F1AGgs+Yi1nIZRTMlLsf+iuSYg5ZDXBzfboljUK5yVLxTGdYsHmSuK/q8CWvhqlBLjfA0DPsUKLLTIVyW2J8x7yxfQxQd+/dfoucV6RYmMWyPCzT41nv+j+YeoZleFSrDSxhU6+exw0vfQA/0SlasHvnM1gqpHS/pAKCl6f2Qc5F5CsMe5tcWHcVA/m85wBw2fwc+0opzbIgjPo02sdYOXU/S/NXEq4dQW+2GLg6lfoGcV6xAkNXozdbIt+LSZOIKHCxc31sxyeVAtvxkVKZ8s56KsD84ZBurIQLypJydZuaAwu5DFPLmClM4UuNy6ZjdhcyholG1U7JWQl1F+5vC1Ip0DUD0VdmmLtLMet9i3wvJkslQoIhM1rdk1yzuIBnQJREHO8KPAMOPd3AMQTPng9ZXSpyercKcbbMmDSViL5FFJss3bXGuq/h2iHb7aMUczO84Lo3j+7cc7Q62zhGRnmnxDQtktRCBiFxqGHPKmZimGikvkXPdxC6Qacg6EZqjj0M83xl+hslEYYOcWwR5m2ae2aIE59upDo3F/Y/hziJMGSG7HUw9Izunj55K+XZu8+n69vjmCSjPDU2cA2jIZ5bVkaqSUo0GHUlAkilLZL5aMysfCP63QzN0Dk4o9bXZ6fZ9AXNp+0bd+TmditdasENqDoqoqcXa2AItEKBHXlJ4g+4fd3AMj1kmqDrgq9v5M4Kx364S1EIg06vwfXP+EmEbrC+tUKv38YPVEj6w/u/12+z+wujTt+5lCRWmj8rlypdVhRw0d4XoAljzBhqBqRhMB67N7dBfxQjdG9LJxzqKnZra4VWewsppQrfTiQbgxitYIKhztV8rsz6eQn0YxXQHpsMTkg0x+S+tUMYOpxXTuj12ywvXjqOZNsxu5divkKjtUHFUeeSNl1lpqa62Te3V8l7yoj7YfYwlgmzZY9KPRsb9vaHXTRNh2KeKPbHx8wPBvSHXaxdG7i2YkuFbqB5HuRNeoMNXMcbjwEYm74CPHM2phUIhn6fJE1U52iqGDt9Y4ssn0Nz1Pwu5it8/vbz1f8tVLemVOwZwM7Zy8BQgehff/Bv0YTBsZW72NxexbEKZIMz467ZGQszB5mtL7I4fxkdvwXAzMIopgrG+2Vz+wTN9gab26sAZGtPTB6zTHWkFI9qSdOn9sXZhz70IX7pl34JgH//7/89f/zHf8wFF1zA2972Nn7nd37nSRnTOZvQ3n///fz5n//5Nz3+Yz/2Y/zWb/3WYzGmCSaYYIIJJphggicEuq6j62e4qltuuYVbbrnlSRzRd8Cc1ev1bxnTdOedd37L/MkJJphgggkmmODfJtJJWZPl5WV+5Vd+hQceeODJHsoY53xx9rrXvY6f+Imf4F3vehef+9zn+PznP8873/lOXv/61/MTP/ETj8cYv7vgunimi1GqMxzR9h2/wfZQlbNmpEsWBdDtk3X6JO1t4sMPqjKG0NEWZkmOHSPqtNg3s5coCah4HgWnxPn1Aef9f+z9ebgk513eD3+qnlp7PX32OXNm1cxosWzJkvcl3oSxweBgAiTgjTeQOCE2NiT5xZAQkkAIxMRg/IbVOOENwYEQ8gLGC2AbW95kW5IlW9LMaPYzc/bTe9f2LL8/nj595mgkI6GRbJm+r6uvmdNdXf3UU1XdVff3/t73ng3u2fKI/ZgX7CsTedoarQqXk/eBCELbWp/l+O6O0PHGKSvQ7Q+22JgOiatt4jDDxDnVOOUZk5JyMCwleD6ytYYjPHKZsbes6HZrXDtRcObYjt9A2E4ox7a8k6R9VtbPs7J+ntnpRaYbh0izDsurZ1haPsG/fd2X2RgEeF7ITEmSq4w4muC7jkVUA03JMzRq+7mmVtCeL0i//FmSIoFOD686yS3vVNTjKeZijbvQZN+Bc0zEDRLpsGetoNdfR4iAN37Xr3Fo3wtxhMfpW/aQTua88mCf8tQmScmjlBhWZz0uLkScvmWPzZks9Tk6a0sMgW+tALQSTIWGQ1VD7FnbB5RLI1KUwpxaYKgFmoWKtS/wXDhSk+wtK9sEEGgmI816Ahd6LvlGg4W5Z1DpGUw9xXcN3W4Nvb6K75eodxVZYI1SlbbWK6lUXDh3gE4OlYktKqG1/dh7ocfU/DK9tEWShVTKM+jhbnErVXwXPNewsnE/UmUkaQsxFEkHfojvGLzXPQ3P83GMREShtWGZCEl92MqAQFLkAXFUIottY0SiM0iHZUThgRCk0m5v1q+QhYLyQCFlxkBCGFToTITkecbmvEZU65xfmeX/eckZmqmL6rTptBp4DrbkJDwqpRrTk3totjdod9ZwPBeTKlu6G8IJIp719Ndy3ecGIARiuz6QKnIPWk1gscrB2kFMWqCXlqn6msF8ykK9jxL22FVxwGxJsVCWJMVgdL6YLONYXVO01tjMHFzXI/AiwrBGNU6plGqkWUJ/YHMdm+0NW2ZVkpnGEWamFgBQStHqLo3GrZQkLzLS5ipOJaRSdVjZsiU6VzDK61xvPohREpNKkAaVgVMqoZXACSJkEXDrja8B4NLmBFpaE1rheiO7Ht/zMIOEtcHwwEgLXNejWp5FKxc8h7TbJfAL+lseppWy3Bfc13SIPZiaXODM+S/TbG+QFxntzhqFzHntbT/F6w4PG5kaE4TDY3Lb6Hi7BLpn7hCtpM308bPENUUclQmCkOnJPSPj2Hb3Is0MQs9lenIPjfo0T9/b5LlzBaT2vCodvsmWZB0xyt8EO1fbJfAXPesNPHdxiotL+/C9AM/1aLY3kNoZLf/hE6dBaqq+YaJuY/9MWlij4uH8Gwn7917P4cUX4EQeYR3SbGC/m7HNBrkcwLCsaTLFZubg+yW2WqtMVPfywKZdYXyZTKQ36DA7vTiyVwn8oTzg8WYqPUpoJR73w+intvHDW9/6Vj784Q9zww03cOutt/JLv/RLLC8vf13H9JjLmv/m3/wbqtUqv/iLv8g73/lOABYWFvjpn/5p3va2t131AY4xxhhjjDHGGE8M9FBz9rjW8RRnzn7sx36MH/uxH+PEiRP87u/+Lr/6q7/Kv/gX/4KXvexlvP71r+eNb3zjkz6mx3y56zgO73jHO1haWqLdbtNut1laWuJHf/RHcZyn9g56UiAEymj8iVlKvjUzzKU1co08h+zsAzhBBEJAlmM2tjBnlm2UU69LsHAIc2kTnSfo9RXqboXmYIDruHzHwZRjdcNSzwWlmS8vcKim2Zp0WekssXfxFoySVGcklGJqvr05O1iVzJddYs+w2VylPWmoVbu8cBjh47mG/VVJLYqphHXi+f24peouAXip1EcaOHTkNBvToTXVzZNRQ0Dgh6Pmh8Ggw7N+6fUsr54Zvf/oVI00jciLAesDe8/QuPY5zEWzSA3fui/DdQUHGpNMzK6iP/NV1ruXYLKOzhPelBwn6Ke85ugMYZTw6gM5raRJLTAIqamUZyhFk7S7l7hw4x500mfiyDlqUxvsLSsOzDTZmvAYxA4TR84hDq/CZB8/Sthbt3fCUZQiXM1kOd2Js4r0yK4kbrSYia1xZc23DRb10EUZRSw0jUgzU1LMljQzseZQ1dDNXXq5YM+yRA9ZDYC/XAqZbjRxHYFUGaWBRHoO7e5FAI5NaE42HWpTGxTaIYpSlFGsDQRauNy6Z8DF9hZJv0J423dx/TMeQCvB8VsCBhLWNqYpRQ26/VXk0HBTuNaQtjAO9Ze+BikLjOOhUsuEqAuDEfPiCj2KvPJyy5yFnj0ewnkP1WviCI92pm0DgXJZnbX71XUFF9sxm60zJLes0piYAeXiH76B6NQEz9t/iG7hki2fQhUBiXJgOsIRHkk6GDErpaGQ2hm6w1pTUI0bxiiV09o6i1OvoCSEocIUhiTvoRT0PrKOGwT2BNjqcLRhEH7ODQ2Du9Bk0F3j9DUlkuEuqYS1HRNapThcL1DtDWKBNSLVEk8EVIMrGxCAETMSRw1W1s/b1WhJrWLje+Zn9u8wJgChj/CgPWhbBtPbMVUdJE3i+R2zUy0dWlMxRRrhhjFZp8qxgy+nUqrRX5sZLbdt3Pumf/RHDNIEp1bZNcYwqHLy7Bch9yDy0EXO4YmcInPQZ7p4rmG1G/OxkzPk+WBkjTM9uYe8yPC9gOqPzvOya6zhdO0ZL8T1bEVgW/we+CHd3ib9fotec4v0+Bp+aEjSPknapz9sZGCrzcmzX+R402e2Okea9vH9iFpgOFCV4Lks7jnG+f4FnHKI54W2oWF4THR6zdH/s7zHRGmKxvndzNpsye6rM0uf5s/OBzARIg2srJ3Gy4FWRiJtM4A3IXA8UKqgVLXyHceDcqmKF8ejRoRufxXKsbVuCQXPns359J2/hlKK9eaDPNj2EIG/a97nZ/aPzHmVlpRLVYwsIH1ymLMxdnDs2DH+3b/7dxw/fpxPfepTrK+v84M/+INfl7E85ouzl7/85bRaLQCq1eooBqnT6fDyl7/8qg5ujDHGGGOMMcZ44qC1eNwPY57aZc3Lcccdd/D2t7+d7/qu7+L48eP8vb/3974u43jMM/qJT3yCPM+veD5NUz71qU9dlUF9UyNJEI6LUZK83STJe8RBiZumNNOVGgySURgxYQBpDqlCnj9PcvoevIo1hszXzpNfOkO+eYkLXZfBueMU2uFgVVrH5uGeXSxrnErKSqeN7/moPMPfF+JW7V3lfMmwp6xYbBwg8gxTjTmm9l9goSKZi+2dZScJmSr5CNejElbJVI5fnwFhP6QwDq882Mdz4OiEIspstBT1Og+ctt53eZGhtEQIQZIOeNGegjgq86rf+T0a9Wkmy7M8a7FNOZ5ioSJpDrqsPb/F4Nx9vGxBcqAxiYjL1EtTvHR/DzyHc+0Mp1FHZwn6C6dQgw5xUObobIcD1YK/OrtK5BmCpCAOJzh64CUAmH1N3LjM3nqC7xdUAs2hmsE5uIEWNqR8ttHGXS8TRtastx4Y5is5jUjyrBlFI5JsZg6zsWQqslokaypriD3wXWhEGqUNST4gUa4NqxeGyVCxtz5JyTMkymVtdQ9KOHhze6l3JWG5x4Wei9QOp148TzY01dyadBEiYK27ytMnC2ZLin63jtQO06Wc+fICvgtnnyt5zmxOt3DI+mVe8qr7OVY3RFHK7N4ljtU1np+TZh2kyvn0l36XIAhHrNhsLFnpXwLAr1aHZrQGJ3JJij7t3GH+pIceCtnCHNq9MoPcanycio/JLFNSaIfBDiHI+aOGdm+ZzYt7ufbQK5ib6JKmfRzl8qcPnGF6IyMygslQE8weoDKxxXTsQKoweToaI8Dm1gpM1kZ/y8wlijQ6Szi/fCfd/irhDc9EKYc0D1E9ReBZY9ELXw3pPvBFiHzMSo9rZq7h22+8iNRw436r84sWV0emvnFgWSYnDHDCkOnYwXS6bGWQZV1ymdLtrXJuvUFv0KEUV8iLbGSsuraxNPr/KLQdKMdTzM7sG8Uh2dDuFmTFKHhcygJREUPzZsnZpa9weuMESIVcz/FCQ5hralMbo++Oam2B3qBDpW3Ng43UXHPgmWitOHMT1koDe5wi9ciWo1ZpIHKrOfPc3L6OXebTKwGbK3vIU8v49/otwFpjRGEJ37cavWTJGpK3kiZG72YSS6UanV6TTq+JLnJaS2tk/Z2foSiMadSnMZs9KqUa19QLysoGxq9tLFES8GDHg17BZvMiDzYVeIK8GNBqb44Yujgqj+xEkqyN67hMrw6olGp00zadXnOkt/v4536Lsxf34ExEdHOXcqmKDABpmUItHRzfwUjo9jZZ31dDr6e4e0qkWUKmcsrlCcCGnDuTdYSwrNczswHPuvEHUFpSKc2Mjqfm8s4xsLJ+ns3m6qiyMAqmzx6ehb3a0Mr9W685O3HiBP/23/5bjh49ygtf+ELuu+8+/tN/+k+srq7uyup+MvGoNWf33HPP6P/33XcfKysro7+VUnz4wx9m7969V3d0Y4wxxhhjjDHGEwat7QXW48FTvVvzuuuu41nPehY/8iM/wt//+3+f+fn5r/eQHj1zdvPNN/PMZz4Tx3F4+ctfzs033zx63HrrrfzMz/wMP/VTP/VEjvWbA0ohkwSdJ7ue3lu23Yam3YNt5qzTt0HnngOdHuqP77CxLYDpdjHnLiJKNY40QLU38F1DoS2L4WowShILgyMUX1wLOHHmPgAcz8WfWsBzYXIoc/EzyYF6SKu9ydGphKc1NIly8KOUwC+YLA+1K0oj8mGUTZ6jtGShLJkMNeuJoCQgzPXojrvTX9mlpVFKobSk0A5J2ucfPGOVZnuDU+unePqkpFqZt0HZUvPcA1vIkw9yrKGYre6h/bo1AjyePZfhVEIaoZ3PeM+hUZdgPgwWjgQcbdiw9pPP9oijCbxrrmN+70088+AqojrJ4eqQ8fINNd/wrAMbqFhS8uB5cxKhoFwaUPIMkyEcqxsK7fCSRcVixeC7EHv23232qhwI9pUNm5nDfNkl9HZOMc91ON/12FM2BF7ErbNDTZ+fE+aa1bmIcGCf6+U2OujnX/sVtLHbVj9wgTRrc8eKy56yYSoWuK6in9t7rKLXJvJswPrBun3Obwc8czqnU9gwdqXEaN/UqwtobbvDkrQ/YnS6uTuaR7CRQmAjlDZ6HQqNDTvfKqO1IgvA9wtymeLMVWHC7m9HePiuIZEOohdQ6RnKE01W1u+jsuVRjqdppz7f+uJ/iVNJub8lWHlRm3TtAo1IEU7OMFXrUYtiSC+j37aPJS2tCS22mw4s2ayTLjOT15DLAZ3IoUiHgeiZZa2ktD8k6v4T9jhu5aPjqjBwrK7xowpaC+oBNFOB6PbwXMd+ANAoVTGdHjXfauh6WYeVjfvIz9lYo20j1E7XBoLPTi+OtHIT9SnAao0KmdBqr422aXsZQh8lIR1m/CE1pdhKSKyBqoZUkXUcRDQ00xUKR3jEjRZEdh8IZdAKTFdy6txd9AYd9i5eoJAFBAGRpzGFAU/gCavJUrHtAgV7fGtlg+eXei5+lLKw5xKbzVWiy0xeO70m3V6LfWWD4/mWgXM91jaO2/VEZRr16ZHBahyV8atV2v0urmeIozJi2EXZbG/YLlStmC87JKfvQWvb0dkp4IN3HMUMz/dXHLkWs9mlXrEdsHmRDRmonYuN+x/8K7tPLn7VdowO2dOVe46OltEbNcxKb2Qo7TU6mFQyWU4pMhc8l3xguzuzwEX1FHj2OyzJ+yP9bOCX7LxGGicQiEqDpVfYzymKZFSNuIw8pVKqMdWYswHoWpKmfVSvCfXd2rQxnjg88MADo3LmN8KFGTwG5mw7Y+rw4cPccccdzMzsCE2DIGB2dhYhHt/V9xhjjDHGGGOM8eTBDHVjj2sdT3HN2bFjx77eQ7gCj/ri7MCBAwBoPe4gGWOMMcYYY4xvBhjlYh5nWZOnYHzT5OQkJ06cYHp6mkaj8TXdJra2tp7EkVk8Zp+zMR4fjNQj0W5QbxAXCYGOKHQP4QrMfStw08122VYKXgbSYFbb4Lmo7pY13uwnoxLLnvpe9JIto1QDTVEEGCVtvmZgxd9LfZcjUUi2bMW6zuQ0R1qnuNT38FxbOjjwjBeitOQZU4pu7tAINeVamyQLiYMy7WSLvG1tPLxKA6UkcVzmuukGl851STJnJHitB4atQLC+eXa07YEfUi5VabY3KHm2fLBQ3ilXzZYU7swcvnuW5b7gObMFXOhxbO4I7S98jH94wzxFr831swuYXsZctQFcRCZ9iASiVCMMyuwrG0LP5fqZa8nk/VQmtqhXF2g+bx35u5v8k6OaYnMdmOZgI0FqmAw1B6qSO2pdpkLD3rIincy5ZVh6PFiVJNIh9hxmq3OUxCae1U0zFxs2h23vnuuyt6xYTQSlICL2y+Qqw3f6hJ7PyY7h6TN2229cuIEL3QeoTzTxs5ha1+Hk9RGhyuh0qwihODw1S5afoJEUVOOUAwvPZanv8oqDNZqDLl6Qc/NsxsrAwa/U8baWefreJnsbB7lr9QxFRdJMBSsDhxsmFR87WWYlsTYg2ig8EZAX2cjgFGwjQ+yXSLtdRLRTknamY6S2ZUqA6U1FGMYUsUZpl1xlRP1sZJ6p85Qo9rm0OYGq5HREQFUoTp+/m+e1CqLaAl23Q7W6l25ky/y1apdgagHWTqOM5oZJhdK2IcAfmreCLQXVa7PW8DMSaFUQljVZDqq1xQOnPsPUxCE2hqJ1Xew0MWWZABTq9guIZ85ggHR9iectXs/xpj0/Tt44wUTpHIWGT6143LZxB+mhg3izC6ikS5IPiKXiukbBHThksuArJ/+MpwffP/oc4Xo89+bv48v3/wmu4zLVmEN4wajkudVaZW3zxKikbEXjNaTKwBMMBjvfGyo1IwuOZnuD0PPZ9vZQqUHGDloJRFxmor7F8Vv2s+eDh1DCoTojUT14zcv+Hz595/vYWxkKzfOc812fmwDkjvi8suXhXFticjLhgdzua5NqbppSXFpTo5zdTneLOCqPxi+Eh+dCVq+ObD9cVzA9uYc07dNsb4y2M0n7EEM/T4hramQYWynVRkJ+4QrmqtPoT32RJB0ghOBMR+D3PExi39P74idA6lG+qT2GJmxpFFsCnqhbLXQ/2QQg9mMqpRrqT3aE3gfPprDf4Ll2frUWkCrmSwaZOTgVn6xvj+u51dS+abpkS7fd1dF68mKAE1bZLiIZJfHLdkeGQWWUE1uf2fnec11Bt9caWq3YRgY3iEdNGmM8MXj3u989cpt497vf/Q1nBTa+OBtjjDHGGGOMv6XQ2rWpEI8DT8WGgDe96U2j/7/5zW/++g3kETC+NH+yoRQqsSLfwdIpexcXVok9QyACTCuzYtCssAzERrrrX0f44LmYM8sQBsjuFlEBolrnYKNOI7SszEa2SS9tAVCfaHK2I9gzuYBO+pghs3GkIUbMlT67RP+cFe8+bdIK/J+zt0LgFxR5wFbfipa3Gxn8ijWhDURAvTTFgWrBVupypuvgZ4p27nB+XzgSkwd+iBBW8HvdNS9gM3MQrjca79HKIsemZ0lKHmc7gsjTXDsVYDYGpHfeDlnO8/YfwihJ2O5C5BN++csgFclp20lsVIHqtLlxKifyBN2vfhap4Xn723hze5mq9bj0qms54lbQp84Re2bU+NCIFJFn2D+/Ri0wdAqXfQfOcaQmmYs1kac5XJccrhom4gaeC7XhXfBkZP9drBhW+wXVQLO3LIn9MpWoTi4zYs+wNUhtlJHUKC0xec5MrMgLn43pkE7V48W3WpG6Oj1HvdInvHSRQdpEC5frJyX9ZNMyfeVZlDaEUcIzJm0TQ6IzFqsety1mnFo/xTPnHA4dOU1hHBLpct+WIL80zWbqoLWgHE0SRxMAI9YMYL5svxa2WTPP8ykyB2e6RLdwaKc+W5MulW5Bt9ei0rbLX95EYJptzGDAZCki6dYh93DrfYrCGrYKqSmKhK2tKbK8i1aCF8zn5IVPD8tMZDIjFtBJM/BcHOHRqNs4MNcVHDv40tHntdc9G1MENrJpqLj2XIdkYHD9AC0dhCtwghJKwfpXXAh9nIqPiKuk60s8Z15y03SON9ekFmesDlykBnNhlamSD8LDZBl3rACdPo1Qk+ZdpLYGzt6QoNu2vYjDCYIgGtklOEOh+lRjDqUUJ8990u7vIevTG3RYXvsKhAHhkLTc6GxhhkTL9nYFXohTLxGUrOD/klWd2DmKJM+49jTLq2fYc2lAUHdQGcwfeQHN9gYvXbCDNP2EL64PfwJSxdqmPf8Xz1oxfKXmUGjIMwctLatUpDHPmLSDseJ7MRp/kvbZyuAX7tiiNrT8KUUNNraWR2yY0pJ42Ejg+wHBZdFH2+vcRl5kTJSmICtQ2kZbrTXraAGOP9zXSlnLi+HYATrdFnFUplZpkGbJqAFAa0Wt0iBXOb1Bh3tPfHD0Hq/Tx1mskkpnND6ApZ6LO2T5tbLjdJVGRA7OvlmUlrSHzQmLe47R6iwhKg3CENxqiMkTin7JmtS2znCp76Fyy8bPz+wnjsqUyxMopaiUaiMG0QkiCJ8kDbdyH//jKVjWvBznz5//mo+vB8bM2RhjjDHGGGP8bYV27AXW48FTkDm7HAcPHvyaZU2lnhzPucvxN9ojrVaL3/qt3+Kd73znSCh35513cvHixas6uG9KZDlq0MURPnJrhaLdJF05TzXQmDxHNiWm2bJ6g+0Q6V6BbuYQCVSvZZm0Vgad3ih01yjJtFsn9FxcV5EUA5LCah2mSzmea/CFh17fxDlYJ8n7HJg6wpGGvTszl7ZwhEfghzRKpVFgN1gdkNLSsg7CQ8RVazDpe6A0nuvhOfDnD04CIFodfBe0sJYCeZGRFxlJ2qdRn2bPzA34jr2Lrke2XXxw96fx7r2b9RsGNCJFIzTU40mQ2rIw61uEXohRBfnxe3E8F/25E5jB0JJkumTDoJXkYN1jproHMxhwqW+379T1HtVA8+Knnya747OQ5VzbKJiNFVXfsgJSw9MamqW+w2SoeMa0ZKGsqPoaz4Vr5w5TCwzJyvmRTi3yrBEtwHxsrTaqgbUSmShN4Q2ZjkqgSRUMpEM5sM85wmOq5NPv1OlVHPoVmAoN+UaDvZdS9lYUanWF/XuezelnG2o+XFi5k5WB/RKR2pD0K+yr6pHR64NNaz+wkdi7/e88mDEZKo5O2GNpbk1yoRPg+zmV8gyFHGq9hkxH4IdkUpMUg1FsU6+5xfqKGQVDt1sNvEaHIhTkRcbcakocZnTSDGeyao/drfaQwRI47Yiw0SaIEsIo4Zk3vBovVwRhhXyjQRhUqZ2qcNP8DBN/Mcf9a5dopna/jcLGU4kXlymG2rFOr8ns5LWYiy2Qhs7W0PJhCKUladamFEQEoUPJt8xNL20jopA8M3SbAuoVkDbEfDsSKfRcijSmk4Sk0mW+ZCD0aaeW8XA8j4t9F9PLSJSDHhqtPu/m77HmpcPxBX5Iq7vExtbyyFoC4MZjLx2Ns1bdadvfZgV7g3WcWoUsg0pjEl/4aLXDxo1Qr+BNCEQIs/vP0+/WAWimHs+bGzIxq+fAc+lveTx4rGSPkbZPoSTmwhpnVqdHq7v3pGWSmrM7zFGhoUht6HeiYOa0TyOy2/v0614xYsS24bkwFRnK5QliPx4xs9uYasyRpH3iaGdfAqP/bzNnzkTE5MQcwnFHRsOBHyILO8GmsMcFQkCvoNNb3mXum6R9Or0meZ7xnKe/EZUkRKHVwm1XAbZtS2qVBpeW77L7INQkaR/dLoPnsvylYzb0vFfgChgkPfKNZctkDgPO1xNB4IfMT1/P5+7+A1R7g6EHM6rbZm7JWnBstS9wou0iC7sPV9bPk6R90tR+v24HwwOYPGWMJw933XUXd9555+jx+c9/nl/7tV/j2LFj/MEf/MHXZUyPmTm75557uO2226jX65w9e5Yf/uEfZnJykj/6oz/i3Llz/M7v/M4TMc4xxhhjjDHGGOMqw1EuzuNlzp7iZc2bbrrpiuee9axnsbCwwH/+z/+Z173udU/6mB7zHvmxH/sx3vzmN3Py5EmiKBo9/+pXv5pPfvKTV3Vw35TwBCiJIzzMYIAcmlRWhhoKlWHZICEwqUSvpxiprelhqmwsTjmyurPNLsXyOWSviTp/geTcV5kuT1Au9wmGIdRriWCxYu8yfc+3jAZQD+q4GlKpqEWhjYhqryOERyBCvG35jquZKUkGecogTzFKovOEXKYcXz1Our6EcFwS5eA9MEsiYWPrwVE35uV47W0/RbO9wfwLvptaYF8PvIC980cwQ6bleUdtbFA98pmIG5iVAfQTzPF10jP34wgf0+5h0sLeprd7OEGIe90B/PoMjvCYLM9QCso41SpriaCTO1S27H1IO8ea+5Zjjk7V2FfV1lwUaza63SC1p2yNaQ80JpktKRarHqLb46bpHNXdohYYKoFGuA5V33CoZiw76RrqoV2JU0iyi2eI/RLrw6iY7e2Ogwoqz6iEVYo0onr4AmYY+XLwbMapY5Yh8PYdwqtN8G9e8SBfWhfc9h2/wOnPX8dWf43zXYG+1KAceFxsx9x+9iyea2iUqhyohyx1pY3TkQ7zsaGfe6zOemweP0wxZCAurX0FsEzP4p5j5EWG1MbqvLC6IF3ktnOwHFGPfFyhKNfaI8PcYqiN6Q3NTEfH+RBxAnG5x+KM7ZYLgwpZyUfmCV4Oq09bpFNxmSzP0D33VX75bsuU+JllGFJpcDwXR7i7mJry/uss3VnxUQqCkp0/s2HPKX1ZdNCBww6uZ+hlnZEO0q48R6+noCQGKAcBnuugc4/NlT0cqElWBg6mn7GeuIhSFTcuc6Jlme1GCFnepRbF9AbrmDinUqoNuwRnWNm4H4D+oDtiverVvWw2V1FaMlHZ6UBttjdsF2p1L3iC/jDWqJ8naOmMdIHbHY+k+ShWaL6SM30yQgQheeHTHXZZtrsXkS07D17Dzt0f/tX1FKqAtGC6saM13I6Y2poQOJO241BqEB7IzMF3IDxxCqm3123P1ctNppd6DgcriuXVMyRLp9CTDS7HZnOV+Zn9lEs1im6XXEmSjtgVSL4dWK6N3Z/bAe15keEKhat2NGem2cb0dkLDL+96nWrMobREXnOYdOk4Kxv3I1xrpHz5mDu9Jg+e/xRmY0CirBbWBBJnsczBUx2ygTvqQE7SPsWwIsEgIfBDtjKXWnWSanmGQ/tvwmQZ7W6E7mY4nkfn8x+hUqqx2Vy1htWyoD6/w4Bud5ZubyOA3FwdGQE/0XDV4384T85Qn3QcO3aML3zhC1+Xz37MzNkXvvAFfv3Xf/2K5/fu3bsr0mmMMcYYY4wxxvjGhqPtBdbjXcdTGZ3O7vK8MYbl5WV++qd/mqNHjz7Cu55YPOaLsyiKrtgQgOPHj+9KDRhjjDHGGGOMMcb4RsfExMQVDQHGGPbt28cHPvCBr8uYHnNZ87WvfS3//t//e4piKI51HM6fP8+/+lf/iu/+7u++6gP8pkOWo5IuRWsN0+lZEbssmKs2cIPLyi2ZnV8815rOSqDi44ThjmGkJzDHz6IHXZAK0+0yW91DPbLvXWwc4tqJgsWyva2pVqtQr+BEHirPQLgobchkgWllmMGAJO1TiSZYTwSnmwOUdjlcNWwmCqkNbhBTbF4iDipsJAYxzPvr5S7zl/o0U4+t1lmKYelDuN6oTNG49jk87+bvYf93PEjV18xOLyJcj71zz4AowAlDXrU/xXdtudMoje4qnMV5TCqRa5dGDRBIjXNgErICvWpNIEUQktz9GSsGP3M/Xn2GzcxhIKE3bP+XGiswlopKWKdRKiG1GQnPt20xGqUS19QL4qDCselZAs/um2fsvR6d9Lm2kVP1DZnUSANzsWY2tiXERqk6yujTSZdKNEEjsq91coeZ6h6EK3CFoF6awhUa4WrCRpuBgiwU+LWetfRolJGBRyOE7zuSkn/7BQ48sInSkmYmmByWrFpb0/zh6RCpHZqDLjPVBaq+4a71kG7h4rkGpQQTR87h55A0J5hpHOHGY98xKvEsLZ+gUZ/meMtnPQGT2/KNXx2aatYq7G0cxPeteDtZPUcclQkHBXnhc6nn4czPWGfeoUFyLu2ycZjxA8dSqnFKIROkcNBGMbMp6c3kFJVte4YBm+tzNCKFzlM6hUOiHIgED62ciFbHnh/TVujuhcbmZrZ77Jk7RFb0GAyF1aWaRoTWgsLzfPIMtASUIm8b5OYqK50lMlkQej5+eUBlPaDkGWqXnZZq0CWYPWDL06lioT7Dgf0vQLgevhfjCk1v0KHZ3mBtY4nzF21Z8/Jou0ZtcfT/yjCzdlvM7vsBritACGYWriNJ+mwunx/ZOcBO+c6cWMWp+Dge1AOoX9jEES5Ku/zeJ6+jN+hwz4k/RivIBi5FamUot9zywPAcMnzLPlsaJbKi9lG2ZzlGKUiki5LWRmIy0mTHrmEm3k2TXG5/sTEI+OiSbfKRWyu0GsEua4pKqcbK+vnR5yRZHz80o2W2y5tGatY2ljBq92clG5MUdds4Ffgh+pOnMIni7MXPj+YGGJW/G/VpPGXQSZ+iSAiCkAtdd9eYATwRgNRc6ns0JmYQcQa9gvWFCn6oyVYkwjMEfshm6yyOB5Ri8iJjNXFJ0z6HFl9IOWrghCGuH2CGGcTL618djedsR9Dudwm/73oeiu2mnDgqwyCBteSKZZ4ICPX4H+5TvKz58Y9/nI997GOjxyc+8Qnuu+8+Tp06xfOf//yvy5geM3P2rne9i2/7tm9jdnaWJEl4yUtewsrKCs9//vP52Z/92SdijGOMMcYYY4wxxhMAocF7nGVN9yle1nzJS17y9R7CFXjMF2e1Wo3bb7+dj33sY9x5551orbnlllu47bbbnojxfVNCX1zGPRSBVMjNFYKFQ0xV5jBKE9QdnFKMoYlT8TFdiZGaQVMQAEZKy6qlCifyMEsdjCogy3FKJYpel2MTmlxmOIVkthJxvKW4YVIhAn/U/u0Kgex1CT2XibiOE3k4JctAxH5MoWGx6tFuNbj5Gefp5i6eo9HY91fCKocbJWR3C7/eYC0ROLlk4ytHWN38/1HoW3AVoxbxOCqTvvICN+av59bp03z3067ld57+A8xWF7j3+Edwav8Ivb7JsWuO0Xmgy6xTJ11fQqUGf5DgRDuHqlOvYE6v2zb6WhnT7oFSOMLFbLXJVYY4c4roGc9Casv+7Dt8hovtmFv3DKBp1xFrj0SEpKpPPXRZGxiub2hS6XCh3afqQyko22ga18P0EnS/jxkMWFic51I3JRJY+wxfUw00iXSohHWga9nJIaq+oZm5+C7E2kP3+hCXUVrhRzmlMOe1Ry7xqWWP5T0epSihkzvM1xbpVV32NfYwV035w9MJRCHrvT4vWBB8Itf0c4nqxZxfmeXPvFWO1Q3/eC5kPXH59LLPgZrkUFUzV01YrBg+3uoQXaoxSFtUKnNM1GdY21gCrKVBKh0eaAaUguHxEJfx8nUcTyCGbMBCvU8xZ51Ps5LP0amEaqBxRRktjbV5WdxDOy1I9vbZH0meubCPvefX6MzdZGOF3pIQvL9N7dnZ0AYiIPBLsFUmkQ7JXZ9l79x1tpnCc0mKhOnJPSPWxfUCG2EkNXkGInKo1Qymn7G8eobDiy9gqjzFKnDuhMPibTGJzEiSPg5Ql4AQtJd9ymGIcARSG6peyNF9l2jdVxo1iDiei9QOJk8YBNZiwrTs/s3qMbGf0+xcoNHeaZISrsfePUdH7BlA0t+0gv8hXMcyVttMTrO9waW1eyF7MdO1STba6zhG4j7EjzT2y+iNFGd65/O+euJPUOb1JP0K15zI+StgZe00Wk4jhKE2ZYXnL1soKAUxeA7XThSYwuBIPRrDwbMDnBcHKGmbSIQHWjpMhhr3RWeYLNnPnKof3LVtAGkaEQ5/6U2W0Y/dkbEqQJLuZFJ5bk7a7eIKM1pmO77ImZ2wx2OvbY1mgW97yT+nsmzYuvYhNhNSj6KtgNF8bjZXue2F/5StCR8jJVnRI0n7o/ixyyFEABXbSNHpbqGSENMrmNxICUua9rKPFxryIuPek3+C83cO4cxa66A713wbudSYHFnTAOhOhhOEPPPlb+PL93+UqcYc7V6ZUhjj7q1cMYZOr0kclcnzzDY9JU++t9bfVvzxH//xo172O7/zO5/Akezgb2xC+/KXv5yXv/zlV3MsY4wxxhhjjDHGkwihDEI9vrrkE9WtefbsWf7Df/gPfOxjH2NlZYWFhQVe//rX85M/+ZMEl8mAzp8/z4/8yI/wsY99jDiO+f7v/37e9a537Vrma+Hv/t2/i+M4GLN7Qx76nOM4T5oh7WPWnL3nPe952Mev/Mqv8Ju/+Zt8/OMf/7q46T5lIBWsNVGtnZR7IwukljtMy9CGYLtF3Nm+ffdc6Pbsv0PGwGykOEEMWW6tOXpNnj2bUwlrqDxDaUUnd9lMHcKpCubcFoQBThAge002E0Uv60LFxw127sIbkaYeN8g6VY5O1Ygu07wEswfQRrN34iCq10QbzUA6ZEmbxUsZD5z6DGBNaLehlGShIpn6/vMcrku6D3yR+SMvoNhY4dC+WzBrW7DVZqo8w1Y/Ijl1DzpLkJmDWV7HpBKztkW+ds4uCxAFUB5u+2qbbtaFLLcxQllOsXmJNz/NYzoyVAOFEIozHRenVsHbdxCdpwjXY199GCfjQqNUpepbjj4a+okoLYkTiRp0ydfOY7bazFQXuH52gXIgiIVhoayYigVV31AKyjRCjQhCRHUSpSWRZ81p2zn0v/RXJPd+HjcI6KUtJic3kdrhpfsDpiJDMN2kvzbD6VZA67d+nbVZwURsTUxP3n+Ui/sqSA3tVLE25ZNKg8hd6hNNzjfL+K5Bddr84emQ/HOHKXnWHHcqgpKA2il7114UA7Ksy+aW7bIO/JDeoMNAOnSKnbBwXwTEZaBaQcQxADc0DJ2JkDzP2Hy23R9SOzuaQCEsywtUJ7bwXMhlylRkmD76PLYmBK9cLDBaUS4NWNhzCZPnuI5gbk3SzV1YtkxPt3BhIqKXtkjT/ijqZzBVxhmaGCsJblUQlxixrItzN6O0RCnYaNcgEhyYvGa3lcYgQSkH0+lSaQ9olKooLfmWxYL4/Aqd3OG5s0PLEA2O8OllbUoemEQReBFZKAi8iHZ3d7f61OT8iFnaZqXyYoDr7JwYUuWj78ttzdGpc9YQdZAmqDTDCUqIyNll/2APUIGzWMNIa158zwN/Rmtg7UrcoVYrLzL8ssELDS8+aG10OoVLoSR4ro2kugyBH0K7PdIMCleTDEArh0qg+d4jySiyCRjpSUfvBX7gmGWPnDAkrV9mmgu7THTL5d21MOF6VvNaquFMWkNd2d3CDNn+enWBWiujMbWBiByisIQTiVG01TYu15Mt3vxtmKNWk3p48QUAXOyLXTo4gInqXpxKSCId+37lgjQkq+cIyhqlHLadWXwvwiSK8JqnDT/PzqHIJc2ONWIXUYjsppg8Y6sRsGfuEK32JhOfm8H3vNH2Xj4O4XrkeWaj3ba6ONUnJ8BHKIP3OB+ufmKuzh544AG01vz6r/86X/3qV3n3u9/Nr/3ar/ETP/ETo2WUUnz7t387/X6f22+/nQ984AP84R/+IT/+4z/+qD/nox/9KDfffDMf+tCHaLVatNttPvShD3HLLbfwkY98BK01Wusn9drmMe/9d7/73ayvrzMYDGg0GhhjaLValEolKpUKa2trHD58mI9//OPs27fviRjzGGOMMcYYY4xxFeAp8B6np9oTpTl71atexate9arR34cPH+b48eP86q/+Ku9617sAe2F13333ceHCBRYWrG/gL/7iL/LmN7+Zn/3Zn6VWqz3sui/H29/+dn7t136NF73oRaPnvvVbv5VSqcQ/+kf/iPvvv/9rvPuJwWNmzv7jf/yPPPvZz+bkyZNsbm6ytbXFiRMneO5zn8sv//Ivc/78eebn53nHO97xRIz3mwdK2bvTbg+ddEcxP07Vt12crdTqwIZ3T6WGspFN2CgbKj6EPtmKpLR4FLMxgMwyHdOxw1R5BpV0WepKOgXc/5fXEhyaZPDFLghBUiQ4wuMvl0IqYRVSiTvsvASIhaES1RGJh3AsO9TMbPj0NsNm8hxvYhapJVLDyvpXUUOWbyAZmaqCvZs9uVbjrc8MKQcC3WqyNmc7P5udJTt2T5C3mxSFj9nYQm6u2C41IUZRVjrpY841bdtlmtt5LFs2J/BCkNrGPmU5etBnT30/A+lwrG6YLuWstqrUnv9KnCBCdreomYi9EwfxXIeDdUMuMxYqckhMGlxt9XXZ0glUr2nNIbEGqWXlEXo+ngvlwKUURNQjgVNI6pFA5Rl+fYZ2YtmMqViQSAczSNCfuJ9W0qSVtGlEkpmSZM6b4t++aB9Zs87Rz61S/cgC6q4twgSyrXWrfctd+hU40Jjkk8shWQzNzEULODyRE35hgdlYoZIu690SUjjEnu202+7a5dYLgDVP7Q+uNMD85EXLgERBRhyW6fSaCAFuqcxWfx2w61s/XDBRn+KHnmnD4iNPWxY3EqN94rkOgV9wuGosAylAC4eibiPFjFY0Isn3HUnJtlaoVuaorrRJlItZ6o7MVAE2+i2SdMAg6QFw/rADoY8ZGoSawlh5khBUSjV6z7551AUZVYddxSfvxvMs0+EPiWI/1BAGFKceYL5mO4hvnvNJ0iYPrJd5/qJlcRLl4paq5DJnIEGlhsALWd7jkcuUvXM3ooKdY1wMeIgAAMVeSURBVH5bxweMGJJ+soHvl0bPH9z73BGbdHn4/DZ0kaOLnKJvdjFCSkvLqAuBV3F49lzG0YMvRLgerlCIfDedFJYVT5+0DODawMUXHqTKnvtS40zY/VWtTJBlXcTEpO3WzELU8Id7fSDoFu5oTu+670O7TIHzImNxssPBut1nblzG7+3c/8/P7B/9v1ZpjHyKXc+MDGMBbrr+O3CG+8vkKebS5nDuNnnwWIm/s9fOQyFzG2vHDuu4jW0W78wxwWyjjROGCGGf+8xyuEsHB5aVo1YmHlYIRCXBJAqtJSK0nb1JZxgp5kXIlmJVJMMYKns8JZ11NrdWMFJanWY1wmQZg9ih328B0Lznr+z+2HPNKCz+8n06YhbTAspPrehrpRSdTmfXI8uyv/6NjxHtdpvJycnR35/97Ge58cYbRxdmYC+ssizjS1/60qNa56lTp6jX61c8v52E9PXAY744+9f/+l/z7ne/m2uuuWb03JEjR3jXu97FO9/5ThYXF/mFX/gFPv3pT1/VgY4xxhhjjDHGGFcX25qzx/NwjeHLX/4y9Xp91+Pnfu7nrupYT506xa/8yq/wlre8ZfTcysoKc3Nzu5ZrNBoEQfCojfGf/exn8/a3v53l5eVd6/3xH/9xnvOc51ydwT9GPOaLs+XlZaSUVzwvpRxNxMLCAt1u9/GPbowxxhhjjDHGeMIg9NXQnNl8yna7vevxzne+82E/86d/+qdxHOdrPr74xS/ues+lS5d41atexfd8z/fwQz/0Q7tee6iBLFgT2Yd7/uHw27/926ytrXHgwAGOHDnCkSNH2L9/P8vLy7zvfe97lDN5dfGYL85e9rKX8Y//8T/mrrvuGj1311138U/+yT8ZdW/ee++9HDp06OqN8psJubS5kFLhhAEIgSN8WoNNZM/aZ9DuQcW2djuLFfDckRjVtHtW8JwqUAqZOSTLZ6BX2HxKbCnJAEbZcqPvwp4LXUwuiaYYNRy4QcxXNkI2+i2c+QpiKO7tZV3KgUuAh6ugEk1QDlxbklMSnae4ji1xOsJjpX2B2ZLmi1/5AHF3h8b2a7b8FPghwvWYqvWY8aeYKk8hpmbIj23iCI8Xv/FXR2Ww7axR0hzynKBuDU1lU1rT3SyzGaOtfPQePIFTCQmEFTFXiKBv2+0HeZ83X19wpC6pBZClMYnOEKUaJk8ZnLgT2esyVZ5iX2ORTBZ4jp1ez3WQSR+T5/ZzlcI027DVYXD/F0iXjgMQei7lIGCQp1Qjm5k5W53DKHsTI1wPORTMTkUGp1FHLae0E7utN01p9lUMg/u/QPbVL7CwpGm2z6PXV9k6KxCHV5GtNQAWnnaS0p7V0RxHc7YsaQJrl9FY7rKWiNHynjIUGiZDxWSoiT3Dtx/uk1Zs+U0bNSqlbJfe0jRisawplwyFyim6XYRnxf4TpSnKpQGx0FQmtthsrnK4rikJaISGeM8hnMjHKceYZhupDWm602gCsPLcLiIo8FxDt7fKYsVw2/wcIq4iVU6e9ZgMlc28xArxSQvamd5VCvLLA8zFNk69ZH2ZpUYIMKtdeoMOUgytXDqGtNsFz0XefS++CFAKhDAgNa6w4nWEwAG6aQ+lFeXSNK2lvcxU9wC2HOhVGkitkRqMhFxm1NpmaLY8gxvnD3vab495ZeOBXc/H0cTDLo8naCVd/GoV1w8QD+kFmCrPwPxOeXSu7LN/4dmjkqPO0lFpT0QOroAjDXvex56hVqlBr6BemrINRkOT3M3mKputM/iHbyDPIPAL8gyUdIg9w9muS+zvFtNfjhftUWTDMrMjdjcbXG53ARCE1ujYFfZzwZ4rWd7DDSJuOPpiVNIFqUfH5nOf9QCvOqittUraJ9+0X4xptmPREUflUQm4NrtGJwmJDzxtlIm5efzwrnHUKg2iW14MQDUwNOrTHN63hBMLPBEiIvsD39my/15aPQHAr99r96sr7BiStMUzn/btMEiYqUzhhB7e1BxhbkvWSkv+9OM/zyBN8BpTjziHAGykjHxcnmAIqR/3w9EGIQS1Wm3XIwzDh/3Mf/bP/hn333//13zceOONo+UvXbrEy172Mp7//OfzG7/xG7vWNT8/fwVD1mw2KYriCkbtkXDkyBHuuece/vRP/5S3ve1tvPWtb+WDH/wg9957L0eOHHmMM3p18JiL2u973/t4wxvewK233orvD52gpeQVr3jF6AqzUqnwi7/4i1d3pGOMMcYYY4wxxlMe09PTTE9PP6plL168yMte9jJuvfVW3v/+9+O6uy9atw3wl5eX2bPH3kh99KMfJQxDbr311kc9JsdxeOUrX8krX/nKR78hTyAe86X5/Pw8f/7nf859993HH/zBH/D7v//73HfffXz0ox8dXaW+7GUv+4bZwG80mLQYidsBzMC2iVelh1dpjMTUTuRZoW69BFKjpWObAJSyYvihzUPSERRLp22TQDlGZwlT5Sl6WRedJZzv+tYwsyhwD0wjvvWobURYvYRfqdPt1lDa2BicoQ1CL2sTeYJsawUxNJKtRTHNzN5dO8IjXTmPTPoE9WkyWdDNHcKgTN624l2pIYjstuWFbQ+/dUahAoHSks2pKv/gGas4wqf28gdt7M+wfb+zPA9K4U40bJu8UhR9u72m07Pz4Dm2iWCbgayVydYv2Tvqc1/FSG1FwK7HwXAOzzX4LmT9Mknes9sqPBzPY3D/F5gsz1AJq4Sez1TJp5u7pNLYqK2eZST1qXOQ5phWimm20d0OlbBG+TIvncutAhzhoYfxQc3MoRREHKpqgn1HyOwqKQURB6qSqdDYyBYhKHdzorBGt2fvBm/ZtyMU/+/ffpDJegdlFL4Dh+Y2aISWqfjLCxEm8Lh92Ue37HukcKj5UA0sa1Zoh4F0cOMc3y+htRqxLdvsjisU+6uSSs3aaIAlVrYZ03/2jB5Pn3HxfSswF67DQNltXE3XcA4u2H2plGVu/YLrGgXC9djK4FkHNihX2zRCw8q33YDUMPj0X+JX6hTFAHfG7i8nFvgubGaWytyOBPu2l/xzuz82hl1YoWXC8FyE58DQgkYtdIiDClk2jKLyXNb+2/Joe4QH8rOr+KG2th+eQOc5K33Nar+gc2CWhSVtrWZqlrlRiZVrdHOB40E72SQLHHJpY6lKK5YlfKhAfRueCPCC+GFf294PN13/SpBq1CAgohDX212e0XmOM7XTwFOPG9TKc5SCMloJBkNLDbBNRjJz2Ns4CMCJ9s7Xvl5fsfFNnhgxbe3eMr937zkApktDO5VQUwk0dy5Xdh3jD8XzFwS16DK2ZO7KHGawTJLwwAlKo6pApVRDaUm3v4ITxFx/+FvtC9Ka1E7U9jEVGRb9GZzYfhfpoaFsXmSj8Su1M75nLbbZXNlDx0lZ3XwA4XrMre0ev9aKv/fG+0cNVc32Bi/eI3EqPnkxwKn6FJnDtuvF9nly/k8soxIMzwNP2Ogt0+lRimLEVAm3VGWyVeyyQSmU5PjqcQI/vMLSYxc2r76Y/uHgaIOrHt/DMU+MlcalS5d46Utfyr59+3jXu97F+vo6Kysru5iyV77yldxwww284Q1v4K677uIv//Iv+ef//J/zwz/8w39tp+a3fdu30W63R3//7M/+LK1Wa/T35uYmN9xww1XfrkeDv3E7yHXXXcd11113NccyxhhjjDHGGGM8ibAXWI/PC8N5gnzOPvrRj/Lggw/y4IMPsri4uOu1bXNYIQQf/OAH+af/9J/ywhe+cJcJ7V+Hj3zkI7s6Sn/+53+ef/AP/gETExOArQoeP3786m3QY8BjZs6UUrzvfe/j+7//+7nttttGSQHjxIBHh23TzG3GDGltD/xKHXc7HDnLLfUUDf/2XPyysXExYWC1CKll0JKOQD9wbqhDy3HDmEpUJ/BCHOFxpuvSyR02Nx+0nz/UaRWnHkC7kKcxc9UG5sEddiaXGfvL+9BZwmRL0svaQ/sABxFX8eIyIq7iV6o4wqOfKw5UJZXSFA+c+ggAS1s1/GC3/ua6Rs7F5lmE66G04pZZu+29XOCWyuAJ3DAm6rk4B/aiB32yNugv73TQoJTV4kXeiDkz/QQ8QXrPF6EUY/IM0gJHeIReSHLv57lhJib2DLN7l+hlHRzhoXpNRH0a/en7QGlUkhD7JepxY2S6u62bccLQGvgOEsvMSIXp9KiZiP2T1xB4IaWhxYjOUwIvQgQhbhCRywypHXKZU2iHcHKepCNQWpHLHKkdIs/gTE9Z3VUgqDT24roeE4uS2DO4JcuSpOuXOFhTCEdQCwxTkT0cplZclBKcO1ixFhUdq/frVRwSBd3cZSZW+K7ho6fq6NyjXlkg8EtXMCGtpb2k0iEuORTK7sPLcrt53uL1HJo+RlH4CNdjqWt1jduh605tyOgIQaIcanE2ms/aUIY0VesRei5vfMGDDKSDWWuh8gytJb3q8BzpFkSeYanngLQ6L4DZG18KYBmQSEAYkKYuTiwIgqHVDDA9s0bghXQ6Hk5Qgl5B1t/5yvNCw+pxf3RcmbUt9JDtK7TD6h6H6kqbXKbbpyHA0D7FICKHTpqgFjooLeknWywct1q/Ees1ZMO2mZM4qqNlPrKVSNLWaDxBYJmUWmXebn9/k6Lbpeh2bdD2ZSgEI3bSRlv1CcMqUku0EggRjHRXTsVHK2ekyXxaQ1Nq2H0kW2tW51qrjJaPggof/IPrEAKO1Q2VmkNQtrFm4q69o216OCitUEMqzKiC+bkdfeRDTXSFsKzgNvu1bctx/PTn0UmX+qGb7PYNLYRc1+NCzxlt0/Y+LPr22Nox+t35sb1lWnLNJ9YQrsfx058EoLy0vmscvh/wmusOgVL4Q6v71cSFiYB+soHpFoiHbLJWkH/1ITYNx67n3uMfgU6PQTqsGpw9jnP+/BVB6398xicvMvL8Edgxz2V0wP8txpvf/GaMMQ/7uBz79+/nT//0TxkMBmxubvIrv/Irj6h3uxwPXc9D//564jEzZz/6oz/Kf/tv/41v//Zv58Ybb3zU3RBjjDHGGGOMMcY3FlylHz9z9g10UfPNgsfMnH3gAx/g93//9/lf/+t/8Uu/9Eu8+93v3vUY469B4EEqd6iIrQ6m2UImfauDqvj2tdCHyMds9mAiQFR2jFit5uwy3ci9m1afNjuJiKuEIiDJ+7hhTC2w3XrbgbzevoPQTzDtHq7johJ7d6Gb+Uhz1kkzvDjG8Xxqa5aBqYRVqyOrNyiE1d5kKscoSbdwuHl+gkpphrMXPw9ArzU50mJs32kvVl1mqnuImx0OTx8bdXWtnDgy1IAJ8rXzRNddwJsa6s48g+lKtMJGuqSWyTGpxGx2bcemJzCXNjFnlkEp9PomSIMbxLiOi1nfohLWuX5CcvOsjbSSvaZlqTZXLCuT9Mk3L6GMnWPfNXQLB6MsA2eyDLMywGwMLDOT5ThhwOD+LyB7XYQjWJw4OOpki/0YPYz6qIQ1PNfQTgsmI43xPYRn6OeSfi7x3G3jS6tTWp8OGUzENBoH8Rqe1aMB7WQLR/gcqmriwDJkhYb1xCULXCbLKZMtyQ2TVod3zVQfFUtWBg5SO3guJNLhefvbLJyznZqe2NHLXc5sPNj2md4nKQclXD8gGRjMYIA2ms5nP0rRbuL7BUEQspUJpkIzMh+1x6jd9lgYqoHGdw1xUGFv2T7vuYZyEPCceUnJM5aJVBKpctJwJ65MakikCxWfZmrPmTPXX/45xu5zUcGJxC6GI/I0SismG5KoWsX0CrSy7w1DCEuarO/ghUOj4ywfsdepdLjuzg551uNSex2UYjLSRDMLo/gip+rjuQ7lWptcZUxU99LpXOJyKC2ZasyNmBPXEejJBkcPvtTOz2XdmknaJ0n7XFi+E9PpUS5rXD9gaiLFqfoPWe/QxHp4DgnXI9szTS4zVBGQZZdZGXkOReZgcnvuLJQlbuhhegVuEGNShdPYMeAsl6bZ/MsPEIS2s1Mp8Mt23soDRTW60qxzGz/x6Xg0P/7UXp4xvcPKPpQ9yjOYrs9csY7X3vZT6FaTiwvDLt9hBaE/2OB1hzP8egPmd7Raef+Rf8Y6hcv/+P+/hQoRlfLEw+rlmu0N8pP3YFo7oeVfWAlxpio0avtH8VDbbw38kKDusLz+FQDKgX0he8FFkrRvDcGHcEollNqpIMRRmUIVfPwT1w8rCLs7pbdhUrlTOXmC4WiNox7n4wkqaz7R2LbteOhz3wh4zMxZEARft9bSMcYYY4wxxhjjKkJp+3g8eIoyZ8YY3vzmN49KoGma8pa3vIVy2V4sPxEJB48Wj/ni7Md//Mf55V/+Zd773vd+w1xhjjHGGGOMMcYYYzwWvOlNb9r19+tf//orlnnjG9/4ZA1nFx7zxdntt9/Oxz/+cT70oQ/xtKc9beR1to3/83/+z1Ub3DclcgnRcNqH1hF4gqK1hgj2jcxl8QROOcSs9GE6AqnJNg1xZq0cqAQQ+tRmJCbVmF4xagV/KHwXyje9CF2tEMzupyifgn5Ctn6JqH2AXGWUG3YscVQmlYZzW6eYEzGd1gVy6aO0YiURGGCrv8Z0pcFGf435ss0zU0ZRKc2MjCYrE1uIYRru5aUE4XoUa0v0laRe9qEN1365hX5VavMwzy0R+HtRvSYIgfsQZt9s2XKNU/Gtme7y0IR1aWjOe2iPnT8A4ZGrHGoV6kGdF+2XVIN1wEO21hCVBm6pjIZRg4CqTKMcwUI14lQzwxE+RklrUgrDTE+FudjCWZwfzXklmiBvNwmiCEdKinYTR3iIIARtDVpTBbOxxHVcgpKmVxjqoYvUjhVblyq4QUxvJqdfCZgsNcAXzMYKPeiyJWHW84k8a3p6si2Yjw33bvlIYUuxlw7Aj+7JMCcV33s05Utfdim0LWd6rkOngNiD8NxF3MsyHmGn7OTGOVJDdUaSf0UiopBKzbGZr2mGvv04PP25TJZTvu8f/i+6+Sk6hUM1qpDLDFGZQGYZjieQBqYjg+fYUm/sGTZTWy7LZEHkCZ4+KXHqJfxKFa0l7RmF54ITCyZDjdQOeC73t4blssgK9C8d1jCQOGFApTEJ05KoPBiV/ztJyFZ/lSCEzsDup22XhU7HQSsoMod+UzAxMU0RrpCuXUBqhwfbPq2ts9Tnj3Ch22FfOeaaWsFad5lBnhIP8zlLQYRWgkCEJFkbqXbutLfLVtsGq/b0T3bpe9zKjh3GNs4ufQU6N5BlDiIKiR/GbSGXKU4YoKXGpNrm36536GUdoERw+b4dft9sl9kv9T0aS2tM3aitn4jn4M/udMLF4QSbrbMAzMaKPDNoaYg8Q6mVAI8stO73y9TjCmANpVcG9rMPLt7IwuyNfObOD+xsQwb75+Zsfu5lCJ/5Asza7+FtOw5N222RKmOxGrHSWSKetPP20EaJh8J3bCZptnaeaw+9gpX19+N6wRXLqROnADjbs8fY+oOHcZ77VfKhca0rDNtV/7zIcGciktRaMMSe3Z//5KYW/wegV+B7PiaXiPo0lcbe0eds23CUPvaJ0fdi4F+Z9Wk3+Mlho4zRmG0/k7/xOp6azNn73//+r/cQHhGP+eJsYmKC7/qu73oixjLGGGOMMcYYYzyJMFo97oszzLiz9GrjMV+cfSNfaT4lUAqh3bHszvBO1vQTilMPEExZFgqpYLKOubCGSSVuJUSlBpk5OzYbAJ6gs+5R3ZOP1uMID5kkVIhw62UKfZ5Cw+bTuyR6jqK1hn/oGvJPfhZH+JQTbQX7notRNhrnUl8wW2EYp7NB7Nc519xiIAUqSRCOQMchK8ttGpkV4zYHu7NUe61JyqUBz7npddzx5f/DK57/j8mkZqV9gak8R144w+StzwW2WFu7zzYEDK0xBvcdxr1hE3nqHFpBuqrJ+gIxNYPmnGXMhmyAWbENC3o9x50BNwxsjJXn4FUnCURA6gnS9SX8zUs06lWEK3AD2/DgBjFMhOSblzBKUgnrKC1RWjETg4grFO11zMCamJpWZlk7qUEIzNlLcDOEXoiox8giASQ6T3CEj1epojJJ6Ll0C8N82QqztbI+uv1cs5X5DKSDzhJEXAXl4jU6ZL0aJIpGpMH1SJVEq4RUuigtaedwfUNzz6Zgz+pOXM3iRB3HExyesiaqz3q5olu4NDPFhZ7LsQl7/JQrsyOLlcuhc2/Ub5JkfXw/wPXACYNRZJUbRMSe4eRzu1QDw4m2SyBCcpkR7jmMbFlGs9AOt0xLostMVOdLhnbu2IYQD442DM7sJDrPKUUN9h0+Yz/jukkqgaabRJAq2rldR21iaFMRFDAASjHlwIXIJ66pUbNMr1ujOThPnoHsNDGJolRz6ZxoUgoNYcnOQ5G5OEGEU68g2+t0aXBf06E+fwQtXCJP44QBz9p7PfevH2elby1Mts9DpQQgyfIejfr+0XY+nPh8kGyRrS2NWJeL+yq7Xg/8cJdwXqUZS92IW5Pe6Lk4Kttzdnoas7yOloaNfgstfWsYPbVOaWJ+tLwzEeGH3dG+u3vT5ZiUIzsKp+IT79mJ24vjBp4IEJ5DI9IUAoq+g+8aks46sNtv6nIk3Tq97IIde69JJ58FIM06zH/rD8JlzJnwIEmTkZXGNlo3dCDLKQ8UZjCwjDjQ6V7irtUar3vaIoObbgb+O60lj3LjkS8s4iErp5MukxMHH3E5shxSxcrAjqXyZ3+B/31H6SdLOJGL60F4OcM3EZJkNn7teXOKXwXmyzvbMcgSTK6Qy+dRwU5cVOCH+MJno3lq9NxDGyXshCkIn5yGAKOvBnM2vji72nhywrvGGGOMMcYYY4wxxnhU+BtdnP3v//2/+d7v/V6e97znccstt+x6jPEo4Lmw1YYgwPSsNmcb7tMPDPVmMaz0cTwXavbuOijZoOaRCWs5Jt2ONUoU9BNU0kUEIdnyaVJH8aVlq9eIyz0GhUL1mtYeYnYCo6zVReyXQWr8im2RX0sElbCGjkOkymglbbqFw9mNGiIISYoBSd6nmTmjgO1Maqrl2dF2lFYi+oMSRw+8FID6S19Ho1TiYO2g1ZbdfRqlJSbLCLwSbly1dgrnmuy5f9mavw4S8r5La8VHK+wyAL18FNGD54LnotLhXa1SMEhwpioE9SmKttWuFZuX0CdO08wcYr9kmRLh2TnoFZg8xREecVAm8CJmqnsIPRedp+jMttg7263ti8NxdHsQ+jYAvpBkW+uU/Hi4XokbRCRFgnA9+rnmQD2kFsW4QWD3JdDMXDwXaoEmmt2HF5fxywNcoejN5MimxHcNbhhTaAeddOnkDu1kk27uUvM1915s4K6u86I9iqlajyQfQNXG7FRX2kyGmsP1gmbq0k59VgYOnghoNs9SinZihhp1m3XnBtbe4nJGo9/BxhslfZgIKNrrPK2h8f2cyVCRSKhE9R2bCc/DNNtUfcORho14UknCWiJ4wXxOJ3eQ2uC5rmXQhKD75dvJjl3D0QlJIwRqZXzX0NmcwZmIeNmC3eel0DLFnp/DREh0zdPp5wOcesmOecjSydUG64klRYTQuI2A2Wc7o8Okst/B9YYB6GCDz4VH7Bk8FzbmSohccmzKnkMqz2hnmm5uvzadis8gT8nTmFxl1CrzI43SI+H0hc/R7l2iWrYWEr2Z3TrRbRZl20gXwK9WMekOM5GkfQIvJFq8FjyBiBz6uX29ORgQhxmnju2OrSkyB7VpzVdP3z5Mdqn4VoQ3EbI+2NHFbccQCWGtUKyVhtUNdvuruF+DJNn30YvkcsjkDwak0iXwQ+amr6N4xu5w6iCE9qBzhebMFbaq0C8J+50wtLi49+QH+dKGh+x10fMLxFGZjQse0dfIEG9EijgqY5TEG6bHPxxL5OyZwbQy/OEv4vQNLybce4hu336/CWHYRYRWArKiTxyViYfHzz0bw++HiYBCFeQX2yNLmW3kRYYvPPbO3WzX+0iGvp4L0ZPDnWitHvfjqao5+0bGY97773nPe/jBH/xBZmdnueuuu3jOc57D1NQUp0+f5tWvfvUTMcYxxhhjjDHGGOMJgDEK/Tgf47Lm1cdjvjj7r//1v/Ibv/EbvPe97yUIAv7lv/yX/Pmf/zlve9vbdgWIjvEIEAImIns3qBROJRyazlo2glJsuxQnhkaL05E1XwW8ioPpDfUJUkOaoySIfaWRzsYRPtq1JrG9tEWaRiQSvve6DlNGYpR9uAcWcYTP1JkNJuIheyLsOjrFbg1IO1WsJR6dtVnWB6us9VKSos+pto8TxMTCMFMpMzmxo1uZ++oSWRpTqe0BYGvS5UK7T+dTH7bauLkqcVDBCUNueGeIV520hrsVH9cLLKNVitHKYdCx48qPf3Vn2z1nFA4PkA8cHM/FbLWtDs0TDJZO2qDqMMANIggDDtbtnapsr4/my2ykuKUqumvjY0qB1fRUo8pQO2YNcomE7aBqpZZt6ydQr+AKQbJ8BqMKMpXjxWXcIEYEIaEXEgeW+ZypLhD7ZXSeExwtE3nWHHZbQpgsn0EmfVyh8M82uPX60/hPn8BzwK/PkEoHoySFsevq5x6VQFMu9+n2V6n5mkM1xV2rBicMUUaRZz06hUvVN9zf8sgLn5NrNVwv4OLq3QzSndiuZtvqxBrnAxbKOzSB5/kIAWZ5GHvjuegs4dpGQbk0YCsTeC6YrQ0CEaICgRuXR4bBoeejtCFbO08nd5gvO7RTn3rk08+Hn1OKMcfPEuaaudhQi0KcyTqRAJ3YyLIXH9w7/Hh7l571yziRT1CfQsoC0x7gegbHc3nhrT/ARFtzqe/R73tIbdfhLJZRaUYYgDsTMXsgZ+ZGjU66mLOXcITHVubiu9Cqu5iiIBAhRipEEPKF1ZBu4XLfeozpFaz0NUWnQnMwIMnauA9hQh5qLuq6guNn/gIxNP91xcP/qDnlELeygC5yfP/K7sJQBPSFNUM2Es53PTZbZ5irNjhQk5SSHSbDtFL8cCfSa+H4Gr7njUxOnanqyHwZwPUCfK808slO+pB1rIlxq3MB/TV+NVafeQ2r/WL0dyNS5EXG3tlnMFXb0c1VSjWEAF/4Vk962bzJC5bBndnILMU57L5d21jiXMdDJV2qYZUk7ZPnjExiHw776mVrDJtl9Acbo+17KJzGBKSKqciwf+/1ACw1z7Aw+3TAMo+7IK2IPkn7fG7Njv3+5k7c3uXQYvffpSimXLLb+FBd4sgI+iFB92P87cNjvjg7f/48L3jBCwCI45hu1wrB3/CGN/B7v/d7V3d0Y4wxxhhjjDHGEwZtFFrLx/UYM2dXH4/54mx+fp7NzU0ADhw4wOc+9zkAzpw5M647jzHGGGOMMcZTCNtWGo/n8VRNCPhGxmO+OHv5y1/On/zJnwDwD//hP+Qd73gH3/It38L3fd/3jf3PHg08YUX+nmsp+1oZwgBvdsEKyde3IAqsxUMrtWVPQFQETiOwQvjtbM1BglLgLFZH5T2dJzZPMstQRuEHtrT06s2TuMvrI7E6WJsIoxVGWRPbfJgBd+eabcnPZYbWiqmSz+dWBVMrLrnKiDyHJB/w5U0XN4xZTwR7H9Kmvtk6gysUWWJL3eUe1EPX2oOcXgNPsN61ZaR/dcteWzrsFbZsGIVW/D+0GolK2toedHpWYDvcfrNky5CkyprVei7mYgsAZ3Ge4vh9FGsXQCnUpYs4tQoHpo4wU5qzprPdJqLaGFkKmPUtm7upJblMif0yatBFJ12rKo+sYef2XDu1CqQ5bhBgcitaTvI+OXKUyekUEm+QWqsHICn6ZFsrEAlCz6VTWBPardSluOMO3HLZCqKHCL7tJTvvlQ5efYZEQi4z1i4uUvUNwtVMTl3Dvqom9mArcwmvs805g8OLdHOH9cRlKjQk/QrOV/fQ2jtBpTTL2taJKw7RWqfgXNfDL9sv3CTpoxSYzS5GSpzIRyddqr4h8jSToWJ94JGdfYA4qHBi9UGcILb7PRBc6qZMV2oUX77b7k9PoJQglYpaZI9vx/MwrZRSK+FA1VqZmOV1ZiplHOViUkkpKPOcm15HZ5gHixp+fQmXeqkOaUGRuRipmZo4yEQz52zXxTgerh/AdIRZGYyMXU2voLJgm2xseXuAG1fxXKgHBne4GwIvgq02jnD5zHJIJ3epxRnFuiSVDvUth2YGgRej5G5bhIeai242V6mW51lZv8+er8mVJbbADzGbPYrCno9xWEbsiXYtYy4zsnU8+OOzIVnWZaY0x2LZEGW7mYygtPP35iFbUsNz0XkCYUB+2bhlrUwhBwgPpkr23Eg6gslShFQ5a93d+aGXo/b00xTa4ejBZ+GUSuyr2GOo/9pvGZm1AvQGHZSCUhgjPLPbqFoBUtN98G6MVLvKhP1BCaMkmdo2FTa41Ue2nKiEVhIS7ju6U0rMkysXVApT2Kza5z7jTfy3/+9rWOulSGWti1wP0sFlP5e9go0ta7jd+91FhOtRC+y2OoeslMOrRld8DEAUxwRh5WFf224IcTwX0ieHjdJGP37NGWPm7GrjMfuc/cZv/AZa2x3xlre8hcnJSW6//Xa+4zu+g7e85S1XfYBjjDHGGGOMMcYYf5vwmJkz13XxvJ1ruu/93u/lPe95D29729tYX1+/qoP7pkRgY5dgaBo7WccJQ5wgIppZgH6y0349EWGkhiDAnYksqySNvZMMA5CaIAT9YBOnEWD6GUZaMa43NT+6Gy20g/7UCZxgx+IBpTBKcvLvTLHSv4QpdmjptfuPEHgRpaBM4Jc4NH2Mrzx4kJkLHZqDAafbLpuDgpMXFohmFrnYF8helyRtjdaxvnWCUqk/ukOsdSWNUtWK+CsB+svL/Pq9oLsd+nd8jGLzEkiD2bB3tW5omRcv1FQmFdVrXMzm0Oi24kMkMK3cxlZJjcwcaz+wzSoqZUW7g8FoPvVXzqA6bctcAXJz1Zq+VnxUdwvCAOEK/Mu735W0rEqWQyXAdKX9TM+1zw2G442rBPVplJbcuXRyxE7KpI/OE+aq04ReyHqvb+1HUoXUhq3UZTa2H+jMTqI6baYbVqSfSCgffhpKG0QQIodWGiMz1ikrcFbaRcucRqlELOBM1+XE6oMEImTjaIrvwlYm8F0roq/e8wBp6FIuTfGpL/zOFYeo8lx+79PH8I9WRuwNYIXZ3R6UrQ3J/sYsRycUrzhyLUrbOVda0iuMZUKBidiK+ueiWRgkFAbqcYM0jdhIDIEX0h02oJilHiiN5xpSae0UBnmKU0khLWgNNnGdHZbE73lQtnE+pSCGVJH1HUgVH/z4z+P3UjZSB8/NMfkAPIFczlBphpLWfsZpBDiNAFFtgNSYPMV3DCsDh8VLGY7vc3LdMkU6z2luTlO6zPrBcw2dukMvdynFk/SSjSvm86G4Zt+L+MqJTwAw9TBfmXmRQaooul2cbbX7Q0XmrmVhkRonFgyygGp5DpVb5qV+YXNn4V5BvLgzb5sz0O53rTXKwDJ7a710Z/GqTz/Zwg8NgRcQbBOVWqFUvotleyiUEsTCUKvMY7IMf6hrf/mzj9NMd3MBSlorDfUQE9rJlsRIzafv/A3Lll8mjneFwsgCN8mYnbZmuM5ESOCHO2L6y7DdaBDOLOANmzA2W2euWM50uji+w5mOS/t7rWlst3CsnkqCHj5GqPiEw++oL93xPpSWxMMpdhqWrRPTJVBqV1wXgCwkeePhmbMRIgHZ43Ttf5Qwj1NvNtacPTG4KkYqKysrvPWtb+XIkSNXY3VjjDHGGGOMMcaTAG302OfsGxCP+uKs1WrxAz/wA8zMzLCwsMB73vMetNb81E/9FIcPH+Zzn/scv/3bv/1EjvWbAk7ZWjrQK0bms25cxuQpraSJWb0sBkkqqz1QakfrtO27IAR4Ln5o2TS9nuNENrxbG40/MUsnTVio9/Fdg5EaE1jDVDeu4gQhXlwmLPdZ6bRBarzhXeZEWxMHZVwNUWANVxvnA1pbZ/ncis9aIugWDkUa4QiX1cTBi8skl9kynLv0RUphzsYBa9NRXlq37MlkHaccotdza/g4SDBD89xtbMyVUN0m9FNkZkPCnfnSqKWeVFl9mmdZEr2e4noG05X2+UhAliMOH8T0E0yWY/oJ+v4WyYm7kK019OrqTkB6r0AnfZxyTCCu1AAhPMtoAk7Vs/sEtt1NydtN3DBGK4VwPS71PNwgpui1UUkXoySBFyG1pJk56EEfk0o812Ergz1lZWNmSjHJibuoBookhkS6KKOtGa4LibIMwnzJBp/PTXQpB4Lm5jS93iqDPKXkGU63AtYTyxoc3rfE5tAGYGloWPy7f/w2ygO1i4W6HFsTPgiNM1/B9wNUOjRGXRlg2j3opxglEa7H0ZoiPXO/DbnPcnJpGRg93J/10hSe65C3N0BqEglxUEFrwfpAkMuMWBhMs0WxLjGBjY7aSAwIgdQGsRXhTMS0kyafu/sPmCzbzyglBufAXu5d7VKKYmtGrByIBEpLBt01VnoB3jbTJRXbueSDgQ1WLy7YJ8LJeUgVotrg/pagmXp46zaep1s4NjIMuP7AJSLPsLI5ib8vZCYGp5JSCTSt7sVHnNPLkebdv3aZbRjHo9NrXvF8JrOhxYcesWq5HCB7TbYySJPWaFm9PMCZjqBtrSzmlg2lMB5+v3g45Zjz3cusLDwHrRXhUHM4GIAr4MGm4siBl46Mhh8Oc9WEeiSYm7puxJQCTIbQak+MlqtVGjSbDv38StPe2prVlsZxw45xaodlum6mj+P5qKTL2sYSQejgLFbJi+xhY5BKQZnFPcfIVT6a93uO/98rljNnL0EkWG1VeccLbPyU50KSttDSUGSO/a4dwqmEI1Z5/rt/FIAzXXt+OaFl8NypMgiBSHYbDSdpQqfmP+IcArZCMht/7WWuEh6v3mzsc/bE4FFrzn7iJ36CT37yk7zpTW/iwx/+MO94xzv48Ic/TJqmfOhDH+IlL3nJEznOMcYYY4wxxhhjjL8VeNTM2Qc/+EHe//738653vYs//uM/xhjDsWPH+NjHPja+MHss8AMox1YzleXgCbyJWbyJYfRRKm0kS7VhGaJyNNRPGRvRFAmcyLfr2O4anAhsfJHUltFwXNwgYqkLx+o2pNm9zmacGCXRSRd1fnh36OdIbY0cs8u0JAEe2dYKpeos2mg8aWh2LvDFdcFS32Ut8dh34BxGaWo+tPM2G83To/d3e5sjs1CAu+//Q6tD6tvusGQLpkJj56DTwwwG6PUUpKF3rI3cXIVyRFRTjNJWUtspuB3d5EQeuqsw0t7Z2w1ycSIf0+4hP3e3ZSf7CebSJr1Lzqhz00iFU61axi4S6PVNEAJttI1X8iKrVxEeXnVy9HlIQ3Fh2O3V6YFSo9gr2WsSeBGeawgmZ4b6Phvn1MvaKK1sd2W1julKqpFlBKSGZ83mmGYb/en7eNmCRAuoBnb/TsR1sm2GSUmePZsTGcG+ima2Osfk8TJaK1b6mpXEod8v87z9h+hlbV62V3Kh5/C5VcGFngvKZXHPMTpVj+wRGJw9lwaIXoBZ6loD2ihECBtfZdZaVm83ZM5evL9G8eAJDtQkpp/QGnbnehOzoBSBCEYdmWalh+dCybeMwMW+IPZLSAP6/vNoBa2pmKfNzthjcrPHdHmCMAdqFeLAxihtd8W1Jw3VG5+P5xo8z8fZP0Xat51u/5+3/Al5MWDt4iJSOoShAk/gD8OpwxCKZWsGbJo5ic4wUiPiKp/4yiGSLKTbW2XQWuF814cwwBEez5pR3N8U5GmMM19iulJDD7tGz5z/AoFfesRTP47KTE/uodPb6Xb05COUgyo+npvj+gFztfWRYSzAjcdeaoPvkyGj5jn0ujX6g02MkkyG4FzGbhlp12c2LXPWWO5SDLWpblyGUszF/s7yUjiEQYVSzZ54SoEfahLpEEzvoZM+TLfjEPMlQztVtjPSE2ymdr63MtBq5zOCIEKF00hZIB4S35QlbfAEeT7sdB2acAOc63hEM4uEMwuALSBQ2230ezk2e6ssLZ8glxnLa18B4NS5u65YzvQynImQzuY0tx24xm5L2SXJWiO2dRdqFcrlCQCSIcG1Nhia+gqPXEnIJZTiXd2he+YOMcgSNvd+DedcwLSyJ82I1pYmx5qzbzQ8aubs0qVL3HDDDQAcPnyYKIr4oR/6oSdsYGOMMcYYY4wxxhOL7fimx7UOxpqzq41HzZxprfH9nTq5EIJy+ZHvWMYYY4wxxhhjjDHGeOx41Bdnxhje/OY387rXvY7Xve51pGnKW97yltHf248x/no4YTAS8Zp+goirNtOvvw6Rhzs/izM5betdYYCYmoGKjxMLmAitlcFQoKyGInF/xpKgJrMcvM5TznU9vrwpiD2Ds2dm9PlGScwlWwIRQuG5oKUhHpabwkwjE2v5YLRiqXmGMNckWYvVVpV2Dql0iDzNVro5NA2VnL34+dFndHpN+rnHzCVbSjl78Q4+t3S/rUMoaxp7oCrtXGyXZ2MBnsP++TVr9bHaJu0MSyHbuZa1sp2D7SzRyMUZ8r+bDwzLAOUIp16Blb4tm2Y5rAxIOgLz4AUral/fItxzDWpgS3tOOR4JebtZl9iPSfIebhjbnE+wY5caEQ2tH3oZ2wGEjvAJ6tYuY7akuNg6ixtEiLiCI/yR/UDkOYjqJE4sCERIzbeC86dVF2xW6skuT58xeDm8bKFgkPepl6bIZUq3cPEmZjlQD3GDgMWyIZcplW6BNopLfY+DVc1kvUNvaGsiNaz0ApqpoJ36oFykTOlNSta2Tj7s8SkDgRZgUomUBXFctpYtzRxz1s6XiKtUvDJTlTnM+TVetT+DfsJSV49ep2yPp8nyLKrbxGykJNJB51YgvZk5VKIJurkLrRw9tFQodROb1bkyYLa6h/LAliS3DUV9d2iREMiRZUepUcXZM0Oe2eaX1m2reF5ItBWglMvcvMEph/TXHEQUoiR01z3C179m51jyXGSvic7tOrVRO+VBT6DyjE7ustRzcV2Fc3ieSljHFRrfNeyZPWZNSx8BSdpnY2uZLO+NLB6EegTGIVWUy3Yug9DBmd8RxS/OP5P17rK1GxkijBI+evt7hvNjiGszfOu//3MCP0SlxppZR0ND2b612XCmqjjCx5ua43T3IXm63YsUmUPsl5HSIShrO+9JzvSwnPdwmAyhmbmjxoht25F27hBGO+W9PLdNHXlr+Yp1FMUApxwyP32dramqne1U2qUn+/zKHQ8O1wNED9PEM8TdKy2eft0ryGXKg+dvB+Daw8+9csFeYWUkyh0dU6FnLUVcYbM1pxZ3MkPJcvJhM8PR+zu7ViUqtglKbQ5wwhAR75AYoV+mnye88QUPPuKYAYp1OdpfTzQeb6em7dYclzWvNh51WfNNb3rTrr9f//rXX/XBjDHGGGOMMcYYTx4MGvN4y5pjK42rjkd9cfb+97//iRzH3xqIag0yawDJWhNqZYrWGiZPSUsuSE104AYGeR9ShTMziSN8nLkqZqmHs3/WiuqrFWCVqKQxGylOxcf0MkSpTDfrIrpbJNJhs1Ph6EQbZ3oKdXIV97URThDjRB59k1EU9q5TZYzim+KBJF87jyN80qTFb38V4m5G4MUkpxc4Cxyrtzl757WIv7MGQC/rsLJ+fte2Op85gAosY/TCW36YffUyzp4ZzNIKpRtLvGj/FKydwrTSkdmkE3n4rrVRIFUo6eAKa5lhegVsWQE/LYlJJSbVOB5oZSNmTCrh+Dqm0rKD2GpjNgaYXoFSLmZjgIM17nVfE1Hc+aUdsbUQdNM2NVHGYRjbQ2HZtSjAbHUxicLdV4bIGzVmFL22jWoSHv28z1QsuNDus7BnYWQKqvRlBq0lzxoIexHQtiyRkpDlOJGL1AYZgNQO7WSTPfX9JEWfyLPmrpkc0EqaHK4XfHapTRHuwXUEawOX2ZLmYE3RyyzDJbWDcDWzJcWpzYio57LVWqU8tUlfP/wX8vl9oTV+bRrSbpeoWkVJrBXGWU35RkB4JMtnEKUaxRc2Ofq9NUw/o+pfZjcQBhTtJl7SpehZqwzfNWilCKOEwchf1b7H9QzScyjWLtALpwh+4BX0Tt5NafAMnDCgGlbZM3eI+djG/fhRCiLmVNvnQNU2zgShAxheebDPnZU5kkTj1RoIb8MytkMmR3ggPEM0u4/2piLQ0jaGZJbdKfKAXusM11z/KuC8tUzZvESiYK6kWQLE/n0keQ/Tm6TQDvXqXrT+2kJvgH6yNTKI7pce3pbCrAzo9wWIITkb7rBDrc4S7XSB+pBZcSIP3x+aT1caFHqV4zfWOHjDiZG9hH6wiTNtmUzX9az1SJZjVIF78FrO39kerT/KNM3OEn64d9eYCg29zjLCrfNIqAUaqR1yOYAgYHAZI9fv7ryv02vizwbsvebKH/Vm+zx4gsX5WzC9L+Pu2dn2cmBZ+s+v+uzfez3qkRoqhujmLnFY51J7nY0ty9I95+lv5Pjpz+9azrRy8Bx847E+sA0bmSxody8CPn5oqD23BH+4vTEpm81VANaWbaNBNIynEqUa5SCm/8Aq03GVztROk0i1Mkey1Wd/9TIW7mGQdq6KBemjwrao//FgzJxdfTx5R8AYY4wxxhhjjDHGGH8tntIXZ5/85Cf5ju/4DhYWFnAch//7f//vrteNMfz0T/80CwsLxHHMS1/6Ur761a/uWibLMt761rcyPT1NuVzmO7/zO1laWtq1TLPZ5A1veAP1ep16vc4b3vAGWq3W32jMRkmcUsnaMoS+1VblKU4Qcd3kNZBaa4ZqVAfPIdh3xGqeJuuYwuBMT9q2fs8Dz8X1IFnaYUAc4ZHLFMfzKQwk/QqbqYNptug/sGo/X3hQq6C0JIwSUgVpR4xMaP1eily7hBNEGK14sOXRmoqZbhzhmvtbdNZm2cpg/11LCNcj9gyZvPJOsLHcJVk9Z/9f389keQ6nZO8inWsmCbwIk+Xkd7XsPHRt/FIz9axODMtuBGU9MuA1Z9uWsWJobYHVqm1Lg0xX0rojJf1iC+faGfu+VJKtSIQwNhKrl6HXc4rWGvrLQ82LEJgsoxrV6Z++B2WsES9gQ82FgI3BToxOJcCkBXR6FK21IXNmX6tGFe5aD1F5hs7TkYall7W51PPwKg1MYdmfWmCIhSGoT0G9gkk1HzrnY+J8aDVRxnVcuqnV7qlBl2tmjtHL2jRCy4xlgTuycPCdITPkCvq5pBEqKoGy5q9hRr2ryIsMWQSkWZupxtwV+616+ALXHDyHEwl0kY/MNlVqaK3s6GCy//sR0nvvQGUwW10Aqbh1/ugoLHtbj5cfvxe9soZW8IrFDBHHCFezlbqcWh9G6Qx1h/3YxY3L/PKnD1A5ejOq2ybsZZjldfJ2k33zz2R2GOJddCq0kya3L/vIbgpBwMSMhlTxiYsBju8zcfISpr9JnhmoVdDSwfctE+OFGicIcAXWPHcitPtxqDlL8x4X91mtlxMGuGHM3rLm1mlJbaKJUZJe1mVyS9NMXdTX0JtdjkLuaK/q3YdnLOR6jlIuejs+q7ajOev0V1ju2/3rRB54DkVh51wlXToFuPU+c8N50gprtpvaz9q6fj8AppVglOT3v7pE/+S+0fqFMlz/Mz+PKwyVqE65ZNDSoZkJ7rjnd4iDR44eioU9/rZaZ/Gm5lkdhoWfXKsRX7yygWz/DTlFtlvv9md/9S6oVZiaOIRTCXEaEzvzoh2E63FkQlIpTaMU9jvxEXC4LtkzcyOn2zs/deHs4sMu60QeYQ71wu7/dqoIggqOhzWgnb7MJuUy+47t/d7Lh6biQUQradPa3KJ04HpWZ3cKVGfOfwHP85H6a9tkaOXsmF0/wTD6aiQEjJmzq42n9MVZv9/npptu4r3vfe/Dvv4Lv/AL/Jf/8l9473vfyxe+8AXm5+f5lm/5FrrdHX+nt7/97fzRH/0RH/jAB7j99tvp9Xq85jWvQV0mQv3+7/9+7r77bj784Q/z4Q9/mLvvvps3vOENT/j2jTHGGGOMMcYTiauSEDC20rjqeEpfnL361a/mZ37mZx62S9QYwy/90i/xkz/5k7zuda/jxhtv5L//9//OYDDgf/7P/wlAu93mfe97H7/4i7/IbbfdxjOf+Uz+x//4H9x77738xV/8BQD3338/H/7wh/mt3/otnv/85/P85z+f3/zN3+RP//RPOX78+GMesyM8nCC0TMFk3WpJhI1dSpZOQiSQSR+TZphWjldpWM1ZrYI7EyGqdRtYvL45upvurns2xgXLzOUqw6/b7syiX+JCJwClOHfh7CjomCxHaYlWAs9h191rlrRxqlUbAu2X6HSrSM+hVltgefluplZcTrY8mJ7eeY+88s5Jy5zBMNIpCCuIbg+TZbZzNCu40FyCNLfdj8N4JJOqkXYDz8UVZocVK4yNcSpHdv3rKVoanIqPzBzCksbxHbK+S3/Lw1mct8t6LnnfJa4N47BaOSo1FKceQK/nmJUBCIEThrga9MZOeLUb7ESomFaOSS/bzu0uU+Ehe02U0eQyZb68QKIYMWZeXEbqnfepQGBSjXA9GqEi8hzS9aXh/jKjsOi9ZUXgRTjD+T1QLTB5QrFhg9uF6/Di/TX6JUEYVvnSukdhHD5938HR69VAk0qXjUFAp1slzO04KifqfOXEJ0a6mctx28EeL94jYSLE9Xd3wvnhzjYX97YwF1bxyw5OIWEjpXfyTrvNlSqUYorWGu7cHPQTZOZwzeQkK50lhFCk0qWZQezZDktXQDHfR1QnmTxeZlAkkOcMWiuYVKLzBE8E1Hw7Bj9xUVqy0bTdcXR7VCYVuqu4ftIyuUsrdxFFGiVtR67rWcPaesNBZi7aWM3iRGnKajw9nzABrQW9wTrudZds/FUY4E/Pc8usZn9VMldNMBub9HNJeaDwXXBd8aj8oo4eeNno/3H34UPEVQa1msT1A4QAsXdh9FopmuTzaz6n267tGJ4IR5ozsIfl/r0XmY/tD6bMHKthGjLN3b0ZG50tnAl7bJ9ouxz88k7XZLWV8tpnXBz9HYRWD1hoaHYuEnpXBoxfjk7hjuZhrTnssL1nnr0nN3ctl3a7xJNXfm887+bvQexdwBuee6ZzWbTbcF8PpJ0HJbHfiY+Aa+cOM7f/mfzZ+Z3jWAZX6vycSIxMX7dNpQHy3DLWrgcMu2OnGnPgCV5wy98H4PgZ+1uh9JAl7NlzuT3osD5YJb7Ms/fowRfii4BEfm3mrLn8qOXgjxvajLs1vxHxlL44+1o4c+YMKysrvPKVrxw9F4YhL3nJS/jMZz4DwJe+9CWKoti1zMLCAjfeeONomc9+9rPU63We+9yd9uvnPe951Ov10TIPhyzL6HQ6ux5jjDHGGGOMMcYYfx2+aS/OVlYsuzA3t1tTMzc3N3ptZWWFIAhoNBpfc5nZ2dkr1j87Ozta5uHwcz/3cyONWr1eZ9++fY+47BhjjDHGGGN8PWBLk/JxPcbM2dXHN+3F2TYcZzd9bIy54rmH4qHLPNzyf9163vnOd9Jut0ePCxdslqVREjeuAuDOTOHMzyA3V2zWpfAwrYx885IV7i+WEUGIW6rastsN84Bt4QdsBqcwxLWhmN6zBopJPkAEtvTg9zz6/TLu3BzLS6dxwpBi6TTOZJ1eZtm8yHPQ0kFut/cPNigdvgm3VKXYO4fWgq1Jl3SuwcXVLzNzqcfSA0dpNQKUlnRzl4X6DA+FG0ZkQ0sHxxWkZ+/bmT+p+cSSj/6MbRigHOMM63mT0XZmaGTtFTJrpYHU1kwTrK0Gw9xAz8X1DO31HWNeP9SYTm+UQeoOGwvMSs9aJiigWkFLY81tlULEVWtpoXY3WBglcTyBEwmcaMewdNskUrbXcYSHcFySok/e3qSTO6N94AiPUhAR+2US5dBL2xR9MzIiBVDdLVhrEtQdXnNYI4KCVx5ZQGmJAZoZzJV9VGsLR/h00mRUSk729hFxmfW7jnK26yK2IgIvxHMd1hJvOCc2D9LP7LY9YqYjcKReWGG31ETVKsVQo6myYYapEHjVSfrrApMWiH0l3MCaCZuNTc62rVDe8TxMnqBbTSjHeKGhXpoaNTcALFY9PIeRzcPs3LK1JCkJTq2fwWy16fRXcSar6CwhDCqjsrcWoLQkT2NULjFZTlDSuFXBkboGpVHDYESlgFJsj/PLmlcymeHNBAjHhUqAV2lQTuz6O/1VbpjvkEi7gtZgk2tmjlGPBMfqBn1mGantPDYihRABrc6FR5zXbfQTWza/7poX4OSPbGGwfRgKD/yphcuez/nMZ6+jmVm7GTwxKqmpbpNCO/zks4vReeSFhqQjLivDK3zh495wFDO0ejl1/pM06lam4ChNcll1NghBS4dqYEZ2FI+Ekx1BOizZ+ROz9Fv2xneieWWzhC5yjGRkPryN2df8MMHsAVp7J654T9avUA2rXOgEuK6g2bSmzo+E/5e99w6T5Crv/T+nToWujpN3Znc2a6VVQgGRRDAgEFwDF2FsQPaPYHzBNlww2CQbY4JkMAausbnGCWMwcI3AYMACgUAkISQkhNJqV9qgzZNnejpWVzy/P05Pz8zOjiTQanc0W5/nmUfa6uqe81bV6an6nvf9vpYfsfvsPIdvO6uzzTie8W+fTn+IJDSUzytf/PfkbAPPX7DiMaWNc6fL44icS1dBFxbM2XI0GrpI4N922VjSJogjphqz9E/NL10P9Z9LGAf82qalhThzdJf6aDUEyJNVEBA/4h9Sn7MTzqq9ORsc1Dcyx6pbExMTHTVtcHCQIAgol8sPus/4+NK8nMnJySWq3EIcx6FYLC76SUlJSUlJSUl5KFbtzdnmzZsZHBzku9/9bmdbEAT86Ec/4tJLLwXg8Y9/PJZlLdpndHSUHTt2dPZ5ylOeQqVS4dZbb+3s87Of/YxKpdLZ55dFSG2jIfNdEATaFmOiTOLV9JMwaMXs7A261N92EaaJGOpH2G6nPYgamcZ0lC67dueTXCutkMSA6ZbACdAtmroGMI0AIU3ib9+N6Otloq6fBHO2SRyLjpVGpTaC6bqo3n4ObVM4GQ9lR1QKJgdHbsevlylWFL5t4HoRtVBfRls3XrQoTj/vYLSz+ZMoQJUrWg6QEmZbrHFjGgdjrUZFMWQkostmfU4/hYlztuJVtcqlWjFBRYFpoCrNRb9HtS0CvCYktZjIF2SKCcl374NKHSKFU9SFBaoeIgbzep9N5yDzWhFTkzNaogDUxAxREmFjkgQehu2iohj6Mp2CABUl2sYgShDSxC714ccBQRRgl3rZO2uSGCDdvFbj0C2HTEOb207sc5CG1OoHuv2TmmqiIujJ9WMYMTnhEEQtKp5+eGgEEbKrh9a+e8iYkknP4OYjFUwrwM87DI37/GDXOnpmY6SQFDJ5aoFWJaaPriNJJOaDKDVzzPiSWmgQ79GKmWHZBMFihcMutVMBWjEM5ohVom1Gsi5RIsjaOVQUEY8cRc1UEMU8dq/ExmTai4ljScZMyDuF+XlhQqOZJZqdoN4TaVWqWtfu5e1WUFLaFCzFpRe/gnxdXyemFWAVMsgN6zEdhQoVPzhqgjTw/ArZbNvVQ0pCf/4rz3QSbSJbC2mGHiJjMpVUMCOFZQXYZoZmBM123HEScXB6L0dqCetyMSJjEiVgHR0nTATr1lywqH3TpuHzjnt8vZY2fDWlrVWH42Dl9O9MwoB8T4KQ8xYmY9P3EX/1/7GlFOo5U8rSqM4nsY81Bf2FIdbm5s91s2p0zJa7erRyZ/YMoppN7jnaza5913fmqp93cKUuAqi3Ksh2onyP89DFDtffsZVpXxCGHs0FtSRGnFCZXawqGpaNmV+6+hBtn8CwM4xv1Gr5QiXbLVRoTY4wPbmGW+/6KoEq6FZhy5AELc44737itQsVsKkl+4nePLRizBhs0+HoC9aRs23iOETmJUkEanZeAVPR4mbh0jBpTOjVg7tv2U7OdsnZLgcqYolS53kN+PZ1y465q9Q2/y2enN7VSiUnoFrz0VvW/J//83+yYcMGMpkMQ0NDvPKVr2RkZGTRPocOHeJFL3oRuVyOvr4+3vzmNxMED8/aZqVy8kpCHgXq9Tp79873KNu/fz933nknPT09bNiwgbe85S188IMfZNu2bWzbto0PfvCDZLNZfvu3fxuAUqnE7/3e7/Enf/In9Pb20tPTw9ve9jbOP/98nvOc5wBw9tln8/znP5/Xve51/NM//RMAr3/963nhC1/IWWedtXRQKSkpKSkpjxHmKi4fCY9m+6ZnPetZ/Nmf/RlDQ0McPXqUt73tbfzmb/5mpyAvjmNe8IIX0N/fz09+8hOmp6d59atfjVKKT3ziE4/auB5tHtPK2c9//nMuuugiLrpIKzZ//Md/zEUXXcRf/MVfAPCOd7yDt7zlLbzhDW/gkksu4ejRo1x//fUUCvNPWn/zN3/DFVdcwcte9jKe+tSnks1m+e///m+knFeivvCFL3D++edz+eWXc/nll/O4xz2Oz33uc7/SmA3L1UqKY5MEHqrhoZpNbYw6NYXyYm2XIIFCHtW++1e+rxtzt1UYkXM7pd2hLxBd+jHVcAuMNnQbovGmQbEW4TXynadLFUf4B3yU73Pn1PyjbX1m/lKYnNnDaPUIY5XDGDKhUS1h2Pr3xnFIrT5GtSSo90TYpV6qgaDuV9l38I6l8bbVuDgKOs3ajUIRTIP/ceYGIt/A6LbbxroGtGJcU5HsPYLZ1UcSCUxH5z8lkWib0cY6TwyQGd3yyatKbFs3cG81BGaXJJyMUI12zpE/v+98s3Kzk4eDKTEcV2/LuZiGSViv6BzBrD52ojdP3NLqXedzTEPvY88fSyENpiYHqLUqGFJqZU1qFSxKIGvnKE/q3LNpXxAlCmHrnBej22KippfRg8oUsYopZEoULMX/vSeD2TWAGp2k5HZTCwx2zZqYVkAza2LEirClbUakYeJaOcJEYBoKEZgUumZQTa065vcvnzt0y7gkTLTpbBgG7fZNC758TYmKEwypIG8jMibG3INz+9gaCahyBTVT0edLSoxtReLApxYYZJ0A01DMeu22QXPqZyNPtOt+DDvCMXU7s6Hhi8EPkNkiGVufi77urfTddxQvbHYaahtuAWECUcLlwyGJ39JNxuemcq1O5IuOqW7kGwSxT1RXVLxpyLq4Vg4nSDBkTDbTQ7klsQwdl2vn+X/3G/xoxKE7E0MxT6Qgin0mmxLbzC76I5fPzlvNLGTD0OMBnYg9Nn7Pcfexf/8Z7csrIIm0sekctdo0uw/+sPNv0TOvmqk4pBUZ1P1Kx+hUOm1RONJ5jkXXpxF4CFOrcWt/VGBs8hBW2yLD9kKqoVZKg9hHSrByqvN5fnR8+w+A0pjF4bqgr3sLE7VxNuzR75lY4zIyuTjWfHcPxvk9nZZac+RyDVQc0TvYvkYXtK76n9uniWYn2LBu3upj4bE5FunmObc7Ydv6eaVlZOLuJfuJgR5UK6JYi5isjWAYMRt6thLHAaLQVtQXJuI1PI6MzX/fxUnE9l9odW7Nz3ZhSZPeUg9f2O1iefMKjmk6hLUa0fcOLjtm28xgZegYcT/aJCdCOXsUCwLe+ta38uQnP5mNGzdy6aWX8q53vYtbbrmFMNS5o9dffz07d+7k85//PBdddBHPec5z+NjHPsa//Mu/PKZdEh7Tytkzn/nMB71jF0Lwvve9j/e9733L7pPJZPjEJz7xoHfYPT09fP7zn38kQ01JSUlJSVm1xHG85GbIcRwc58F98X4ZZmZm+MIXvsCll16KZemHi5tvvpnzzjuPtWvni2ae97zn4fs+t99+O8961rOW+7gVzWNaOXssYvUMaiPagZ5O1aaz9VzUgRqqWiduKaJDhxirHNa5aLSfDKVENZvIQjdxvdxRKJxcjFeViOGiVjQCnUdW9yu0IoNcLaC4L49d6sY0500piWO+f41elnXtLF4Tputasak3J5FCMlhaj5OrEzayCBnTdLXqUKmPYJQaIBOO1g5RDaHaWvw0/eQLfwsjVkzPHuhsE329qNFJbezaijBmy/gNg6QcIIp5yEhUK6bHSWCsQRJ4dA+HukLQNNqNzUOY9XWuV8HEKMzltAmdzpaXWI6ivEeQxLqqUrUiMttzGAWJ2FSCOCbyDWKvpvOkuhxE1kVFIUIaiJ6SNgFuq5QqCnXeiyl1jkxGdo4/WRfDzqBi/eQYJQmxSggbWbywgbBthDSwzQxxElENDAxhINuVhtMtQSvWzZLFuq6OAmpnPG6tzyKFJK5WuHD4XDYXde6RsXUjQezzmbv62V81sOyASkHiZU2EZ5PfP0oQ61ZURxpCXwd1SGKJMCTPf8Zbl70+u0t97BntoxoKgqZWPVq1GoGvc5C61s+rB6ajEKUsqu4TBz5q1keYJrWg/bXiBzo/0A905axpkAQtokTQnYmptCzumRRzIiiGKbAzHjS1EjblaZUytk0w55Vs0wDHLnDfA9/h3kn99NyarpHbeFanerc/GzNbmc9xsh1QMxXiuK0mScgU4858mGtEPteyKwxsLMvFNBTDuQT8AC+o04wElqF0g/eGhxcJTOlQCw0MQ3bytvTvWGzgO0dhYDMA41O7ufHn/3TcfVqbt2BKME2dUzpX+QuwbvBsSvkhXVFrSsz1mwgb862FokQwVa/OK2d5qVVO9DW3JpuQs13MfDfYNkfu/6GOua2IiSBirH3upZDkivq9E55keOhMxiqLc8cWUlunP6NU0HlTsq1MVwZDcm7von0taSMGupZUa+bsiGDiIGsKbffWBasYlwwExLUKj+/X586I68THMZWdwzMiTAOevGb+uv32j/9myX7mpjMgUpixwpYOSSJRQcDY5CGEaZDEYr51W5sdu3+4+Hc1tMluEDYJ44hsd4GpyQHUgqrLgS1PpFRo0ZhYvtK/r/sM3WouemRLjQ8XdUJMaBV33XXXIvuoUqnEhz70oRMyxne+853kcjl6e3s5dOgQX//61zuvjY2NLSnO6+7uxrbtB7W7WumkN2cpKSkpKSmnKUrFj/yHhAsuuGCRfVSlUuFP//RPj/s73/e+9yGEeNCfn//855393/72t3PHHXdw/fXXI6XkVa961aJVs1/F7mql85he1kxJSUlJSUn51Unajc8fCUoppJQP2zLqf//v/80rXvGKB91n06ZNnf/v6+ujr6+PM888k7PPPpv169dzyy238JSnPIXBwUF+9rOfLXpvuVwmDMMHtbta6aTK2UnGdHPIbBFzaINe3uwucUhVdbKpKYl9FiWCCml2ljTMgbVIt4C78VxENgv1EL8hcbKJXubLmGQ3ns0vpkziJKbRzCJqdXqmWjRDTy9rxjGGhOITno3ctZM4ltjSoTKj+PoebQ5aqY/RY3aRtVy6SrNIVy9VZD2FYUiq9TGMyRybdymaQQvX1H0cFzI+s5tw9BBbhrXdSBT75LddjBqZIfZqiOEiSVc3oS+0PUV7KUvV2gahUYIKfN13s7298/0xt7wQta01WpEu+68qVCvBySmqk1Iv35oGyWSAecVTUV6M9ZSn6P2l0qazLX3s1Ogk0cwYkechslmC6RGENDFsF8NpF184trYsaZvPzi11Jp5OYLbby1hzCdNe0CSIAyLPI04ibDNDlOgE3K7+hFjFhAl4kegkNat6yFBpHblcgyiBUra33buzxnAuIW5WScYmCCKfwa+FVFoWruPTyifkagHKDUhUTBD51FoVbtuzniC06JkNyd82QBR49F/03GV7QJYrU6gDfeyvCvyGJG75ZAoFpKmXjoWpr8+wXsEpta9VU2qj3ryF8n1trTK3lFMPdFFGHCMyFiqOmGnbWcyZduYtbTKcRIpioQZS4uTq/HhEF4o0RvchHHu+V6khyGX7CEKPA7X558t7RnYSNPX15EpFoznFngM3EcdtNwY/0MtFbaQDeadE0DRottMBgsjHGdVWC2HoUbATnjwYgik5WJ7haF2yvyr1Jdi29wjDJveWDZIkxg/mDXbv2nX9cY/x2Foddy7bQ7my1NYBIJ/p0rGaSs/vBVimS87tIWfrwhRnaAuybTYsCz1UawXWlvoXHRvLWZqba+ULmF197GkXF/i+noNeY5othcX7G6agGggef+4ruGN8+TzfYu8kXiQYmbibLrfEgU36u0vaIW47pjm63AL4wZKCAABhu0w1bW1Zk51fst3cuxZqdX7zLH0M+/uTB11m9YI6lqHYWgqX3QdAZgud755YxahYksQxA33D0KVjMIbm++zOnfuFzNmi5LJ9hHGI3ZcnDm2SBcuajYJNNgv18vK6iGFIpAmq+di2gngw+vr62L59+4P+ZDLHL/SYU8x8X3/PPuUpT2HHjh2Mjs4XOV1//fU4jsPjH//4Rz+YR4lUOUtJSUlJSTlNmau4fCQ8WtWat956K7feeitPe9rT6O7u5oEHHuAv/uIv2Lp1K095ylMAuPzyyznnnHN45StfyUc+8hFmZmZ429vexute97rHtPl7qpydZIRtYeVLuEM6KdjI5hhrtC/sii71F8U8/YW1qGoNIQ0ir4EslDCyBaTt4BmRbufSNqw1HYWKEnBsDlX288Mdm6m2fPyWqy0sanXGKodxbG3JYZiKYGYSgCTRFgH5IvznnbodycTUEaK6Nj7dWIzIZOvEdZemK+jv3US1PsbwiI8ZxDimxbPX+XRnFxtB7j90F3sO/hDRTpA2pUNLxDDVQua7EUP9fPgWXd7emBAke45A3kJF4MUCVQ9RzSbCpKOYlQYjbX3RjlvbaiSoWoQhoVwWJJEiiXQLJzurIKufcFWs21vJbAHqgbbnQFtvYBqLjC5VNG/eOde+CVPqkv6MRPQUEAM9Wq3s79GttaSJF3pEiUIaEhGYVFohjrRJ2qqMbWYIFTSDBmsvmH+SrwXajgMpEaZBJoS+bEC3o1AzU8RejXB2Qitsjgt+QLXl6ydsI6HRzIJMiGzJ+o0H8TeuoxEEugDhE/9Gq5Xh6JBFLAVR7ONOVqnVl0+UNWO474FNNMoSmXFozkyTLwh93VT0MQ1nJxAmqKkmwjQw3RwMZnXiP2gLmIYHeRvqbQXAsVBxiBcJ3f4okeypSq269mUwTMHZPSHGWVsIWi47phxwbHbu+zYqihHSxLELtCKFKW38sM6MD41aCWlb3D6hFU3RfuQcnbwXKeWc+wxECXEsKOa7iWPd+itOIuJIUGlpeW20chTfr9GY7sXztc3HmkI3SEkt1Cru5K1nMukZHYsHN9eLF4Hnz3LrXV/tHMfzznzmcY9v09WfE0atZc9BnETYDkSR6BQxzNFolQkij2JGX9tRvYzVPsSJ79Fq5unK9nJ7u50ZUaKv97aZbDOCRuARqwR7YAOV2lh7vM/jgrMvx7ayuKYibFuNtBqi07as9rKL8eLl83ic29ZStBVB6OHaeVTbgiep5DDE4sT9bMZFHa1gHJPPP3PzNrLD2yjv3ALt8955TwCqoT8boNQtOmbaxyOIfaqhmPPfXcSxptlRXeE0Q8aqFUQlgyElL3zmVZ3jthBRzC/9XaG2qUmSiEbQ/v/YQC4wfo6lIF8UJA/iBe0H9fZqyMkpCEhUckIKAh4NXNflq1/9KpdddhlnnXUWr33taznvvPP40Y9+1KkClVLyzW9+k0wmw1Of+lRe9rKXccUVV/DRj370URnTySJVzlJSUlJSUlJWHOeffz7f//73H3K/DRs2cO21156EEZ08UuXsJBPEIaEEw7ZRQYvclsdxqGYiXIlq+FrtMSWu4SC6u1BAMHEQIS3MfDdJHFP3K9pUNm/h5GK6N8eInANRzEitxcYdglakSGL9uFivj7Ol70xKPQJVrSMd/ZnN1iyt8T5cwyFfFBT3zT8NCmmh4oQzSwmZTItM3aDvvL1YpssZG56OEStqR3cTJzE5W+JaS1uNJCrmpl9oqwArk9etcqKEVp9Wm/bOmhT726a6A106PyxSHKjpVjMimyVuKWaOaIUiiYF62Gl6DhCV9fstJ6EVOKhI59dI2W6YnrExui2dp+dK4loZ8jZWThFMHNQ5fnl7vil0xsHI5hCm1W7dNJ/3IHIuYjCrm7R36/HKrh6coa0kBgRRC7Ode+d4OjcqqJQx7Ax1v4rTNvmcrI0iChZ5p4QXaeuDKJuBjI1qxZiuNo/N2ZLE94hmJ0i8Gm47N0cU80hD0GhOUa0V8Bp5RGBy8DzFTKWIf+lRpjyFbWY4NHo7UWhj9FVpZGWnUfGDLWP466vku2b0cbVsrAU5Z3av1FYkE20T0CjReUFSGwhTrRMm0Jo4jJquI3oK2iLl0ATEMXGzhmXAGjfm6VsnmW4JKn6iW5WZMJxTFB/3VNyjObq/XAJT0vRm2tekSS7bR6S0q3ku08NUSxB7DlYhw7QvcNq2D5GCO3Zex0DvVmwH8gWBmm3hNwSe3yDwFUmsz5k0lc4haythlpWlNCnxwwZeJLBNbWXTigwyZkLmlp+xt2JBHHfSHxv/aNFsLe7R69hL1RUA2T70E5PL50rtGDu06N+R1+j8//5Dd9H0ZhitNqCYR0gLJ2grwV4Na2zxXFTRvPp8LFa+0GlmPtB7JudsfT5Joo2g/Wa7mXr7vaGab/20HJm9B/S+kcdMY4JMRT//D41G9PaecfwxOIuXxPZecxWVoEJu22Foxdp6p03s1RDFfMf6JJNTlP3l/4w1gxZhAj3Z+Xn8a0/8XQB6uzZ3tglpkcQgvYBWDF2VhIby2ffMgfl9hueXyJxN29m84YJFv6vW0FZEvq/bnnkjsxAbi6w0ZrqkbiT/IOrj5nVP0Xl4rZOjnHECqjV5FNs3na6kyllKSkpKSsppykpv33S6kt6cpaSkpKSknKbMtW96JDya7ZtOV9JlzZNMo1Wh0pym5tcQdoZ7p/Yy09LLeNQD7UBv20Reo9MHUUgLI1sgCVqoOMK1clilbgCyaw2M9TntxG5KJpqS8PADHak/DJvUGuNEnkd3vwI/wOzW9+RT5X0UK4o48MnkFMXq/HKhXertOORLGZPzEvqzEV2FdaxbdwmWFxDFPtPNEMe0OssMC/H8SqffpteYJk4iRJ/Le3+qW3z0ZyMyxQQ7l6BmatpqIYJi26lCVWuoCGZGDTANvUw5h2mgQkXY0P027VyCVSiQxJDriTrWAaK9VHW4NYroy2BkC4hSFuvsItGhQ9glgXHuFnD0L42S+a4Ahq37oCa+10nOFWtKiJyL4eba/VFbSDePFLoLwJFaopd6Pf1l1TmGhiRKIsIEGkGEsb1H9zm0YdyTzDTGEcU8IiM5WjvE+GwB0zA6/Q+ToMWLzxrSYygWyJiSJIkRe9bQ+9UH9PZKhtaRNbRaGR6o6PdNTB3R18mBAvWeiGarjMhmOz0qj0fYyrCpr0qw4HjPJdXP9RnUNiK69yX1QHdIMAXq6CxeJIhmxmCqpa02Zn3UgVrbHsVjd0U7+EcJZE0YqZvItdpR/khDMFEbpWc2pFGfmB9UwyMJWjSaU9qV33bp696Ct8Bd3hJgdpuoCMotvaR/4fbfxHagNJBAK+ok18dxu6uEiskUY/rzOYzhIRzTwjAkTVeQz/ZRDyQzjUlkoYQXCSoti2xGzz1aga5JCTwqtRHGJncue0wX4i91YVjCX/+rXjLzfYnfEJ3rqPMZQYORhmzbmISYsb7eVRyxaffsov6XYsEj+GD/ho5bviEMau0lOICers04TpFKTS9ZN6sGrpXTHQKiBC+CZjPHBX0Pks0OlGxFIdvP9QcSNuzU59BtRh2riTmaLQ9x5uCSJb6de26kkCnxnE11nXIgl2oIeybbxURVQcFe/sYga2c63ydzmG3Lm2J+sLPNsDNIB+rVUUwB1bxBELW44pJ9kLH0XFjQwxRgTc+Zi/7t+bOATufI2Vlu/flPEIEJC7qnhKUAr8kSe5SFFItr211RHrsGqimPnFQ5S0lJSUlJOU05IVYapMuaJ5pUOTsFTDVmGa0cRZgW3zxo04xBZEwwBcKVCMchmB7BXn8Gsedhdg1g2C5mdy+J69DldjPTmGz3omwnsue17cDBmkmzVeaeGQujnXlca0wQTI/gFrVpqgoVuS2PY3jNhZixwjMiAl/QzM7fqweVaYRtYxoKaSR0lQOOVlzW9J1NszeHCkMSFbOvajFRb+GFjUUxDvQNE8fzJoph2MQLm2AKLulPUG3TWQC7JGBMvz+JoSeT6J6Yo5MkMVTK+sndkEDe0manXgxRQhJD3FK0qpKwVsOQdGwyIl9bdKhaSN4pgGlg2C5iqB+xsQe1fxRMA7N3DarhY7g5ZBCj4qjzE3s1LRuZElEoQKOl/wvaiDKOCUyIPA/XchlpmMw0xukfqZOzTVSs1chys0k8Z1Jpm7i//iKCqEUz0vECWMNbwDSotjziWBIliTYqltrcVU5OYNgustRHlCQU8mvwXLjmW2/H8WDdaMgZu+tkMi2mfYEX1Nm68SLClkvw4+voXXeUSn2EwLXYc/BHD3qNjtVtCt0xpmlhWQsKMqJ2zz8/IJptq2em0ErvWBPqIaYByZFRVJRoRbcVk5RDVCtE2C7jTYORhkmYCHodRS00sHrXIQoWPQ70F4ZwmiGGkIhinigJIaNNaMPIoxYYJG0T0PHZAsQGYa3F4YY2HRYm9Lv6WE9esQ2AYn+ImtKWC6Y5L6XUWnWSSNCTW0N++xPwo5AkiYlsyGV6MA3FeCPEcAuEStBqZWDTZop2gpqYBcBrlbn1ns8tOYYZp7Rk20KOpzbPkWvG5IsCJUykCdJdXFwwXdbqlugudfYHUM0mzd4cQdSiFc1/vSeRNvrNOEVcqXtrBnFA3a9QzGsl0OhfQ5JERO1526iCNEycnEJFMNUSrP1pfonh9EIMw6RoQVdxPTccznDv7v8GQM5WMcylvUbNbWdgH0dFiqsVinayxEoDQB0Z4+YxXVwT+Iped/nemq6VI2sqGsH8d9FsWxlcNA43h7XeZWTibiIFcU+LkpFnXS5GZEzCFtoaZm4McYSbWXx+5wyIg7BJ1nYx4jqbDvhLFMPAV8c13p2jsr5XF2NUTpIJbZJ0CoV+5Z90WfOEkypnKSkpKSkppykJJ8KENlXOTjSpcnaSyWVKVPyEve2qe8uAsabOm8I0SGoxZqkfmS3gDm4gmB4hqs0gpMn94/dTaU4Tq4SeXD8AYUPN5/4AuyuCUmEdYQL5gs7tmpt49Zl5U8pyWKGQX0OuGWObzhJTRCFNiBMKVkIQWiST49RrRfo3P55ICoQhqTXGmWkZHKqZnfY3c8RxiLtAOUiSmIl6C5F3uKAvQDg2fRlFsyw77ZjUVBPpgCuVNqQd1/kwvq/VMdNRWrlZgN+QqAiaVUnG9klimNjnYJh0rAAwDXrza7QNRxxiDqyFRgt1oIawBMm6DYicM6+Y+T6G4xLVZnS+GYCUuBvPnQsOIS1taZHvwgvqJEFLt2pKBNWWhwpDbNPWSperVZ44ibAMiBJ9rup+Ze60IQ2T7PBWxOPWcaAiCFoulTkbgbZyEE4cwXRzOAMbqLRipO3itofXMxtRKZg0pg5TnlyDK+FoZYas28PGHYLZ6hHWlTziOMCarlBakG9zLMXeKSb3bsHJzT8Nz+VozQ1YzVQ615LocrVZbzlAzfrsrwloeESjfue6NrqtjjVAKzJoRYKirXBNxdpcRBJ4iIzkon4f4gTpBQRhE9nbrxXYtmox0HsWtdCg2uUgpYP3wFpEbNCoVPHa13BrGiY9fa0X2pYguY2SpBYvat9kmIpGEJPEkLVcQqlzlKRpI/L6es6YCfsqi5OWfNvQl+ysT8FSGIbJ9MwIYeQt2i+zjJWG+TAEEcePKfYoDMvWJtPH5Jx1lQbmrVXkgvHFMZlx/eUyMT7U/oWGnjsLLGgagYcVQ7lZo9o2nK4dvBfHKdBd2oAXCSbGFIVMCctJSCLFZNPk0PoM1+xZqoB1fn071y2X7aNWK/KzO/8TgNHxu4mDxccnm3FJvEZH6V6It+9ujjT095qzbvOi19Ssx+2Tek54TX3OlsO182RM1THsBegqrFv6+xIf+jLsPvBDwkTgFiokQYsfjJiQdbGO+RXBgfvZuO7JHdUR4Ke/+CIAM5UDhHFEHBvY5TpxNH/C1z5gEEcQPoj9R8sx2ia06Q3P6UyqnKWkpKSkpJymnBgrjXRZ80STKmcnmZHZg5RbkhnfQLoFLKEbXyeTWlUSJmSHt2L1DZIEASpoEU2PYdgZ+nJdjNfK+JGPPzmCyDtIB8hb0FNEFPOM//BMGBykGgguWNOkFdToKW3C7l1Lo9quVGspenP9TEzfT3bWwzRMSv0xxdn5qiI/Y4I02NatmJ3pY2Z2P0ks2XOBSXG6ideYppBbw4+POuyalRypLZ6ctp1FtNu1FPPdOE6BSIH19KfSn9eVjsM5/WRobC6gWloZiNtDEH1ZmPWxcu3G520jTXWk3Vi6rcgsNLA0TaXVnbkYGtoYVbiSxs5bSSZbupF5toA4Yz3haAAZiRfUwQ9Jxsd1jlkQoKKQuDKFaiuCopjHyheg2Db4lCYim8XqXYs09DNOnMRM+wK/rS4FUYBd6uaWg/cSJYogajHdEjSCmNa+e2gGLXozOhRbOkzUtBlo3k4IG1l6sxamm2urmLEel2ViSMlIQ3LPzq90co1ytYBYCoKwybbbIrxYC1WuU8KcnOHg6M8Zq9v4QR3DyTA6dfzKwmK+G6+RxwwgU4zxvAatWg0ptRIp2k2g5wxb586FIfW5Fl0OlgH4IYYpUEcaiK09iC5bV3MGHo1mlg2FsKN0PXF4UCuEeYuJpqQ1eQRlm5imQ+I1aPk11HSNJGgxs3WNrposSLKZLor1pNMiaDivEBm5qKp3e387FzIjCRuK0Bd4XgPbETo/0RBEvoECvKCBa+UQhqTYO0lf9xaiRDDTMjALPRStBK+Rp3uiwRfu7oMuh5xt0GyVec6lb6JcXZzLFMXHl8jinuXbDXUY0y2VjLiO5SRL8q6ymS6iRKDKFax8Cd+e/yoPQw/bzGBn5pUqtxiTlAOarVlcU2G3P6/iz88fP6gRhh5TM3vwIkG9mcEQBvUZiWEK4sTA3jjO/TPLK2eJimnG80asuXZbt9HJe6nURhbtG0YRyYEji6pJAWzLQY1NMugqyFgcnN47//nNGrRijtyncwl9nwcliFr0OPEik+yp2f0AiyqWpSERa0ocHdtLlIBlBzrn9LP9YEoK3fGiZufJjgeIh9dy6cWvWfI7t254Bo3AQwkTYVmE7bZOANb+g/q/zvI3MwPj3rKmwY8GSiUnwIQ2VflONOnNWUpKSkpKSkrKCiJd1kxJSUlJSTlNSZc1VyapcnaS2Tml5d+ZlqF7KCpwTYXotjsmhzvHdmEIQy9lSBM1NokhJa6d594ZkyBqETdriKF+ZF4bUYq25N766XfZv9VivGlQtHRZdzG3Bn/iUKdHnswIkiDoLDv6kU+uJ0LU6kvGmzEldsZjZGIHAEPrD0Gc0GhOUcitAeCmvYMcqi1Oms44RXpKGwHIugVUEpO3BObw5s4y4MvOHdZl9K0IVQ6gHiId2FKKoKcIpkHYUJgLKuVVqLSFSASiXUKfxHqZwLH1/we+QEpFq1MQIFC+j3AlfsZESBN701lEvkBkTN070TRQDY+4qZdjDMdF+b5e5mwvYSqAnItqNjEcbWkhpEnFm0HFEUHUohoIWrE2JgWY9cqEicBpFz2E7e8wVa5QacUMt5Puu7K9jNfK4AdYhkK6Ppu7z6ChdHECTQ81oZPbvVG9LPPTX3yRfE0neSfSQMaKgyO36nNyOI8p4L59P2DPgR8wOr6fWq1Ita6XyyYWLBUtpKdrHVG5SM9svGiJeK63Jhl9vRHFyIyAjIk6UkPYNnFLQV+G8fZxFxmDpBwihvp1P9RIIWyX6ugg/e0VIstAJ53nS2AarM3FqEjHFEU+KoqQUhcTRLUZznn+bt131EtoeNM4foJhR5imxaWDAQzrparujL7YX7K5hTQFos+lMWOSLSaEtRpeQyFMkIbAkIqKV9ZLgWaGJAqwrRDLytIITB6oCQw7Q5iAnfGYmdhDc3RNZ374fo3eC59NGC5ersy5vcc9xht3PLS5aNKu0BkcSkgigSElvd1r5l9XCaahEI6NYdtkm/MFA4aQZC2XYKQPANXSljOqlTDQcwZDOUUQRyjL7Jj1AgwNXUijOcXo5L2MeYJsTy9hZb5fqDQSLl5fJo6Xt64IwiZZCZX6CBesn6KQ18dgz4GbCBYs7wGEUYgY6FnyGa96yb9Aw6PbiRHmMX+ipAlRwll3zQLg+4Jys7nkM+bwwgbnrylQMuaLM+YsfgZ6t89vS2LEkC6yihJ9fqx8ia9++63g2NqGSC6Ie6pF9aljDJ5/WWdTPqt7b068JIMtTbafeSGJ36Jcne+T6vs1bGfZ4QJQPnRP2zbo5Ggnqt0h4JH8pNWaJ55UOUtJSUlJSTlNSUhIHqHylZrQnnhS5ewkM+kZuv2MAS2hn+5LNohNJUTWBdPge4csonqNyGsQV6ag4SFsG2mY1AJBELWIRg+R7DmCMeTqp0vHBsem4U2DTKh6Ds1Ym78mKiaul8kVASkRriSUkM/20ezSEoZTVAhj8RPxZG0U184COqE3Dm2C0EIlMQ1vmjgOeMY6n3yhyrS/WA0wDd0GB6BUGOpsF/UGttSPjuGdN+vk7UgrhypKMLtNNveu7SiBjRn9/JDE2qxWuFLbN5iAKQh9A0NqVafdYYkk0i2cOrYJkUKYJqLLxjadji1BEgN5i0KmpI9fw0O1FS/DdlHVOnNy45y1iCjqJ3Az343MFjDzBWQ7zjiJaEZok1QVM90MuXtsFFcqMqbECxtMNCW1UKAeGCNSMO2LthNKxKQHRDFrclqF9Eb3k3cKxLUyqlKHpocf+cT1MgU74ZUv/nsSqY+7GUT0lAO9RCENBr9RoOwbVOtlptsJ0Nlsg1JhHcQJUzOjx70++7q3cvbj7qN7Yt5UWGacTjusZH9NKwgZnRQuurTHQKISZEYgBrq0onPGen2OGwqjTys4c1YO+YpB2YewrVCIMCIO/M5nGY4LLZ9WUMMaGKavewu0IsxCD5cN+xTtBPfe+5kq7yOW2vbAa3lYhoJ6gNuTdNo6mQaMHNHjTGJwi/N/hKz1Ljnbxu1J2DWhk9Vt06FWH9cxJTHlnVsotyQqjvBigyi0GZm4ByXnP6dSH+Xo0Pz1Pkd3acNxj7F/cPdxty/Ea81iSEUctQsxbJtiYd7+ZHrmEAdrJqK7i2bo4dTnM+Oj2CfyPLb8Qp9jkTE6dhVbNzwDxzTw/AbNYLFx9L6zuxiZuIcLnvb77Bwr0qrVSAIPJ6cQGf2nwjUVYXhMP6QFVGojNGOwrSy9GcVAj07cr9bLxPHi7H3LtBDZrFZgFzBx5iCU8ly4xoJchkawwEYkjiBjUp09rGONHlyF9IImeaeEPzGvXlmm/m45dNHw/McmESKrv+vmlDNh23qetL8DjP4FSmje4tXnznJg07wMNjx0HgCNab3f2kvO1AUW5Qc6+yQqptgjOvPpeNy24wv6u8lZXqFMWf2kyllKSkpKSsppypzL/yP6jDTn7ISTKmcnmTARfOuQjWUo9k3uJ0xgugXGuVsQ3V0IV7K7IhDS1PlOAH7InUfuxbVcLANiFaNGJ3VjadPQTbttG+E4dBXX0ztmMDvTRzUQ+EGNJIlwN55LqT9CODbKi7lh7wNEkY/lx502MguVMzcxCWKfOIlIYsnRsb0IGdNqZYgCr1MeHiXw+KEm1WDxE2yi5pNMLdNFmm21bHaCilcG20btaz/NdtmIvIXImCgvpmSXUDMVVCvCcpJOvlNruv3hbaVNZEycXIwwdcumbBYMCaX+GKeoOv2SRb79pJ8xseW8DYAhtaIihdE5zknQmm9yvsAuQs61uCkUwbaRtkNcKyPQLWKkm8e18x17iCSJ8GJBlMChmkmUJJTcXgp2u83OkQZeJDhSF7gyYaxyWBubOjb9hSFMKyCul1FBQBJ4uu1WK1rU8mf0RYPY5XbLmMo01nQFU9pEtiR27Y4C4LTNUOPEwDAkyl7+mcyx8/z6hnmzUsuyiVs++Z4Yw1RM75UdS4G4pVBRAl22zpEsWIhSnkrL0gqtJTp5a8lkoNtteTW8BY2/M6YirGvDT4o59lUt4maNKPAwDInhuKzpPQsyJla+RJ+rlcbJmb14rQr5WohlB1SaVXZM26ixJmFDdHLaJj2DQBUgp1U5aSpMo21xMVxguHszMi+5v2wz0xjHxmRi5n7dpgmIbJipFElch1ogCFsuO/d+h3zFQOQdGkHEVHkvmeFxpsvji45ly68e9xgXu9Yve/znqNRGMEwIfH1tV7wyT7vo9Z3Xq/Uy95YNVKRzHTtISRxrG4iF1hXOoIkwYc2Gi9ggipimRZxEzCw0Q11T5cDRnzH7nHFqR9aStaokvoeTTRAFkyC0OFIXZDLLW4GY0iYr9Zy/bcxZ1OIoCBeb0IZRiDpOvlhtnY911jnkHZ3DNbngbSoOISM7NiWlYkI9XF6F6hufwW609ApEmzlTbnvj/Pnygjqq7cuRMROSWBK0f4d6QOdpOsPzjc6NJ23n/H4Ds3v+HFuWy0DfMMWBCSxpYRRsDCEXKapGO8+3MLT8zUwYtfCqEvyT46eRpDlnK5JUOUtJSUlJSTlNUWm15ookVc5OMq0EDuw8E9dUPFDR+We1oP1kFceIvMVIRRsmRrMTqChC1X16shnqfo39NQNbOqjxCgzmtAGtY0OtjjN8JqXCWvoPV0kqOQ5WTWrNSQC+cXBEt2/KupT3S/7t3iJT5b2EjqTuV/BmDGZnDnTGGVYmO426/bJ++jWMmFYzj2HItjIWcbgh2DVjMn3Mw7Rj58k4unJOShtzgWI13gih6UF/D/vvsXXT9rwFUYKK0Cak0zVUTatEtqPzwxplnW9GRupG8W1kRmA5CX1DomPeaPbbDJ7p6+rCvgyGm4NZn2BmEukW5k09izmCShkcG9UKMeyMVqnazc4NV58LYVoIqaeLNTBMEsdYvWtJggDXzpMELRzToRZIaoHB0bE76HZgMDeX+2SQtXOdc63aVZZTTa1wSUN2WjnV/Qo9PdMkzcb8OE2JMA2dGyN1lZ2bqxN05ynmu0mSCMO08XzdVunApizVUI83aLcVsq2QOA6IqrPLXp/dxWHydgKxrvBznRxJGGA5CiebYDlK5wO2Aqx+s3MeVBAg+jKoSh3H1JVtyosJmgZJs0Ft1NBthLoGiF19XisBuDLRlZDTRxHDgxStZJHKYdgu/d1n6DgqU9w9JZloGrpS085jeQG1WV3xd8u4ruSzcopWu/VNLTDId/cgekq6JQ6QySSUywLRU2grfiamoZCGSeQ12H/kFjKZFlPlfZyxu4mUMfsm92EZoOoZypUpemZD6O9pH7MNPGnjzJJjuVy/wvsv6GKgb/i4r80xOnWvPmftlKa6XyHjdi3a5+j3z4Q4ZqYxCbGOTWSzWFYWaTt0lbRCJ1yJ2FRAuJLINvH36c8+XB5lprXgT8B4EdvOccGaJrm6/loxCzpGMZhFypjhvNLndxkSFeOaikp9hPLOLeSzA53XPH926f633N+pul5IduNZ1NvK433l+e8OYbuIDQMdA9lK1ejkaB53PDv3EDerHVVsOe6bKneqMWuBgd9yqTTbUv1sgGEqzO75nDORzdKT6ydsZDvbXKdEksRs6qtiSRNhmxjdPYsUw0TFJBGYT5mvvD0WaVgEvoAHiStl9ZMqZykpKSkpKacpukPAI1W+0mXNE016c5aSkpKSknKaMpdz9khIc85OPOmy5kmmx1b0bNb91X4yZmEZioyZdMq1yVs0qiUMKbF61+nt9ZBGECANk0oAQeyDaSByjl4SzNggJTubE7jFfpRtouwI01BU62MYhsk/3ryZ8SMgTBO/aVD9m1+QqJjR8z2kkHhVScObX05Skf6du6eb9OqVUbIHCjCTI4oDgtDrmEp2Z2KOzBQXxWmZbsdIs1w9TKPZ/uw40tYER8awzjiLA4f18oTI6/UbvwLByH5EKasTyGO9LBj5xrwp6pwxZUay0L0gk51/+hMZidkldb/S9merekhUm8GwMyS+h2EqiLW5qegpIXrbvfakJJqdgChGSKuztNhsL0+YhR5M18UqddM8uJOKN00wcRA/8okSgRcLpHQo+3T6bAI0gwZN38aVCkyDcksShBa10CBOYr0EmrEpzxnhZnMIaaACXy+55DKdZU0Ar5HHLtep1suEYZMwn2FiZg+MjRG6CbeM64PTaumlzkYjR7U+RqW2uAfkQtYOXUSfK1BJTHXSIowDDMvGkIokFphzPQFNqY176z7UQ4LKlDYHfmCSKBGYvYPt0y2gVqdZlahZX1uQeCZ3TtocmCpiGZAELeLZGTKbztEWGFJi5YoYQpIEns6HiRLiZo1bxiXNGA4c/RnF/BAzE3sYWKMtI1qRgchbyIzg2oM6of/s3oR6eQYcG8NU2NmEKBKYpkL0lKh45U6/UCkkSdBCSos4llQbYxgNjziW7CkvtWyYs1bYc/DHHOuVCot7Nx7LxNQRbGt5N9Jy5TDZYtz5WhitNjg88vNF+3z1Q88DKblnMulU2xl2hnh4LcK22ftrek4m5bYB8GCW2sF7QUpydpZ7Z0yq87UfhKUAQ2jz6v4dBzsFNQvTkQ7+/fwy5fFIklj3VgUKP/op3cX1i15byKxX07Y4Z5QWbU9ig0Mz+3RahR8ws2BFUmYLiO5SZ4k3SmzyzvLHudMDdoGBbNhe5g9a85UpO6ZthKkDLvsSQ8baFFr/EtwebdY9h/J9utxuesfmT/zE9G6CoEXJhjCOSOo+MogWpXQYQhJHoGaXL6owDKltgMzUSuN0JlXOUlJSUlJSTlOUilHJI9Np0oKAE0+qnJ1k8laCbYVEiWCiKXFNuKA3gShGRW1z1ERSjRtIN6+NEfMWcTKf4BxEPrRiKGmLBOHYiGKBG0ccVKjL00VgkjETpsr7iSIfYzJHHINqNrGchO/d9Em6iutxc3XitqRdrh4BYHjoTAzHJWNKWpFBrqlf79l1CCPWJeP15iSz1cPsOLQGLxIk961dFKcp7Y75YtObxWi3bBJ2hrtnTFRLxyozDupIDXqKqFa88ANQEbqIoY2TS3T7JrQKhmngtB+6TUcR+gJDohUxUyd6IyVq1kPIdnJtHCFtbUSrDXBjVNBCZLO6zVDboBZpovwAFYcI08Kw9VO2iiPdagiYaUyi4gjXymH1ruuY0Y57BrlsL/eXLWqhYNyTSEMy05hAypiyb2BsLnC0IbGtkGlf0AgCihlXGxGjbS8yw2eRBAEq0hYoONqIOAlamIZi6B6XpG1r0WzN4h3Zw+j4fny/ilWsdxQMy9L7SBlTb0496BJGVMyxpyyIijkmjxh4XgMVNEliQRyJjpkpjq2LM+ohalZbNzAbQCtmbT7C6hpARVp1UVGMlAp/TKt+60ZDQgX1diK/ikNUuYLZ3cvdMybJbn3dJCrGLvVRa4xD3iLxaqzPK6IEjo7tpbdrE3sP/oi4/YclCC0Y1onvP7lVt+bZjC7owLbxG/r85LJKCyqmJIhaqFmfATfWijSwae0TaTZz2KaLsCxazTxRImhGAqed2+3bBu6Wx5GzTabL4+yvLv0qzWX7jnuMla2vsY3rzl/2POTc7o4JbRLBpCeZnNmzdMcgYG91/hnb7BqgUtD/znfpIgVhAu359uXr3rUg8V1QWWKBk2AacHjkNnwfgomD7Q82kEbCnge+17FoOR5h1MQ0FIXcGuI4oFKft/NQx1x306OHIFIY2zcu+ZxG0LY7cWyGc/NLZnGzhshmiSP9ej7bIp/pWnY8HbNkc/4YFXNtVTecV7SiBMwevb0ZCQwj7lh0qHqI0a+tVuYwsjnqe+6kb3zeCuTAkR2s6dtKMwJLmig/hjhh9hilOgjav3AZhtdcoMfsnBztRC9rPrKftEPAiSdVzlJSUlJSUk5TVJKQiDTnbKWRKmcnmVCJzpN+dyYmTGCNG8/nnLWpeDNI29G2D3lHt1wJ6rSi9imb1XlIqu5rRaXUh2lAknNRSYwZQKVlYUqLcvUwxXpCvihQDQ+3GPP4817YfrqVxEmE6ShGJnVz896uTQhpUWmFmIaikdVP2p5Xpmc2pl4fp96cZKZyiLU/16Xk6/ZMLxq/H9SR7VyLIGhhCMmaQjfu0GbGmtrGIK5MEbd8kskWor9H53acYWubDSkRJm3FRn9mrj/WtgBdGW1FkdH7iG6bzBqDbDGZV3bMdluogR5oxQhbNzePZqeIA5/Oh/ohwm5bbUhtoSEcB7tXK4FzOWdWvoQ0JEKaHUuN7+4vY7gFpGEi3Tw2JnFiYAmdX3OkYRAlcPukxG6b8FZmu/EigThTt7RqNLSyc/eU1BYpfoAfJTQaOULHpBo39FN/1kXkXLrcblSziWsqLD8mmNL5VuNTu7jr/v8CoBXUkCNFSrY+FvV2vp8hY2qNyY4R5nLsmjU5ujZDZUa/X8oEQyqcXIxdEuAHnetVjTV1ThOgZn1UK+JZa7UliZgzAW7ne7WqEkNKnGa7WXtb3Z3bJ0oizu6OodFCSQND6OPtZroQeQeZ72Z/dbFqM9R/Lv7tmwniqGMcK7b3IPI6p6f1n9eShFplaZQlhqlwc+DmALutnESKjKkIIq2USumQxBLLdIltE2ZymIZixgczhoG+YWSs9Nja7c1GpruWHMeof2lTbwAr12TT8HnLtneao142aTSFzvUzVMd4dY6ztjwJohhLgNfQ829O4Q3igG0D2ooibimIFNRDtm+9FLOrj75iD5YBO4/Oq3vCs4njgGoIxcJafF8QHTqk8zoj3Wh9trp8vuIcrlTYZpaxqV2L8q2y7uLjIVR07FsBkHUbP0qYbobg2Pzg6LylhJAmhp3p5LBGkcAL6suORXSXEKbVUcVg3pR5IWOe0G3DgLum9fweqbdtYjzdgP2a++fHK6RJXKswfuiORZ8z2H8OE01JGEcoP0IlMfls/+L4JBw3SbGN65R0e6dibtl9UlY/qXKWkpKSkpJymnJCrDRS5eyEkypnJ5l6IKjMdhMm0JfR+TPjntStmxxHV6UFFgcrOv/FyBagp4hj6qfHONGVfSpKMAYHUAdqnYa95/UGyCCi0Zwi6ykm925hbPIQDW8adfstDG6MEabEKSo8v4LjFCgWakhDt0Eam9gLQE9pA1a+RJSAF4lOztn+ozeTfeAIQdjEEJIDR2/jyJ3fotKyaHmzi+LctfcnbFr3pM6/W0GNUraXmdY0RysuYniQ5Mgo64eq1A/piR1ORojhPKrZTuxZ8HRpSIVhCm1U29L5Zky1tJJmGsjnnYlbbFestYUh5cWYm86AVkxmYD3egXCRQplEQjdbbxttZs9+glZ8bIdwdkI3OZfmfL4akD3rYpqhR82vcd1BG+JI55LZDkiDVitDc4EIeqhm4d+whTiJOqa+USIw1g1x17TEsgPGmoLWXCWqH1D2BUmi86H2TI4gbAdqdUR3F5HnYRSKRIlg35l2J5ev0Zph554b9f83pxmYDtkx1a5CXKBeAEsUmIUceZLHpkKCWl+m0dRjimNDm3A6ShuGSgkT5U7+n9FtoaJ22V8r5tx+i9irE9UVue55VdiQWm0yGh6WAOnpsZv5bkR3F5XmNBsLoW4J1fI748xmusGxMQs9HJkpdvKkojhgsP9chg5UCOOAoOUiTAPj3C0U2yXGaspjaE0LYZoEviBo6GvqrEtChGkiDW1c24oElZaOIYyaRKGNZblUuxxcDwp2QrN9jmwrixkrDCl1/ieLK//mMIPjLxW5uTrbtzyXjWufuOx5EEJSnzHwfUngCwp2skiFArj4nJejmh53TctObldUmyGWgjiJedbaBaWYg1qFOWvzcxB2hlypSDUQeFPzapZyA1yniBcJSoV1tAIHtUvnoYq8o9saqZjyXWcsO27X6aJgJ0zM3M/6wYvJufPKXHfxOEphlz1fUdmmbzrGMQ0yps4JFd/btOh1FUeMTN4DgOMovHBxA/dF+AFJs9aZ4wBOu4o2CRZrE5l+rZaPzxaIQrvT2kq4EhUl3PPF+bhVHKHKFb7+vQ8s+oxtG5/FyOhawritDkcB5ep80/VExXhNpZX9ZTjjzMv1/8iTU60512rvkfykBQEnnlQ5S0lJSUlJOU1J4gQeoc9ZkipnJ5xUOUtJSUlJSUlJWUGkN2cnmZGmgTisk8KLli7b7skk8wmrGS1lP1CxCIgw890ASEMiDbOTQC66dLEApkBFETLblur9FrXGOBk/4cw75pP0825fZ9nPHHK4f9/NjE/upDsTcWS2gukovJZeHphbTjpUMyn7ksy4NmPcued7NJpTTJX3ESUh5coU0+X9TO7dwsjE3YvijJP55NlioV/bIQAjlUmqs90Y2Rxq5wiP/z/DeFWJKlcImgLqIcxUdJ9RS1s3xDELEv0NxEAXwhKQt1BeDKaBMTiAYSqECT3noIsBCmZnOSOUaOsMKYm9OrLQrZfpcg5WqRshLRoy0r37pEni6eViw3H1UmfbkfPTd+yj4k0jDRM/kiBN4iQmICKIA7xGnj2z+hweqRvcWzbIj8xoA+FWiF8uESqBWeonSgSu4zPRlBSsRC+xOTa1wKBQqFLIlLh/Vtt4qEj3qzSkxHALhAkMbD7QMfp1nXkjzzBqEkmBNPRSw2xFJ3EnsaRYGFxiabCQKLQpWgnXvkovlcctn57uiCTSNiVz16eabc3bAUQJwrT0a5n5pZjIn7feyHXHJLHQBReGZMwTxLZ+v2dEqCgiVjG97WXqRn0CpWISAxynAFJiujnOGaxSbS9r+kGNWmMclcRY0saQMQx0o8oVvEbbZsY0sB2QpT6mRrWRrteAiYPauFm2l4UnPIljGghpMTmzF2ssRxh6OEFCrhmztdvBMmBopMlZm56lj03g47eXc6PyYhNmgGhm8rjHOJdtsnHz0+ju3rTseSjmB4kjcJyYVkOnF/jtxPc581rLyiIcm6rn0PK1cXFUmSSSev6d0T3/eaJHfz+Y0kZmi1iFDK6pwF6Q5O7ZlKtHOVCVzMzux7Bs6jdpA2OG+mhFBusGHseaO/YtO27DkJiGwmtVMKVDFM8btx5rLaKEiejNLymGikzBlKeIkqVGrHG9jIojdu37LgCOQydd4LjEcTs1YX6RqNPz11u8cDTd0OfrnEFdSDHuLTC9bsWU7/5RZ99ktgzVOued+cxFnzG1fR1JZT6RX7qLk/o7ZtwPwr6na9ugk7as+QiXNNNlzUeHdFkzJSUlJSXlNCVOkkfsUpZaaZx4UuXsJNOMYP3hJs0YqiFMtwRFK8FwXFSzCZFC1m2++UCOOImx8gUw9RO+a+eQMiZKtPmnM7RFm9ECTv9ayi2D2cphpsoPUJz1mZ7WCf5upkTl/G1kigmqUkdsKhEnEd+44S8xDdhXtchsn3/Cc+w8ceDjxYINhZCZ8n4A6s0qUewzUz2EaegkeT+s03/GA3zvpk8uiXXfIZ2grlTC0bay1pcvEjayqMCnfnsDci6hL6ChiwDUrI+a9TpJwlIq3KxWzoxC+0ly7mk6b+sEdcAe2qzfH4EYzGpFsRxoE80owQsa2LkENTaJ09NPpn+tNrDNuSQqQdgZvLCBkCaZ4bOAubJ9F2k7CGngBQ1+MmohhaTemgXA6hpAGrLz9B5W81Q9hzj22b9/EzMtg6Ojd1Bu1jhUk4jYoBUJZLbIVLmbaq1AxkwIlegkNnuxgWPGxNUKB2oGstCt7SvayGyBKBG0Whm+9aP3A1Ctj3Ver9bHcPyYak0rBOWKfloPQ5tGc5qDI7cte32uHRqhOxNT+8JnME1FEgbYjj7+ZldbNavWF5tomoa2GMlbiD6X4e7NWPlSR8nEsTsmwcK2CVt1sqaiNCOoBQaHy0cwu/qoteqYhoGKEmqNcRrNKaJEK23EMa2JwzxpYD7JXau4exGGJGe7PPWMMWgF5C59Dn65rSRmJHGsz6U0dVGCH0Cj2t5mmKhQMdMymPIUKg6pNsYZGvcJIw8ZJXRPNBgsrafXUYhanbUDjwN026k5emaWKge2s9SyAWBifIjyQI6R0TuO+/pCokgQx3Bmb5bhwYsACEKtRs3M7oesS5wYzFQOdt7TKkV4QZ2t/WfOf1DGhoxktnoYIU3CWoutpRBZn0/GP2N3EyktRkbXMja1CxU0mR3V89zo78U0lFYxH4RWUKMVGbiZEs1XDmBb2c5rx1q4mEYAjo1qz/05ZnoMRhpt3aDh0bzvF53XVByhmk2mZrSFjJtdYFh7DLbl6O+7Y5Qzy9TFG33T84rbdEtQ97ViNugq/HKJnx3UqrsYzoFpUMit6eyf/GQXarrG2oHHkc/Oq6bmhYc447ZRgjiifmCSZpe7yELE82e1IBYtfzPz+K0jhL6ByGWW3Sdl9ZPenKWkpKSkpJymJElEHD+ynyR59Jc1fd/nwgsvRAjBnXfeuei1Q4cO8aIXvYhcLkdfXx9vfvObCZa5aX+skN6cnWTCBKQXkJUQJoIHDg/jRUKbR0qJ6MtiBZD/gs4FaYZeR1XyggaWFXKkNj8Rkpq2KvjBvp1844DO8dhz8McAzFYPAxDHAWaskBmdQyEy5qKmy5ZQiK3zT3dh6BHOTlANDAqWotaY6Lw2OrGDOA4o5nWO3MT0Xs7qCRjoG14S61zbkqNje2l6upWMFJI1RwSqPKsbmfsBhgk0Wrg9oMqBVmIG+3Vjc1MhTaHbAHmxzjFzbESXo/NoTEOrI7UyfkO2W9XEkLfANEhq+mk4iFraQNWxmW5MEnkecqhtWhpGGI7LYE6X0htSImwXo51/JqSJAkYqYwQ/3kIQ+8x6lU6cfhQSRC3qrQoiNogTg4Y3jVWxaQQmRyfu5qYRk1poUKwoCpY+f1FgE7VbyBxtGNjSAT/o2Gp4++6mGQmmrGCR8athu+yalcSx7CgIC8/R7Tuuxan75HKLLQa8apGJqSPctev6JedqjoyZ0OvKjo1JxvaRpm7DJFyJqi3IUXKlPie1UNuNZEzElgFa+3cR1ivtVlrtRubrHbyq1O2BbBfXhMEHZrhnxmSsobAH5m0WRCnLmv5zuO2eL2HFaOVMSqyuASY8yWB2XnU4NHo7vlchjEOeOBCiZmokrsO2XVrVEsNF3Kw+nrPtPtaNhsnarToOpxUhXMm9ZQPL0J+bJDFOxaPenKSZNfHr+o2hgjgKyLhdRFJgl3opZLQ61rt/aS5RtIyJaN+eDPn9o6wdumjZ8+D5lU7j8ThSDHdtYvD8yxbtM1M5SPHiZ5LEknv3fK+zfS6XSoQ6xk7al2lwxpmXkwQe0jY5VLMY/tmC/LFKhSBoEgcWg31n4zgxhgnSVO23KxrNadxc7/Ljbul5sXXDM4DFzc6ludgyI5NJEEP92rJmAcqOaEWCsq/P2+GxeeWMOEZV6wyt2dzZ5C/TCqmQ79JWGl5tkcpZKqxbsm8rMjrqdzOGTN2gOdpWyiJtfZEb2trZPxn1oB5SyA2Qycyf53Ulr5OzG4URlh9TWGBCu3bgcUhTQH7xsVjIoKtIIuY9gR5l4jghjuNH9HMycs7e8Y53sHbt2iXb4zjmBS94AY1Gg5/85Cd88Ytf5Ctf+Qp/8id/8qiP6dEkzTlLSUlJSUk5TYlVhFDL+649HBSP7s3Zddddx/XXX89XvvIVrrvuukWvXX/99ezcuZPDhw93bt4+9rGP8ZrXvIa//Mu/pFhcWqzzWCBVzk4Bk+v1xdKMIKnkGPckhp3RyohjY8Zw8x2fwjEdXGuuEXZEELWYneljx7QNXQ5hZZK4pTAKRVqRwZE7z8Q2s0yXx2mM7qPSzkNqeDP0TLV0GxdTIob6O3kr5ZakYCfQM1/tNz27n7hexot1xebCSsyde7/H/ftu7uRRxHFImMCmdUsNNeM4oK9HtymarWqTTNvMYN2/GzU6ieko1MQsSQSq7uPNQFRvV2jFMUQKJ5sgJUin/Rogci70ZRADPVpJy0ii2SmSmI5RLaahKzqlVoFmvYo2rHVs4iTSuStRoptfV6aIZieoR+2cr9H9EEfE9Vnd0FsaeKGHHyVEpqDa8vjFhEEQWshiiUorZqI2Tt2v4njgNfLMVo+y6UCTnB2xe/9N/GTUwjRgzd5J1uYjVBxiyBgn49GbUeyeNfDCJpiSZiQ6zaUHXcVVP0s6OXhBZQohTX4xml9kfGqZi/NTEr+lG4EvID+5/NP6HE8firThcdYligTd3fMqlfJ0Be1czp/oy+hj6kpUHHaMNWOvRjitVVOju52ztF2rLYYw8PqLTLcEk1P3M9USFCxF7NWIEkWrXZXq+zV6ezYQBz4qiSHnYuYLHGkY/PygrvrLZfuI22afjaDJjC8RpSy2tLn/zq/oQbcbyaugRdRu3O72rqFrOEIFPlFtBpGRHDg6hBcJpFvAMCTKNsk4JbpHa/h+lbHKYVypK0TD0MN3DLzE71Qlh+HivCmA0Dm+8lGc9RmbvJe9z1w+p8h1ShgmmKYi8KF67y0cWu8s2qentJFDlf1kMq1OpTVAVyWhFJr6OgasnEBkXWjF7DuziHQLxEHEtC+4d8+18x9YKjFd1lXVfd1nELUV3GZVonyf3oxiz6EfdVpFHY+mN4NpKA6fN8Tab+c7VdoAE1P3L9rXscEcWKpiZSom1UAw4ZkQxxw4emvnNRXp4z13vcfx8j3E+7o3oY5WMNwCUW2ms/3o47TKL+P5a9uPJI1Af3Y1EJRqMT2bdR5fsl9Xwk4fvLOzv9FtQysmm+mmt2te9T1UzuH7VcI4IIpC5Gx1UbuoOQNc8SDtmwDc4smpfgzD8KF3epjEcUy1Wl304/v+Q7/xIRgfH+d1r3sdn/vc58hms0tev/nmmznvvPMWqWrPe97z8H2f22+//RH//lNFenOWkpKSkpJyWiLgEdZqKhSgCMOQUqm06OdDH/rQI/tspXjNa17DH/zBH3DJJZccd5+xsTHWrFmzaFt3dze2bTM2Nnbc9zwWSG/OUlJSUlJSTkPuv/8+9O3VI7lB0+/913/9VyqVyqKfP/3TPz3uO973vvchhHjQn5///Od84hOfoFqtLvs5cwixdFlWKXXc7Y8V0puzk4xlQP9InTFPMNPSCeK7K4IkaCG7eiDnEknYc+Dn+JHP3KXlWjnGa2WMyRwP1ARiywCG7WL1mxhuAS8SJP2NTun6Dbf8H/xQm1Z6foUHtmYpH7F0cUF2fjlsbHwNUSL0UmGbRquMCnxcCUcbkqPjOzqvVetl4iTqLOMM9G5lvGlQaSf/z7FuUPehM9t9KafL49jSRhomLb+KGqsT+WJe3p9qYUg6RQs0PURGksSCXFFhdpvIjEAUTNTEDKK3ALaNKJiQsSAICH0DeXZ7edbUhqjC1L0Tj9SSjkHqVGMWaC8tSIld0stkO8YOYRZ6iA7sxcgWELajDWjbMUUJNFyDRpCwt2IQBjY7R+/jtgkHP0qIk5iNB+oEU914fgVv/CBVz8FrNSjYMa1I0GxOc7BmIaRFqatMGNpYBgxmFY0gQGRdqqHuoUocU7QVh287C5FzUVFE4ntI28FvuWy9cf54H9svU2SzOLctTp4dPlA97jW5kK2lkDvHQ2h6tAIHN6ejTyKhly9D1VkqnisaUKEibtYQXS74ATLf3elHKvoyumds1sWQikQl+LZB1lR0b7mYyaZOe1VxRCNIyNl66dW2snoJPF8gjgKEY+OFHo/riQhG9PmaM/R08t1UJ8b47O1rEcODxJ5Hzm0vo27dSOAr5rLrI19gmhYqQhsS18swXCBsZJnwTKTtIKXNwU151g9eRBx4uJlu/CgkSiAIm8SRz/Rggmu5BNHyFWGWf3xz1Ik1LoXcGs7dfHjZ9zp2HttRFIvahDkZm8BdsHK6bvAMHLtAIwg6ZsOANjeWgtbO21GBfoNRkHo+RAmJBGk7xEFI0VIdY1vQhUr5bBFD6qINfd61nQ1SMpxTVGtjnX6ux8PNlNhbsdh43zSjR36B5892XjvW/Nh26IxxIa18gmnoIhkcm4mpI/MvxjE0PCandb9KKcGLj/8HeGFPWbt3fi4E/a0l+9ZqRVpte4tqoJc8q7PaxTeux4iMyQ0//fh8LFGCfeXzyRYGuP+Bn3W2z44OMf6088nZWTKuS8ubZaayuLfmQ3G4IeYCeMh9Hylnnnkmj0Q9m1PNfvzjH5PJZCgWi4t+HMc57vv+9//+3+zatetBf8477zy+//3vc8stt+A4DqZpcsYZ+u/KJZdcwqtf/WoABgcHlyhk5XKZMAyXKGqPJdKCgJSUlJSUlNOUQ4cOsmHDBhQKwS+rNOmbuqc//em/1Lv6+vro6+t7yP3+7u/+jquvvrrz75GREZ73vOdxzTXX8KQnPQmApzzlKfzlX/4lo6OjDA3pHOfrr78ex3F4/OMf/0uNayWRKmcnmTCB2GtwsGrSigxKtYhySyKLpXbyuaTVEzA8dCZxEuHHgVZ3zAw52ySytYKjDulWI8qLOy2Kunrmy/knpo5gt80Wx6fup286ZmZUoipNaM4/rYbVPHk7QSxItHQsXRpuGYp1ubhjYgrQ262fRMJIf4YfNNi/d8uip8c5uksbKBWG5jfECXW/wtq3lUj213RBQJSQxIKkHGCYCqPfRgx0ofwABrNkijFOThGVI4xuCzGc1/YbWzciHAcxnEeYBtbwFiwnwXjSduhyoBUihvOdBOJDNQvRpZ/ijtR00jp9GYz+XloiRhZ6Op2HVMMj8T0M28V0cyi0FYdpQPH8B6iFgrGmwLxvgNGG4K5pg8M1g/FGSKudUD1bPUK9OUW9ViSfLTKYVRxpCKLIZ29Fm7b2ZQOiwGbnpEuvo7RqlHWpBoLydB/EMdVAMDTua7UzjrUtQBwTBTY7dny1c2hNuTjZP5EGzu7FbXaasw+df7G+lOOJ6/Kouk8+28LNgu202zBFCaqVaPVirvAiIxGWIK5M6QzvKMbqGtAFAoAYbCdD51xtyyAMIlPQjARH12aY2nEGpgFOzyCmAa6VRZT0e4KohR8HhGETHJuMahsOr9XXY7GwlkTFxLZJxvbZ/EMJfkDs1ZmtarUlOTqqrQvQyfVG2xaiWdZFOCqOkE84j94xg9snJcK2UUlMK5/g2AWSnm68DYPsLc8rGnVvivVbdLL9dLOdUD04uORYWt7xVTV17ijF4lr6MsurFTm3V7cu018JCFPirdNJ/73daygVhrDPfTxjDYXnz6sTdu9aYin0/JkjI8G2wTRYd/Nukjim5XkMuPEiWwmvMU29qdXVljerTYhjoY9Zrc727oDp8ninZdjxKOaH+N6BPNPTe2k0p7DM+e8V1+latK80Ibr9TozCMdV0dsT27oCbDueXqkdSQrXRKYAo9ix/M7F24HzExnbhkrdAIbT0sSnMzitoUWB3fGF33b2dWArits2NXxWITSWqbUsVfYBivlw2UPZifcOqm5hrygRxRBRGRLFPvTnfxqtSO4pt01Gdj0c1EDi5GMKT49O1fv16tHr2yxUhzKlmj2bS/YYNGzjvvPM6P1rpg61btzI8rAs7Lr/8cs455xxe+cpXcscdd3DDDTfwtre9jde97nWP2UpNSG/OUlJSUlJSTmsmJvRD5S+Xe6YAwcUXX/yojOnhIqXkm9/8JplMhqc+9am87GUv44orruCjH/3oKR3XIyW9OTvJ7B0ZIEl0a51GM0sktW3CdH2cZGpKqxKByZpe/YQQRD7EMd6C3BAANdbELum8mrhZpWAn1GvFTk6Dm8kh2u1SJqaO8K2/fxmlAf1kpCoLniIDg3LLwBpY39m2sPTbNRdP1lxWP4mOT+8G4MCRHaw9yBKEMHCdElLanLVFy88qjrj1aJ33XdqjbT0AWiGG1KqMlRPIF1yEde752pA37+AM2xT7Q92WKaOtEjAlwtZqgchos1mra4CuYf1EL9YUoB5ibBvGyOYgo01GyUiMvj66nYS4VkZs6EeW+vAC3eKlFaMtTRoeZqEHs2sAIQ0qXpmZxmTHFHOkYWrvWz9hb8Wi0rKohgbX7M3QaE5hxFBvzOK1ZvHLJeIkJkwEUy1BuW0MbNgZejNgZzxmZ/oI5/q69w4SJrDh5zb4AdW5SncpUdU6SdDCkJKwkV30RO6Hiw1nZRARhM1F227f+cWlJ+oYpGHSq3LQiokigWHqFjmGqXSD+YLsnBvyVtug09AKpWMjBnqwSt06hzIjtOIntaJlObqHnxkpbt+nc4Dinha1UCCkSdkXSMOk+LT/ge/XUElMEPlU6iMIx0FZJgU7wW83Nc/YBQ4d3UU0M0mubUxr9PURTBzsHBvRXUJK3TA7igRJJPC8BtXJdq6b7+NsvxjHTxipm1S8MlEcIAODKA4IRw8x02Wya9Yka0KtMY4hJN2ZWDe6b+c7OZWluVNe9fiNzw0ZY5gPbmtSyK3BbwjdtN0EpGRgjTYc1upVzMhGbYUTBvOfFZjgBFrdnMv7I1IQBBAljE7dC0ClUcMytEI3lx86NrlTH5N6RhvtRoJGpd3wvpCnYOlj/GDNu01pM3tkHWHkse/wTbiZrvmY8ovzf+II1Fgdme/m9b89f23Kus2mkkmjWtJtpxZ+fleftsBpU+qPOqbNx7Jl4zMQw4OYhR68O27ubM8VtVFuUq91tiWJpBboP4dDo/p7ZM1arb76DW0/dCxfuP4cAnexXY3TFrtsaXL/kd3sP3Iztcb8deC1ZsmVFBxjvLuQyVpWH3Proa1vThT9/f3MqWcP5wZtTjXbtWvnoz20RWzatAmlFBdeeOGi7Rs2bODaa6+l2WwyPT3NJz7xiWXz3R4rpDdnKSkpKSkppzmzs+WH3qmDVs22b9/+aA3ntCe9OTvJiCNdmLZLcHANjVqp06B61qsgigWEY1McGiPr9pBpqyaiv4epxqw26ASKNoi8RWKAMZTFcFy6nQS/kaPcrgzKZYuL8pDqzSrF/lArTfF8xZAR6wrShbhOCaQkTAQZc/4pdXjoTGp1/RR4ZHR3Z3vz7ps5liBsMjx4EYaQbF0/nyz6ya+dj+tFWE/oJWorUYapWwEZ/Ta1bVswCz0Y/b2QdRFndGFnFdaQDYPZzvEw3IJWB87ahGpFJK6DdX6XVnWG+iFjYm3djtW7Frocdh7tQ+Qd7IGNlDISWehG9JSQ2QIjFR2TFwkMqQ1wg3bT4VmvTBC1qLRCaoE2nt1TkTpPMNZ5ZNJImGkZ7Dqoc6DoaVBvVvH8WXonwWs1GGsKyq2l1VdRaBN7DmECE/UWzsAGDldtwlF9Hg/XDcwg1vl17afthvKRnrlI4Rwd37/oc1UYLlEqHg4lt1c3iwdyWUW2mDBXnKcbm8+ZJVuILhcxl6gXx4gefd3ceeRerN61upVWxka6BXBs3GJMohImBiSMFzFjWDd8GMtQJAb6+MY+9ahBtTFOFAfU/Ypu1C4l+yZ3U7CTTs5Qs918fv+zhij1CBK/1Wla39ul2/tktp5PrqhQTa0i2rkE1ZjGySZYvesgCJhpTOA2IxrNLPunRzAMSf67P8S2suw5+EOcQGEJrSIfnbibBw7fRLklqbcqnQbdM9OL8/sAJqbvX7INoFEtsee8LnZMLf9k32hOYTm6UtPNCtRMpZNbtm3TJdy376edvLdGu6oQQBqSYjVEFPPIQveiz1T1kKFLXkhYmWR0ZoS8nRBGTcYmDgBw/U/+DtBN3L3+IlFiU+hJcIsxwjQZyOs5sbBV2LEEoYfhBrhOFweO7GD2iid1XjPyBdwFrY6kiVazHRevf3FukDQkUbmozXOPJZr//uo9I+a+srV0H8DrL5LZer7+3f3zLacKbqs91nll2RrLaTNuwNp/EBkrPvx0rSB5VWNRhTvocee/+0OM8XlVzLYc+qd8gqlusrZLGAY4dn5RtWm1PkquO15UHX8sjWqpXcl+cuv1SqUSD0c9m1PNDh48cJJGdnqS3pylpKSkpKSk0GjUH3onEkCwYcOGh9wz5VcnvTlLSUlJSUlJIZvN8slPfpLl1LO5bePjj13n/ccK6c3ZSaa7ElEuH6D3pjtJKjkYG6N1ZA1jjYTstosh61Kf7cE2XYQ0qXjTiO4u/ChhrKFQMuFg1UScuYZm0IAuGyEtaqFg+20tZip6SSqOw47dxRyNGVOXcC8oT99wuMXRhsTpmbcCkNLGLPVTDVm0FNfbtYmWvzTx+evf+8CSbesHL0RKm6zbQ62pl0FaImbzPRPYPf2IgS4yxQRaMU42QYUK0eeSd0oYdgazZxDz7LMQa3uxnz6gl89MCT0lrE3bsLoGQEpkVw/CNBirHEacPYzZ1Ufu8b8GeRs5tB6rbxCRd/CqRRjoxuzuZdqLcXoGURdcQlwr81e355BugSgRGLaNGOrnvvFD2KVeKt4MQexz15TNPTMms0fWMd2CmUqRWAqypqLRzPKzcZOhe1x8v0auoBOOy5VD9OzTVVBRIpiY6qPenOBw3UBkHO4ZzxGFNsiEI3VBLRRUkjq1ucIOx6YeSKhUENLEKBQR0qTuV9hw2GfPgR/PX1elxZ5BjfoESbLY8LL+IIncc3hBHVnoQazrotQjsJyEbDFBOnQKAIRjQ87V/Vj7MvrcxDG07RtGGxKr1N/pZWpkC4ici9sDzaCBUWqQ9RRDI00mpvqoBQa1VoVdsya1Vp0dY4eo1nUv1nKzhiEk9sAG3cO0KQlbenmt4el4egdH6R1MmCnvR0gTZ2hrx1zVypdwctpE1XEUdkkwOJTg5NrL9bZNEPmY1QbuL9bwtf0ZLDPDN274SxrNKT0X4jlzUsHM7EGqjTHGxtfg2nl2lfX8OLb44sEIWxnstVNceWZj2X0q9VEsR+FmIVdU4Ad47UKI8858EQAFO6YWGvQenV/+cqSNU/fJnvfkeSPgvNUxDj60Tenemi2fwZzB2oHHdfqDzuHbBpWCiWkEDJ0b4g5LVBQhDR3rsbYtC5mtHaH7kI3r6iXVc7Y90HktkcaiHqC2IyBjId0C4xfOKzZGDPdPB+TqILq7Fn2+kS3o1Iw2omAx5h2/IGCmy8Lp0Yn8Mj//OXN9a2dm51MBnEARtrfP9QNdV9DKkGGyyH4IQHQ53Hr352CBV1fGyRIfOUixomgGHn2lfvYdvmnR+6r1MQr9y1uRDA+dSZLIjuXLqeD3fu/32v+3eAz6xkyrZgMDAyd7WKcd6c1ZSkpKSkpKCgC2bfO5z32O5do6lcszS9+UcsJJOwScZA78+PPsP3IzTa/Oc/23cOPeb7F57Cl8aM0z+R9nH+VZw4M4b/8+3775n/jkPedy45Esf/z4Au+7fgtRuUjXd26kqWK8rzyVv/zxBH/7+7/P13bu4e+/fy77v/fHHDq6C4ByZYrbK9cu+t2D7zgL95nPp9KcBj4LwC03/DWz3X/OkcZ8gv9Nt3+B6yqXcPBfN3HDmfNJ53ftuv5hx3n7jmupNye5/4GfYVs6kfm9Pxnh1rv+m3f/6EVc9aLfwjz7bnJbHoc4/1qsM84iu/Es3v2jfRRtxaZCQivK8YyLz6X1uJhzBs8GYPfEffxiImZmbJrt3UVcU3H2S1/C267z+PAztnPfdMIvfnGUP7ry5bzh+qMM5xPe+uIX0/XinzHz/87lz7+3n4OTQ5y/bj87x4q8+RLB7Md284X1m/jKzjXcNLaP52/axLu/fh5XPGkPPzyUx3V8rO9vIzNepjD+faJbH0d3c5qxyRu5L76Crn0P4OZ6uXvnv3HXfd/i5X1/C8CO3T/sKDj2F3opTO/m+l98kfO/+Ft8ILsf7+/2UMr2kiQx8cA5fPjZFpvWjWJ/dpSb7v86hza8hszHLH5697+ww/2fhImgFQmuuSnkju//3SJz4IX/D3Dj7f9ANrM4IXzu2ngwXnddzHM2Bbzksmdwwbu+jbF5COUH2Oc8juzwVpIg4HD9MLapz2nPZQOIeoMD/jhRojANwUf/37nsvfR+fv8dv8sYVX4+6nH2pmE2vmMD7/zxBBu+47Lv0I/ZXzvK+t0X8VfVy9h8xgOYX9vIn/xajfiBNfzglrcD8CffWc8dO6/ji0efzxd+vo247rLrg/rJ/s5d/wVA1xclG64+jxt/4x/553vfgWUobrnzywB88LZDvOk9ZzM+vIZnv9XAfuVv8ISzv4+89HH8x6FZLhjo4+M3S+6549NY97h0T7yKfQfvAOAnt/8rYRRwfuTxA/kH9E35HB3bC8DFX9nD/zkry8Q/aQXhjl1fXnIsv/3jvznuMR745j3ksn18Pru8QeZNt3+BwW+/jjW7RxFbBrCf+wJyL9Jt1O7f/z0Akv+3lh92uVRunTcj/qub9/Lz26/nY/dczqaCVgdLf/yHHK4fZujtF9Hz8p/zpaeVeNEfzPB7P+hl945PLvnd/vf0cX3huxIy/+tlGI7LA3GFP/+eVixvvecLy4771ru+SjE/yM6xOwHwvrG589qdt3x60b4XvC1H8dWv5XN37WPDdQuu1W/9Fx+PX0LwnWu45bfPXvSe68tNnn/l/wev+k8A8m//PSb/9PjH0f/ef/FXl29nOJcQJfNqX/5abeNy/U8+3tk29a1P84F1vwPAf13/Xi6degUfvvVSAIbfczb+MV5exT96A2N//ELuvulTnW3Vepnv3fJRzhh5Ohc+4wFaVcmRr+1e9L4du39I9msfoDJ4fHf8I6O7ecp/3Ufxqkv5hbO83cajzZVXXskrX/lK5qoyF6pmXV1dp2xcpxOpcpaSkpKSkpLSQUrJ1772NY5Vzx5ewUDKiUAopU7d4vZpRLVabZcqG79C/7KUlJSUlNOJObWqUqmckjZESikMw2CuMfrf//3f84Y3vOGkj+N0Jb05O0lUKpW2HCzaPykpKSkpKcuh/cRmZ2fbD/Ynn+9///tcdtllAPi+j22fvK4FpztpztlJYnp6uv1/imOrYFJSUlJSUo7H9PT0Kbs5e/aznw0IvvWtb6Y3ZieZ9ObsJNHTo3tSHjp06JRNtBNBtVpl/fr1HD58+JRI7SeC1RADrI44VkMMkMaxklgNMYBebdmwYUPnb8epQqnkoXdKOeGkN2cnCb12r1tkPJa/MOYoFouP+ThWQwywOuJYDTFAGsdKYjXEAPN/O1JOL9KznpKSkpKSkpKygkhvzlJSUlJSUlJSVhDpzdlJwnEc3vve9+I4zqkeyiNiNcSxGmKA1RHHaogB0jhWEqshBlg9caT8aqRWGikpKSkpKSkpK4hUOUtJSUlJSUlJWUGkN2cpKSkpKSkpKSuI9OYsJSUlJSUlJWUFkd6cpaSkpKSkpKSsINKbs5SUlJSUlJSUFUR6c5ayiNVQvLsaYkhZWayGa2o1xJCScrqQ3pw9QsIw5OjRo51/P1a/AFutFn/2Z3/GP//zP5/qoTwi4jimVqud6mE8Inzf56c//SkHDx481UN5RKyGuZHOi5XFapgbq2FepDz6pDdnj4CPfexjbNu2jRe84AW88IUv5Oabb0YIcaqH9Uvzr//6rwwODnLrrbdiWRae553qIf1K/M3f/A1PfepTueKKK3jLW97Cvn37AEiSx07j3o9//ONs2rSJ3//93+eCCy7gH//xH4nj+FQP65dmNcyNdF6sLFbD3FgN8yLlJKFSfiU+9rGPqU2bNqn//M//VJ/+9KfVi1/8YtXX16d+8IMfnOqh/VLs3btXPf3pT1f/+I//eKqH8iuze/du9exnP1tt27ZNfeYzn1Hvete71JOf/GT13Oc+91QP7Zfiz//8z9VZZ52lvvnNb6o9e/ao97znPaqrq0s1m81TPbRfitUwN9J5sbJYDXNjNcyLlJNHenP2SxLHsQrDUP2P//E/1B/+4R8ueu1pT3uaev7zn6/uuOOOUzO4X4GPfexj6qKLLlJKKXXw4EH1nve8R33qU59SN9544yke2cMjjmP1sY99TP36r/+6Onr0aGf7l7/8ZXXBBReoXbt2ncLRPXympqbUk570JPXRj360s2337t3qnHPOUZOTk0oppZIkOVXDe1isprmRzouVw2N9bqymeZFy8kiXNX9JDMMgSRLuueceLr74YkDnpYCW3Xfv3s23v/1tfN8/lcN8SFQ7z2Hv3r0897nP5brrruOSSy7htttu4x//8R+57LLL+Id/+IcVv5SjlGLbtm288Y1vZO3atZ2lmnw+z9jYGL29vad4hA+PXC7H3XffvaiP3rvf/W6Ghob48pe/zMjIyCkc3cNjNcyNdF6sPB7rc2M1zIuUk096c/YQ/Pu//ztvfetb+fd//3cmJiYAsG2bJz/5yXz+858HIJPJkCQJj3/847n88sv5yle+wtTU1Kkc9hKOjWMuz6Grq4svfelLfOtb3+Lqq6/m2muv5bbbbuNNb3oTn/3sZ/nhD394agd+DN/+9rc7f0CVUkgpecELXsCv//qvA3TiqlarrF27Ftd1T9lYl2NhDKCTtTOZDG9729v4i7/4C6644gpKpRJ79uzhcY97HH/3d3/Hb/zGb3DttdeewlEvZTXMjXRerCxWw9xYDfMiZQVwqiS7lc7Y2Ji67LLL1Lp169RLXvIStWHDBnXWWWepW265RSml1Oc//3m1bt069a1vfUsppZTneUoppQ4fPqyEEJ39TjXHi2P79u3qpz/9qVJKqdtvv10NDg4qwzDUTTfd1HlfpVJR27ZtU3/7t397qoa+iJ07d6pf+7VfU0IIddVVVyml9HLBscwtb/zRH/2ReuUrX7nsfqeChxPDwYMH1ete9zr1ile8QkVRpJTSMV188cXqz/7sz1ZELKthbqTzYuXMC6VWx9xYDfMiZeWQKmfLcOONNzI6OsovfvELvvrVr7J7926KxSJXXXUVO3bs4LnPfS5PeMIT+OAHPwjoJyGlFI7jsH79enbu3HmKI9AcL45CocAHP/hB7rjjDs4//3xe8pKX4DgOhqEvhyRJKBaL9PT0rIg4Dhw4wIc//GH6+/t585vfzF//9V8zMTGBYRhLytDnFILvfOc7PPOZzwT0ssKBAweAU1e2/nBj6Onp4bbbbuPVr341UkparRZCCHp6erjzzjs75+hUshrmRjovVsa8gNUzN1bDvEhZOZz6b/oViFKKG2+8kf7+fgqFAkmS4DgOH//4x5mYmOBTn/oU/f39vO51r+PAgQO87W1vIwxDhBDcc889OI7T+QJcqXGMj4/z2c9+FsMweOMb38i6deu46qqr2LNnD4ZhsGvXLpIk4corrzzVYTAwMMCFF17I29/+dt71rnexefNm3vrWty67/913383s7CzPf/7zmZmZ4fd+7/fYsmULu3fvPmVl6w83hkwmQ7Va5fbbb+/8e/fu3TQaDV7+8pef7GEvYTXMjXRerJx5AatjbqyGeZGywjgVct1KZk7+f+c736nOPvtspZTqSOhKKfVnf/Zn6slPfnKnauuLX/yiymaz6uKLL1avec1rVLFYVK9//euV53mntILo4cbxwx/+UCml1E9/+lO1fv16tWHDBvWyl71M9fb2qle84hWqWq2e/MEvYC6OVqvV2falL31p0TLAscsZX/ziF9UTn/hE9aEPfUgVi0X1jGc8Q+3cufPkDfoYfpkYgiBQH/nIR5QQQr385S9Xb37zm9XAwIB66Utfqsrl8kkf+0JWw9xI58XKmRdKrY65sRrmRcrK47S9OVtuEsxtv/3225VlWeq73/2uUmr+y2P//v1q8+bN6u///u8777nhhhvURz/6UfW7v/u76tprr32UR3788S63/aHi+OQnP9nZd8eOHeoLX/iCesc73qGuu+66kzD6peN9OPtUq1X1whe+UD3xiU887n6vfvWrlRBCbdu2TX3lK185oeN8OON7OPs8VAz/5//8H/X6179eveQlL+nkqJwsVsPcSOfFUk7VvFBq9cyN4/FYmhcpjx1Oy5uzIAhUEAQPus/U1JT6jd/4DXX++ed3ts09Db3gBS9QL3/5yx/VMT4cTqc4juWnP/2pchxH/fu//7tSSsc0p2Z8+tOfVv/8z/98wsf5YJyoGCqVyqMxvIdNq9XqeEcpdfw/qiv9mloNMSj18OI4lpU2L5Q6cXGcyrlRrVbVDTfcoJRavpDisXBNpTx2OO1uzj70oQ+pZz7zmeoFL3iB+vjHP9750jjehLvhhhtUd3e3uvrqqzvbfN9Xl112mXr7299+0sZ8PE7HOBYSBIF6y1veotavX6927typfvu3f1u9+93vVr7vn4xhL+JExvCe97xH1ev1kzHsJVx99dXq/PPPV5deeqm68sor1b59+5RSi5do5lip19RqiEGpXy6OhaykeaHUiY3jVM2N8fFx5TiOEkKoI0eOKKWWv8FcyddUymOL0+bm7I477lBPfOIT1TnnnKM+9alPqSuvvFJdfPHF6k1vetOy7/F9X33yk59UQgj1J3/yJ+oHP/iB+sQnPqHWrl3beYo62ZzOcRzLz3/+cyWEUEIItX379pOeP7MaYlBKqxQXX3yxOvvss9WXvvQl9ZGPfERdeuml6rd+67eWfc9Ku6ZWQwxK/WpxHMtj9Zo6lpUQR5Ik6v7771fPetaz1LZt29RLX/rSzvbjsRKvqZTHJqfFzVm9XlfvfOc71ZVXXrkocfS9732v+vVf/3U1PT39oO//yEc+op72tKeps88+W23YsEF9+ctffpRHfHzSODRJkqgbbrhBDQ4Oqg0bNpySnI3VEMMcV111lXr961+/aNnoDW94g/rd3/3dzr+X+2O0Uq6p1RCDUo8sjtVyTa2kOJRS6jvf+Y566lOfqn7wgx8owzAeVi/MlXRNpTw2WdU3Z3OTv1arqU9+8pPqxz/+sVJKqTAMlVJK/e3f/q0644wzOv8+loXLUkmSnLLKpjSOxYRhqD70oQ+p973vfY/ugI/DaohBqcV/GMfGxtSePXs6/46iSD3nOc9RV199tbrvvvuO+/6VcE2thhjmfvccv0occzzWr6k5VsL8Xsh//Md/qDe84Q0qSRL1whe+UF144YVKKR3TscuzK+WaSnnssypvzr73ve91/n9usi2cRHMT6AMf+ID6jd/4jYdMUD1V5c1pHEuZe+1ku4GvhhiUWhzH8fiP//gPVSqV1Pbt29Ull1yiNm/erP7oj/5o2f1PxTW1GmJQ6sTGsVquqZUwv48dy//9v/+3sxx74MABlcvl1Ete8hL1rGc9S916663H/bzUEiPlkbKqbs5uv/129YQnPEEJIdR//Md/KKXUcRWMuYnz4he/uJO4uZImUxrHyoljNcSg1MOP45/+6Z/Ul7/8ZeX7vpqZmVHXXnutEkKoHTt2KKVObUyrIQal0jhWUhwPJ4bXvOY16lOf+pRSSqlvfOMbqqenRwkh1D/8wz+c9PGmnD4IpU5h344TyF133cW73/1ustksQgjuvPNO7r//fkC7Nx/rgF2r1di6dStf/OIXefaznw3AkSNHGB4ePu7+J4s0jpUTx2qIAR5eHEmSdNrlLBzn/v37ecITnsBf//Vf89rXvvaUjB9WRwyQxgErJ46HiiFJEqSUvOtd76JWq3HkyBGuv/56XvWqV3Hddddx5ZVX8uEPf7gTZ0rKCeUk3ww+akxNTan3vOc9aseOHeonP/mJ2rx5s3rve9+rlDp+2fY3vvENtXnzZpUkiRoZGVFXXnml6u3tVaOjoyd55ItJ41g5cayGGJT65eNYyGc/+1n1pCc9SY2NjZ2EkS7PaohBqTQOpVZOHA83hiuuuEIZhqFe+tKXql27dimllPrnf/5nJYRYlFeXknIiWRU3Z3OyuOd5Simlms2muuqqq1R3d3fnD+OxXxh//dd/ra644gr1wQ9+UGWzWXXZZZepAwcOnNyBH0Max8qJYzXEoNSvFsfk5KQ6evSoev/736/Wrl2r/uqv/kpFUXTKWy49lmNQKo1jJcXxcGKYc/i/55571I9+9KNFMU1NTan3vve9amZm5iSPPOV0YVXcnC1kLpH03nvvVU984hPVK17xCqXU0ryGSy+9tOOfc7Jbsjwc0jhWDqshBqUeXhz33Xefuvrqq9WZZ56pzjnnnIdM9j7ZrIYYlErjWEksF8OpKK5ISZnjMXNzdmyJ8kLmEjiTJOm8Foah+vSnP60KhUKn4WwQBCoMQ+V5nnr3u9+tPvvZz56k0c+TxrFy4lgNMSh1YuKYc5D3fV/dcMMN6utf//rJGHqH1RCDUmkcKymOEzW/f9m2bCkpJ4LHxM3ZRz7yEfUHf/AH6v3vf7+amJjobH8oX6/Dhw+rK664Qj31qU9Vhw4dUi996UtPyR/POdI4Vk4cqyEGpU5sHHN9DE82qyEGpdI4VlIcJzKGz33uc6mKlnLSWdE3Z9/4xjfU+vXr1cUXX6z+8A//UK1Zs0Y94xnPULVabdF+11xzjcpkMupzn/vcks/44he/qIQQyjAMde65556SHKA0jnlOdRyrIQalVkccqyEGpdI4FnKq41gNMaSkKLWCb86+853vqKc97Wnqwx/+cEd23rVrlxJCqL179yqllJqdnVWveMUrVH9/v/roRz/aSeBUSj8hff3rX1e9vb1q27Zt6jvf+U4ax2kex2qIYbXEsRpiSONYWXGshhhSUuZYsTdnhw4dUtdcc42q1+udbd/+9rfVy172sk6FjO/76pprrjmuVUGj0VCvfe1rO4agp4o0Ds1KiGM1xKDU6ohjNcSgVBrHHCshjtUQQ0rKHCvm5uzGG29UBw8eXLRtYenyVVddpRzHUZs3b1abN29WH/jAB5bsP8fx2uucLNI4lnKq4lgNMSi1OuJYDTEolcZxPNJrKiXlxHPKb85uuOEGtXnzZrVx40Y1NDSkXvnKV6pf/OIXSqn5CXPrrbeqyy+/XH3uc59T99xzj/qXf/kXtXHjRnX11Vef8hYmc6RxrJw4VkMMSq2OOFZDDEqlcaykOFZDDCkpD8UpvTk7fPiwespTnqLe/e53q4MHD6r//u//VhdeeKG67LLLFjkv+76/pJz58ssvV1deeeXJHvJxSeNYOXGshhiUWh1xrIYYlErjUGrlxLEaYkhJeTic0oZgu3bt4o477uDVr341GzZs4IUvfGGnV9mf//mfd/YzTRPLsgBIkoRqtUoQBAwNDZ2qoS8ijWPlxLEaYoDVEcdqiAHSOFZSHKshhpSUh8MpvTmbmZlh+/btJEnS2fac5zyH3/zN3+RnP/sZ3/nOdwAWNZVtNBp88IMfpFKp8KpXveqkj/l4pHGsnDhWQwywOuJYDTFAGsdKimM1xJCS8rA4lbLdPffcoxzHUV/72tcWbb/vvvvUFVdcoV7zmtd0tl1zzTXqzW9+s9qyZYs6//zz1W233Xayh7ssaRwrJ47VEINSqyOO1RCDUmkcKymO1RBDSsrD4ZQqZ+eddx7Pfvaz+Zu/+Rvq9Xpn+1lnncWGDRsYGxvD8zwAzjzzTEZHR3n/+9/P3XffzSWXXHKqhr2ENI6VE8dqiAFWRxyrIQZI41hJcayGGFJSHhan+u7wzjvvVKZpqn/4h39YZAh41VVXqQ0bNizbbmOlkcaxclgNMSi1OuJYDTEolcaxklgNMaSkPBTmqb45vOCCC3jnO9/JBz7wAaSUXHnllSRJwq233srv/M7vYJqnfIgPizSOlcNqiAFWRxyrIQZI41hJrIYYUlIeCqGUUqd6EABvfOMb+cpXvsKGDRuYmJggm83ypS99ifPOO+9UD+2XIo1j5bAaYoDVEcdqiAHSOFYSqyGGlJTlWDE3Z77vs3PnTu68805s2+Z3fud3TvWQfiXSOFYOqyEGWB1xrIYYII1jJbEaYkhJWY4Vc3OWkpKSkpKSkpJyin3OUlJSUlJSUlJSFpPenKWkpKSkpKSkrCDSm7OUlJSUlJSUlBVEenOWkpKSkpKSkrKCSG/OUlJSUlJSUlJWEOnNWUpKSkpKSkrKCiK9OUtJSUlJSUlJWUGkN2cpKSkpKSkpKSuI9OYsJeUR8L73vY8LL7zwVA/juCileP3rX09PTw9CCO68887jbjtZ3HTTTZx//vlYlsUVV1xx0n7viWbTpk18/OMff9B9hBB87Wtfe9if+ZnPfIaurq5fahyvec1rHtPHMSUlZXnSm7OUlGUQQjzoz2te8xre9ra3ccMNN5zqoR6Xb3/723zmM5/h2muvZXR0lPPOO++42x4JBw4ceNg3eX/8x3/MhRdeyP79+/nMZz7ziH7vqeS2227j9a9//Qn9zJe//OXs3r37hH4mPLwbyZSUlJWHeaoHkJKyUhkdHe38/zXXXMNf/MVfcP/993e2ua5LPp8nn8+fiuE9JPv27WNoaIhLL730QbedzPH8wR/8AcPDw8d9XSlFHMeY5sr+Wurv7z/hn+m6Lq7rnvDPTUlJeWySKmcpKcswODjY+SmVSgghlmw7dllzbqnpgx/8IGvWrKGrq4v3v//9RFHE29/+dnp6ehgeHubTn/70ot919OhRXv7yl9Pd3U1vby8vfvGLOXDgwIOO70c/+hFPfOITcRyHoaEh3vWudxFFUWccb3rTmzh06BBCCDZt2nTcbQD/+Z//yfnnn4/ruvT29vKc5zyHRqPR+T3/9m//xtlnn00mk2H79u188pOf7Ly2efNmAC666CKEEDzzmc9cMs45dW16eprXvva1CCH4zGc+ww9/+EOEEHznO9/hkksuwXEcbrzxRnzf581vfjMDAwNkMhme9rSncdttt3U+b+H7LrroIlzX5dnPfjYTExNcd911nH322RSLRa688kqazeayx29uKfHaa6/lrLPOIpvN8pu/+Zs0Gg0++9nPsmnTJrq7u3nTm95EHMed9x2rRu3Zs4dnPOMZZDIZzjnnHL773e8eN/6vfvWrPOtZzyKbzXLBBRdw8803LxnLQq6++moGBgYoFAr8r//1v3jXu9513CX0j370owwNDdHb28sb3/hGwjAE4JnPfCYHDx7krW99a0ftTUlJeYygUlJSHpJ/+7d/U6VSacn29773veqCCy7o/PvVr361KhQK6o1vfKO677771L/+678qQD3vec9T/387dx4SVfvFAfxr4ww66ogLmksqaU1aKlloImFQKgUhWBYkLaihGRZE/VEK5pYSpC0I5ZJGmf1jUximJoQLguJChk7quKDmkAsVmWYu5/3jh/d1cqx8tZp+nA8Ic4/3Oc+Ze694mPvcSU1Npc7OTkpOTiaxWEz9/f1ERPT582fasGEDhYeHU2trK7W3t9ORI0dILpfT1NSU1noGBwdJKpVSTEwMKZVKUigUZGlpSQkJCURE9OHDB0pKSiJ7e3tSq9U0PDysNTY0NET6+vqUkZFBvb291NraSllZWfTp0yciIsrOziYbGxsqLi6mnp4eKi4uJnNzcyooKCAiooaGBgJAlZWVpFaraWxsbFGtMzMzpFarSSaT0fXr10mtVtPExAS9fPmSAJCHhwdVVFSQSqWi0dFROnPmDNna2lJpaSm1tbXR8ePHyczMTMg9P27Hjh1UW1tLzc3N5OLiQv7+/hQYGEjNzc1UXV1NFhYWlJ6e/t1zKhaLKSAggJqbm6mqqoosLCwoMDCQDh06RG1tbVRSUkISiYQePXokjHN0dKTMzEwiIpqdnaUtW7bQrl27qKWlhaqqqmjr1q0EgBQKBRER9fb2EgDatGkTPXv2jDo6OujgwYPk6OhI09PTWq+vBw8ekIGBAd29e5c6OjooMTGRZDLZomtNJpNRdHQ0KZVKKikpIalUStnZ2URENDY2Rvb29pSUlERqtZrUavWSx4Ixplu4OWPsJyynOXN0dKTZ2VkhJpfLaefOncL2zMwMGRkZUVFRERER5eXlkVwup7m5OWGfqakpMjQ0pPLycq31XLp0adGYrKwsMjY2FubOzMwkR0dHjXHfxpqamggA9fX1aZ1n3bp19PDhQ41YcnIy+fr6EtG/jUdLS4vW8QuZmppSfn6+sD3fZD158kSIjY+Pk1gspsLCQiH29etXsrW1patXr2qMq6ysFPZJS0sjANTd3S3EoqKiKCgoaMl68vPzCQCpVCqNMVKpVGhOiYiCgoIoKipK2F7YnJWXl5NIJKKBgQHh98+fP9fanOXm5gr7tLW1EQBSKpVCLQuvLx8fHzp9+rRGvX5+flqvtZmZGSEWGhpKhw8f1lorY+zvwbc1GVtlmzdvxpo1//5pWVtbw93dXdgWiUSwsLDA8PAwAKCpqQkqlQomJibCGjZzc3N8+fIF3d3dWudQKpXw9fXVuFXl5+eH8fFxDA4O/nStnp6e2L17N9zd3REaGoqcnBy8f/8eADAyMoKBgQFEREQIdRkbGyMlJWXJuv6L7du3C6+7u7sxPT0NPz8/ISYWi+Ht7Q2lUqkxzsPDQ3htbW0NqVSK9evXa8Tmj/FSpFIpnJ2dNcY4OTlprCP8Xh6lUgkHBweNdXS+vr5a911Yr42NDQAsmbejowPe3t4asW+3gf9dayKRSCPvj94zY0z36fbKW8b+QmKxWGNbT09Pa2xubg4AMDc3h23btqGwsHBRrqUWnxPRojVERCTk/lkikQgvXrxAXV0dKioqcOvWLcTFxaG+vh5SqRQAkJOTAx8fn0XjVouRkZHweqn3oO39LjymPzrGS1nuufrWfL3f7v+jueb3+V59S53fpXL+qFbG2N+DPzlj7A/z8vJCV1cXrKys4OLiovFjamqqdYybmxvq6uo0/mHX1dXBxMQEdnZ2y5pfT08Pfn5+SExMREtLCyQSCRQKBaytrWFnZ4eenp5Fdc0/CCCRSABAY8H8Sri4uEAikaC2tlaITU9Po7GxEa6urqsyx2pyc3NDf38/hoaGhNjChf7/lVwuR0NDg0assbFx2XkkEsmqnRvG2O/DzRljf1hYWBgsLS0RHByMmpoa9Pb2oqqqCmfPnl3yFmVMTAwGBgYQGxuLN2/e4OnTp0hISMC5c+c0bqn+SH19Pa5cuYLGxkb09/fj8ePHGBkZERqhy5cvIy0tDTdu3EBnZydev36N/Px8ZGRkAACsrKxgaGiIsrIyvHv3Dh8/flzRsTAyMsKpU6dw4cIFlJWVob29HSdPnsTExAQiIiJWlPtX2LNnD+RyOY4dO4ZXr16hpqYGcXFxK84bGxuLvLw83Lt3D11dXUhJSUFra+uyn7h0cnJCdXU13r59i9HR0RXXxRj7Pbg5Y+wPk0qlqK6uhoODA0JCQuDq6orw8HBMTk5CJpNpHWNnZ4fS0lI0NDTA09MT0dHRiIiIQHx8/LLmlslkqK6uxr59+7Bx40bEx8fj2rVr2Lt3LwAgMjISubm5KCgogLu7O/z9/VFQUCB8cqavr4+bN2/izp07sLW1RXBw8MoOBoD09HQcOHAAR48ehZeXF1QqFcrLy2FmZrbi3KttzZo1UCgUmJqagre3NyIjI5GamrrivGFhYbh48SLOnz8PLy8v9Pb24sSJEzAwMFhWnqSkJPT19cHZ2fmXfD8bY+zX0CNtCxkYY4zplICAAKxduxb379//06Uwxn4xfiCAMcZ0zMTEBG7fvo2goCCIRCIUFRWhsrJy0RfcMsb+P/EnZ4wxpmMmJyexf/9+NDc3Y2pqCnK5HPHx8QgJCfnTpTHGfgNuzhhjjDHGdAg/EMAYY4wxpkO4OWOMMcYY0yHcnDHGGGOM6RBuzhhjjDHGdAg3Z4wxxhhjOoSbM8YYY4wxHcLNGWOMMcaYDuHmjDHGGGNMh/wDQAuYNTed4vIAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ref.sel(range=slice(0, 5000)).plot(y='range',\n",
+ " cmap='ChaseSpectral',\n",
+ " vmin=-40,\n",
+ " vmax=40)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can also make this interactive!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:param.Image04834: Image dimension time is not evenly sampled to relative tolerance of 0.001. Please use the QuadMesh element for irregularly sampled data or set a higher tolerance on hv.config.image_rtol or the rtol parameter in the Image constructor.\n",
+ "WARNING:param.Image04834: Image dimension time is not evenly sampled to relative tolerance of 0.001. Please use the QuadMesh element for irregularly sampled data or set a higher tolerance on hv.config.image_rtol or the rtol parameter in the Image constructor.\n"
+ ]
+ },
+ {
+ "data": {},
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.holoviews_exec.v0+json": "",
+ "text/html": [
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ ":DynamicMap []\n",
+ " :Image [time,range] (reflectivity)"
+ ]
+ },
+ "execution_count": 48,
+ "metadata": {
+ "application/vnd.holoviews_exec.v0+json": {
+ "id": "p1893"
+ }
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ref.sel(range=slice(0, 5000)).hvplot(x='time',\n",
+ " y='range',\n",
+ " cmap='ChaseSpectral',\n",
+ " clim=(-20, 40),\n",
+ " rasterize=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAHTCAYAAABiAb/vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9fZBkV30ejj/n3Je+3T3d07OjmZ3d0S5ahIQACbCRAYlvgASwSUyIy+XYMW9x4vDDITbGL8HlolwlvjbCpsqYGBwcsB1jg4OpSpE4iUOM/bVxCK+FUUAyIIMXVlp2NevZmZ2e7r597z3n/P54zuecHoRfpF2tJPY+qint9vTLueeee7fP83k+z6Occw4tWrRo0aJFixYtHhHQD/cAWrRo0aJFixYtWkS0X85atGjRokWLFi0eQWi/nLVo0aJFixYtWjyC0H45a9GiRYsWLVq0eASh/XLWokWLFi1atGjxCEL75axFixYtWrRo0eIRhPbLWYsWLVq0aNGixSMI7ZezFi1atGjRokWLRxDaL2ctWrRo0aJFixaPILRfzlq0aNGiRYsWLR5BeFR/ObvtttuglDrws7GxEX7vnMNtt92Go0ePotvt4rnPfS7uuuuuA+8xn8/xIz/yI7jqqqvQ7/fx4he/GPfee++B5+zs7ODlL385lpeXsby8jJe//OXY3d29HIfYokWLFi1atLjC8Kj+cgYAT3rSk3DmzJnw87nPfS787s1vfjPe8pa34O1vfzs+9alPYWNjAy94wQswHo/Dc1772tfiAx/4AN73vvfhIx/5CPb39/GiF70IxpjwnJe85CW444478MEPfhAf/OAHcccdd+DlL3/5ZT3OFi1atGjRosWVAfVoDj6/7bbb8F/+y3/BHXfccb/fOedw9OhRvPa1r8VP/dRPASBLdvjwYfzCL/wCXvWqV+HChQtYW1vDb//2b+P7vu/7AABf+9rXcOzYMfz+7/8+vuM7vgOf//zn8cQnPhEf//jH8YxnPAMA8PGPfxy33HILvvCFL+Dxj3/8ZTveFi1atGjRosU3P9KHewAXi7/4i7/A0aNH0el08IxnPAO33347HvvYx+LkyZM4e/Ysvv3bvz08t9Pp4DnPeQ4++tGP4lWvehU+/elPo67rA885evQobrzxRnz0ox/Fd3zHd+BjH/sYlpeXwxczAHjmM5+J5eVlfPSjH/1rv5zN53PM5/Pwd2stzp8/j9XVVSilHoKZaNGiRYsW3yxwzmE8HuPo0aPQ+qErcpVliaqqLvp98jxHURSXYEQtgEf5l7NnPOMZ+K3f+i1cf/31uO+++/BzP/dzuPXWW3HXXXfh7NmzAIDDhw8feM3hw4fx1a9+FQBw9uxZ5HmOlZWV+z1HXn/27Fmsr6/f77PX19fDc74R3vSmN+ENb3jDRR1fixYtWrS4snHPPffg6quvfkjeuyxLbHSXcQEX/+VsY2MDJ0+ebL+gXSI8qr+c/cN/+A/Dn2+66SbccsstuPbaa/Hud78bz3zmMwHgfiyVc+5vZa6+/jnf6Pl/2/v89E//NH78x388/P3ChQs4fvw4/vSuX8Cf7q6gNAovfdw+5kbjT850kWtg0gBrHcA4YNwAuQZSDUwb4Pplg0mt8S1X1egkfWyXezhULMHYGrWd479+tYvlHFgrLD57XuNQh6/LNFBb/hzvAxdq/nnaAJ3Ev/cQuKrb4MwkxT+4OkdtK7z/y8A/v34J//Ur+9irgX4KXKiAygI9v2rmBljK+P9eyvfSChjXCrl2SBQ/Q2AcsJwDzgG7FVAaoEgOzptWfOxCFceeKKCb8s/9FDhXAoc6wH7N958bjuvqHnC+AhrL99GKv8s0YB2fUyR8n0zz99MGGGTxsbnhe+9WfEzGvVbw/6Xh8Y1yF8Yu85LrOB7j+OdExfe4UCks5w7WAaMcOD/ncVkHjGvgSA/YmXMc0waorEI3cdAKOD9XONJzODVWWOs6GMc5nxuukSLh2BoLTBqFqwqH/Toep/VjB+LxdhI+LvM8bRDOmVbAzJ/PQQacnfGY54bnsLIc01rhwuca/16ThuPuJHwMiPMunyHrROZmmDkc6vDcypqaNPzMcc0xnJ8rHOo47FYKg8xh2nAsANdCooBzM85PZePc9/zasQ74/z1hFe++ezuc29LweZVVSBTHUNs4Z9OGz5NzKe8DcA5Ko5Bp4Oq+w9aMa2fij1HGJ2umnzpMGn5OL+VcXajiuVu8ZuUakPnJPHFiXTzf+zV/x/EDxinMDTDKHVYLYLvk+pLnGcf5mxvgVYf28I7tIZYyYKPrcHrK18pnHOoAe/XBa7NIgPtmCloBiXIY+PMknwHwOA91eJyHOg6zxq/9ucJ6zx2Yl1zzGpg0CieWHLbKg9fNtOF1d66M57CzcNyyppayg+fqUOfgvWpcx/WY6fj6xXMjv+cxcGyV5XP+qlQ41neYNDiw9uQ5+5XCoYLXqaxZOW+JvwfphX8qMg2cKxUSBRQJr2WZSznXgwy4b2eGN7zgRzEYDPBQoaoqXECFt+hnoXsRXwdmaPDjZ/8Pqqpqv5xdIjyqv5x9Pfr9Pm666Sb8xV/8Bb7ru74LAJmvI0eOhOdsbW0FNm1jYwNVVWFnZ+cAe7a1tYVbb701POe+++6732edO3fufqzcIjqdDjqdzv0e7y110Tc9rCbAoZGGdQbdcQ/WASsaOLpksF0m2C+Bqf/C4FKgu9TANRrLyx300mV0GoduMoSCQmn2cWLKO8ug0+BEkkIrYNlf6LsVcLTn8LWpgk0Aa4GBv8HnBki6wGBQ4S/rHMNhDo0BTFFiMOyiP7CYlsBSB7A1b0555pBrIPdfSFJ/ExopfnlaMfwHCuDvtYpffviPBHBkiTf/0gCbPT627avASxkwn/Oxvv9HKdVAY4BzjUKx5DB2CsMuvxhsFsBWCewpIM+AulHIE/7jMa55gy4NcMh/GeHnKgwzh82M7z/2/7isZTwWoxUK7TDyN/Da+X8YAaxrzkO3wxv2qBvn+aoiftmR41n1/9DVtcLcAYPMIc+AQ11+bqKALFeYpQ5F5r9EZQqrmcOq/6LYH/B8He3wi91WqdDvOOTWjyV3SC2wkgED/6V3CZzDc6VCph1G/h8944BcxS+BcwdslwqbyzxeADg9BXpdHrPVPIa+n8dxAxzpAp2Gf0/B90uUP5/+GPqp/yw/NwpA5tfMIAMK/z6np/6LrwYG+cJrax7j0K+fVT/Pw4Kvzxe+TBQdfv5jh8DZqcIgd+j7L0DjGhj58zpaHmKclhjl/KIAP4a9mmvWJkDi39M6YOS/OMk6yMH3zxKEL+i5Bs7MFPoDh7EFRj2O94g/79YAq+BjQ/DYKgusF4Aq/aYDQKOAfpd/3zUK6yv80rTZczg7U9joOmzPeS3cVypce4hfaGqrkABYzR225wqjwmFigN7Abxj8Opg0/Aw4YLg0x6DuYa9WuHGlxjxP8ZV9hSJxGKaABXDTmsGdO0n4wq001yPA9VVZoOfnqtL88rnsFIrU4UgO3DtVWF3iNbrqN5/dFOj7tbJbAUUGbHaAMzPAdRU2CofdCsgToG6AMgE2evELaKJ4b9BOoZ/xvfcNvzAVfvM1zIHdicLQb2yG/nWZ5jnMcqBQwNgoIAU2hy58Sa8tkGQ8hpH/snbNgGOdQGFYOGQaUDZ+qd7M+bq9Gjji7yeyketnvG9WlvebJHxJU7hmyC9xtfUbVcR75FIev5xfDhlMFym66iK+DjxqleuPXDzquzUXMZ/P8fnPfx5HjhzBiRMnsLGxgQ996EPh91VV4cMf/nD44vW0pz0NWZYdeM6ZM2dw5513hufccsstuHDhAj75yU+G53ziE5/AhQsXwnNatGjRokWLRyt0cvE/LS4tHtVfzn7yJ38SH/7wh3Hy5El84hOfwPd8z/dgb28P//yf/3MopfDa174Wt99+Oz7wgQ/gzjvvxA/8wA+g1+vhJS95CQBgeXkZP/iDP4if+ImfwB/90R/hM5/5DF72spfhpptuwvOf/3wAwBOe8AS88IUvxCtf+Up8/OMfx8c//nG88pWvxIte9KIH1amZapZc+imgVYJMd5BrYHuukGtg1mhsz0m1Fwtlsb0qgXV8jVYJFDQUFBKdQasEZ2fA4V6Ns9MUq4Ulc5K5wAh0EgutZNfON10ryID1M4vaKqx2gGlzAVrxSivNPnqpw1oRmYXNHksWUq7aqThO45mGr+yr8GdBbeFLAvDUP5kugMd3cl/h7AxYyYFhFkthtVWhnAP4XXHmcKQLrHZcKE3t+fJdz5cIE+XiLtn/X5gQ/l1hvXChLALwtcJS7VZA15cbzs5YfpAShpQyi4S77UHmWTF/TrdKMmYzE0urwqD1U4fNnsNKTqZlsbw6zMj0HOkKs8Rd9rgG9mo+d1wjrIlhRpakn3IswlSWhkzauObzrePnFgnXlMzFIooEeMKID+5WHO+qZ6LWCp4v+Xxhke6dcg1JGXrxvYSB2K3IzO35suTMcK30Uv5uvSBjImyqdXxM3qOb8ByPco6hSGLJUMqLi6VxYVbWui68xvqSkfWldI0E/dT5daPCsXBt831W8oPHJGtQ1tJa12G143xJLJbNJ40KTJpxMpec89wz1XKswMFrQBjNwpfe+qlnhXsOWyWZoV1fAt2ryQyemanAOkt5rJ+6sKZkHBNfWjzS5RrNNQBnwxzefSHFIOPaLI3y5VrgSL9GZRWsA3Id31dYIZn7QQY8bsD120+5vk9NWL6VNSj3POPLjzwmvn57LnPAY6yswl7N68463hPkepF5XC9i6XCQOc+I8zyenfH6kLKirFNhzxLFNZhrh2nNc2QX5n7xvMvcZZqfafx5ls+WNVlZXjNbpQplaVmn/EyW47fnnN/NPs+vzOXM8L65V3MsM//Y5YLSCvoifpS+fGO9UvCoLmvee++9+P7v/3781V/9FdbW1vDMZz4TH//4x/GYxzwGAPC6170Os9kMr371q7Gzs4NnPOMZ+IM/+IMDNfxf+qVfQpqm+N7v/V7MZjM873nPw2/+5m8iSeLd+b3vfS9e85rXhK7OF7/4xXj7299+eQ+2RYsWLVq0aHFF4FH95ex973vf3/h7pRRuu+023HbbbX/tc4qiwNve9ja87W1v+2ufc+jQIbznPe95sMNs0aJFixYtHrFIFqo0D+r1rebskuNRXdZ8NKKTsOS40rFQUL60yXJAZYFuan25gKt9vSAFf6hokGkHBV5Bqc7hFlSYN69VaCyp/7mhAPxcSRHxaoclQimvSAliblgG2Jpp7M5ZNp3UDo2r8PzNOe6dzINwVzr9dr1IVWj71Q5FypOGJc61Io5JmgGkLCgCWhFqJ74k1k+dp/RZvtieS8eaCyUgIHZN7tWxNNdPWcbrp7FsuV7wc85OVSgtjPL43htdF8oVUrIDWIrZnbMbTTrx1kIpQ8qWLFuMcuk45HHI+5UmliAXuz2lXFL5Eu+6Fxb3U5ZJpAy4VcZOxt2KY+km7O7rpbHsaxwf3ypjCU4+R0pbk4ZlFCm/rHZ4LFKa+vJeLKXs+HMsnb1nfRnpXBnPtZz3aQOs+I600vC8y/mQ18tnshQdyzfW8ffsAI3vK2VjKQUuloasP16OW4UGE66dWPLMF+5m23OF2qpwfqUjDs7y/2DpS8q+w4yNCYBvLqnjvEr5Us61lOdqyzLml8ccU6ZduE7kOUe6Lhy/dB5LOVBKg4Mszpc8lvumkmsGDY50XXg/Xj8O60VsOhlmDpW/9gcZX5trnpfaAhvd+NzK8gc69SVpShu6qfXny4XSswbnfrUT17Vcv4JxzbVy71SFkt9WyWaJXB/sMpX1IfMiZca9WoVuUnl+rl0oH8oxJornRmQVIiWo/TGt5A7GqVBqHGRcB3u1OnAOKhs7O48tOQwzFxpH+J5sJpJzOW0O3rukVCn3MVl723Og9o0FZ2cKMxNlBMOMcyvVPzmXte8o7SYcQ65jk0muL983nospacpPi0uLRzVz1qJFixYtWrS4OGh90O7jAb++Zc4uOVrm7DIjURqJAu6daKQ6h1I6CLCvGZAdE9uC9YK7MfpnOZwcJ7DOIFEZKjMLLFqmC3QSh49tZTjSM1jrNkFgrZXzTJPCegHsVMDJfe4Sh7lFpoHNvsHcaHQSB60crDM4vmRw3zTzLFxsIhARvbSeTxvuCsmOueA3JKzDuZLsjQjuZTct4miAx8rducyRtOor30ygAsN0ruSueK+OgnsR50uzwZ5nOEYd55kChVMTNgGMchm/CqL3vVr8zhy0jmyOCL2FyRHWYuotJEQALgxOP+V7GM82UBTONzs7U0GQX5rYILE9l/MUP3fSkLG7duCChYCwWacmKjAvk0YFFmGUR/8ywSh32PCeaLnmceaeUbOOlgNkp1xgooQRuHbgwnkS4bLs9ve8P5mIvI94X7G9miLvQcbxyNxOvCfUZi+KuLc9QylsnzQWyOt2K+Bw12GnUuhnFsYpnJ7SP2/sP0fY10xzDc48E1wkZFHIRnP9CYMK2yycv8icakXB/D88Rvpss7fIfCrs+PMonzGuo8cbbTlcYO52q9i4sFcjvHaRbRnX0pjC55aGDM9uJWwm5+Zpa3lgq49043kWEb0I2YVZEkuHvTqK5s+VCGyhNB8gSQMDtJw7ZNqF+wHgmzO6Cqsd5xtu+F65jqzgZo9riWJ4rqGV3IXzIQ06lY1srZxnabzhuuPY132DUjeJNii8HmJTkXH8jLMzFRjH0UIDBxk3jpMNNM43z8g1Edf5esExyLUt97fKX2u8l5ABO7cg9F/tOM/YRyZYWLVeJu/pghecVpEhXcnJpEpjjTSMyJwPsshuHrq/E9M3FU6fPo2XvexlWF1dRa/Xw1Of+lR8+tOfDr93zuG2227D0aNH0e128dznPhd33XXXwzjiy4v2y1mLFi1atGhxBUMn6qJ/Hgh2dnbwrGc9C1mW4X/+z/+JP//zP8cv/uIvYjQahee8+c1vxlve8ha8/e1vx6c+9SlsbGzgBS94Acbj8SU++kcm2i9nDwNuGDXYqRQcqCGzjozWWrdBJ3Fh5/v5CwqHu9yxZt6Cw7gGiUoD66aRIFEpaqtww7LFl/Zil6ns2hIFfG2qcGoS7QLonk2dyd0XEnzhgsLUazwSlaGT9DE3fI3s0E8sRbZrcRcsLNJGl7tbYbRoZUHbAWpTon4nUdw5Sts+f2jUKOxcroWFkrZ4byrpWYBcUzc1yhFsL0SntNHlztj61xfelkHMZgeZw8n9qMcSZuFINxqxilZto+twbqaCAadoeWR8AMdf2cim7VbcSYtFxvVDR6PMJDI+6wVZmc2eO2DSe6RLBvLkvqLZbBpZnGuWXNAtAQiWDsIOReaFjJEwr7LrBzimmaGTubAMwlSsdqKFgDBkwgwKyyX34RXPcm3PmT5xvE/bh3PlQfuE2lLvJwxcP+W5FAibJ7qdInHe1kXh6Ws1JrVGrh1u9HYfg4yfI+MZ1yrodmjNoBZ0jS6wP3u1AkzjtT1cRzLnuabmcJirwEyJmbCwcNQCxWSI015nJWyUMN5iuTJpxB7GBa3a4rkqFjSDmXZYyR1GOdefMIij5KrAtN07jXpGPscdsBcRVmhRv1bZyNStdiI7CZ1i4Bnv1cJg1CHjPq4Vpo0wdKthvHJd9dJoMC1zJEynMKIArSB2q3hdLbJLW6UKejJZf2IYLfY3ArFfGeUH114/dX6tRC2jrFPRl617o3p5fW352Ym/h+xU/P+4xoHrONfADcsOtVVY8ayoaGknDbWs8ny5v868Jm/Vs/VyLs6VKqzv01OyxWdmCtsl7W7k/rDaiakUotE9V+KyQStf2nywPw+wJPoLv/ALOHbsGP7jf/yPePrTn45rrrkGz3ve83DttdcCIGv21re+Fa9//evx3d/93bjxxhvx7ne/G9PpFL/zO7/zEMzAIw/tl7MWLVq0aNGixUVjb2/vwM98Pv+Gz/u93/s93Hzzzfin//SfYn19Hd/yLd+Cd73rXeH3J0+exNmzZ4N9FcDUnec85zn46Ec/+pAfxyMB7ZezywytEixlFt3EIVEptEqopZopLKUWnYTmkCeWohbj1ISdZ9Q31NBIkOsuEpWF9+0kFl/dF8bAYW7IYDRW4aZDDY72aN4qRpb9FBjmxptzRpNL0ZYoKPzlWAczSK3YzSYGkJNGhU490WFsz+MO9JzfHYuWbK9WKA31G5UV3U7s7tutYibdovHj8X7UBq12ogFkaagDOjFwgSnY7DlvBsqfM7O4G13schR91XrhvIlr1I/s1cDde9ztrnYcTk3IBhxbisfHrjAEY9e9WoX4ppWFXL1JE1mo3YrP5bxwjrbn0WxUGBzrIstUW7JBwpJt9hy+PFaB0QGk+00F7UumY9fXMKOpaJHw3InRKTtPffSUZx1jp6TPdq35nL7PJtQLzM8oJzuwVUYW5eS+dAOT9dqeK5ydRm0azxnCuTeOv+P88XWDLHbFCvuU6WiK+/kLXEPjmvrB7bnyXXkOJ4bzwBod77vAHgrLKGwrkjTMd8ydpZaP11t2wGBV5kbOqRgDDzIyXfmCXuneadQPyRoTg2KuR+XZSRdY52EmrFPUy3GteNapmqJIhKGJ8T+np2RGVzvA7jzOs1zfcgzGRbPjrZKvG9cAdOqZG3ZqdrTFMDPY7HH9XL3EDF/jyO7kOsagCRJFlne14w4wWvkBZhjhGpM1cKTrcLwfGUIgmvgKuyeGusKIPXbYRL0cEFg/ud4XGT0Zo9w35V4jZs/C9krnphjzypoYZMCXx7zexMxX1kNtgQ3PdBvH+dyred3PjEI34ZzLGKTCMMpp8isG10f8PEv39t0XpIISGebLiUtV1jx27BiWl5fDz5ve9KZv+Hl/+Zd/iXe84x247rrr8L/+1//CD/3QD+E1r3kNfuu3fgsAYxcB3C8i8fDhw+F33+xouzVbtGjRokWLKxiJ5s+Dfr3//z333IPhcBge/0b50gBgrcXNN9+M22+/HQDwLd/yLbjrrrvwjne8A694xSvC874+V9Q5d1myRh8JaJmzFi1atGjRosVFYzgcHvj5676cHTlyBE984hMPPPaEJzwBp06dAgBsbGwAwP1Ysq2trfuxad+saL+cXWakOkdtlc8BZK1lkDlkCcsrQMybG2YsPYoFwVoB7NcJYCokKkWiSHwa10DDi8l7BntVgtNTodQdjvQqaOWw5EuXYukwyAxWO/x8KYPMjYaDRWVnwSB2q+T/eynHtVfH1nkpDQCxPby2LC2JKWfMDORxSGbinhfn09TVBUNKsSSYNGxIWBQPJ4rlLAppnc+SRCgXSrlIDCp3K5Y/afwaBe9iKrpTKexWCKXbUR4NUWtL+4Khn59F6wwp00hOo+T+SRkzUcB4wUJByjQDnw0qJUaxcZAy5dZMhfeU8uFqB9guxUIjZnpmXpzO1v74XJ4LiuQ3e7SjWO3ELMlF8Xo3ZIUeLD2JwPfkPi0jpKQpdg2LZeL1AsFKYqNLoXU/dVj1RrucUxcaJGiN4kLpWObo7CyuB86LCwa0YkTK8qoL9hIi7u6n1pc5WaI8PVXB3Fjm/ymHjL9eRJgfTXsli1HekyXrOJYiiWa4YisjNhKLJr0b3Zh/KaUwWVdSTh3XKhi5ShlXjFB3q1iCNQ6AabzJswpNGbHphY0O1wxcKINLc4PcS9gME0vEo5zXsUr4IacmkYXoJNZf33xMI8ETRjZc3+dKdcBgGIi2NSxJRwNYll2jMbScB8m/nC2UfycNr9FM817Dkro0OThc3TfBMFveXxp7aNWiwrmJJU5KNUbemFbWtVxvYqOzWKaVe6CsbzHfFosTGdekiWVOMQQuDXBiyeHeKe1H5B42zNgMtVux0WLSqAMldX6OQm8hU7ifRquUy4XLbUL7rGc9C1/84hcPPHb33XeH6MUTJ05gY2MDH/rQh8Lvq6rChz/8Ydx6660Xf8CPArRlzRYtWrRo0eIKhkrYdfmgX/8Av0j+2I/9GG699Vbcfvvt+N7v/V588pOfxDvf+U68853v9O+n8NrXvha33347rrvuOlx33XW4/fbb0ev18JKXvOTBD/RRhJY5u8zIdIFEAdcNRXivfSs1mabask17q1TBiHJcU9g/yGgSC2dpo6ESpDqHVgkshNVQ2JolON7nbn3WaPRSi6XMopM4HO9Ho1QA6GcWK3m0M9itEiho7M6bsIuP4u24OxZWgXYMKhhsigHtVhnZodimrgJDIW3xleWuVHbrK3mMbRErC4nZGdfKR+a4wDr1Umn7jwpaMWYVG45pjSA2355zp7rRFfPSaPQq0UT91GGzxx22MAk8bufHGkXXi3FJvZTCXomh2ei5+7FREvUknydzJvYOm/34GmE8jAOyJJqVZlrGKUa3B2OSaNJKdknMd0WILezebkVLALFyEMsEieChZUNk8bbnnOf1gs8/M1PBjuLMLLK9Ymsgdgjbc3XA6HOvlqgqCtqloSSeazmHjBeb+wgcsQKRKKvMm5XuelZ0bhlVJtYHEoEl7EimgaesTsO8VlaFdT0zKjBO1pnQSLBoGyNC9UTF9SisjJzbxw0c7thW3g7BhevkSJdM0pEuWZS1IlqYiFGxsEJiXMvj4+ePcl4XwlySqXLBluZQh3Mi8VBbJX/PayveexabFaDTwGglyvnGAeXf36GXki6zLrJ+vH/FNSxC+p2KjS7SpCGGssYL3Pl85cfHJhUR8kvslUQVybxTaO9tYSo2UUkEXGXZVDTIuF5WchcsMkqjvI2NC/YdYowrzS+l4XWx2uHrxSg4C+8fLUGE3R15wb+cDzkPYu4s96xuEhuCZO645rgmV/JopyPmvP3UoZs4H73lcHoSqwffrPi2b/s2fOADH8B/+k//CTfeeCN+9md/Fm9961vx0pe+NDznda97HV772tfi1a9+NW6++WacPn0af/AHf4DBYPAwjvzyoWXOWrRo0aJFiysY9Ct78HXUB/Nd8kUvehFe9KIX/bW/V0rhtttuw2233fagx/Voxjf59/NHHqwzMI4GsPxzjav73JZOGw2tgCetsCe8NMrvpBU6ifW7MQVkBVJFxgyAN7JVeOpqgwuVDsxYaYDU70jnRmHWaKTe6mC9AGZGo5PYsGvPtMN+nWBuJmisCiaxK7kLzIa0t5dGhRbzXIsmK2pKgBjCDMCbeLrABImuJ9fclR7xZruLoe+rHbI/EkQuZrKl38Ey3kodiFOyLka4nJtx973WZQh8ZX0o+oKNx26lwrFsz/mcQYZgpArAB0+7oIMRFkC0RUUSdSibfTI3MgcS9SNzISzOotUCEOdpz9ttiImvdaJDcgcYTGFXgTiXpyYq2DyImaYYhNaWbMTJ/chUDXIXjGvFioRrwwVdVeUtXKz/vHunyrM+DhtdPiZsl1gtiF7POHjLmMWYJYeyIes0yNwBM9pFHaJEl8nxjf08S0SVaIz6qcNerbBe2MCU5IHNdAfWaaI0kOTBBFc0i7nm8fZS/oNAg1OyM2IeK3ojMVqVUOtpHXVkp6fAIEdgabbnPO9kJ6P9iuiV5Ef+TRTNHK8XavfkmpB1CUStYt+zxn85Vj4ySoU1umiYKwwbmUFvztodYpiJ7Yjy9yYVmJ5+agFn0U0tvjIWraVc+9EuQvSEg0wilyIzLgbEtY1rqg4VgHhPFEZLNHxi0CusrXHA4W4dbFW4piS0/qBmdZQ7r6ONLHPlr/MYdSXrhoyZMICMQ4u6NPnsIiH7KRYooqOV2DFagPD9hMGkPZHY4qjAkPYWNGv9NFoOzQyv3fUCWOvGasTlwkUZ0OqLK4m2+MZombMWLVq0aNHiCobWDzyC6cDrcWXYW1xOtN93LzNSnSPTDt3UYb8+j8rO8H/PJ8g0cHrCrXHHh/Vu9hz6mcUwc0i1g3UKWjnUdg6leOqsM9AqhXV83XrXINUu6NX+Yo/amo7f9W70GpydCatBHZp0OQ0z4M/+KsWFao77ZhmmTTRmlS5MYdOoaWFHouicxNjVOBU0F6KzkuteuqwWjWZldy9xL7tzFVgf2X3LTj3T1OxUVgWWZeYDpMUcdtIoHOmyiw2Q0GEXtHDHltyBmCm+HxmA3OuxAP5u4DUpol+SOKoY++N8wHKMqBlXKuiJaj9X0ybqdCR+Z+p1R6JlqSxZOoYmR0Zr0pABtN4QtLIxdkrYADG8lS5Miawpkqi3EUZSonYkvmiQkRndniucnZGdWC94nOyuFNNParqEVTu5r0J8FONm1AHTYjk2GqvGjtvjSy6wgrkWxkz5cxDjjU5PFO7cSVBZdiZWNnYXaiVrga9XSoVzMjMqvLesU+rgOrAgSz3MIrMIkEkZL7CYotMTrdxOpXC032DSqDA3AFCkUU9Y2djZO/XsoLyHhF0La2a9ropjoNaUuiNeP1u+M5LXOF93dqYCIy5roLLAjSvsuj7e53UvzLK89jFLPGczo/CYJYdhbmASjd2Kr2+sggUD0CUSaaWjAVPhfJli5OPTJGy+55nHnYrd1HKNnZkp39WrApMu8yTsr6zt7TmNt7fnKjDxosfqpbFbk13G1NLK2uqlUesl9znpspQ1Jobaco4l/k7W4eKfdyuF433nWXxZAy6ssXENfGlMZssuzP89+5GpF50aNZZRw9hNDrLu45qRXrvebHatcOG6ZJA8XzfKHToJWlzBaJmzFi1atGjR4grGRZvQur/9OS0eGNovZy1atGjRosUVjMUIpgf1+rasecnRljUvM6wzGOUGS5nBV/f53Xi1Qxr+z7bTYB8AkK7vJDaIU7up9SLnMTQSwDRoXIXGzpFqh25qsTtPcGaqg7hY7DSmjYZxwChvcLxPIXemHRorhrSxtf3Ufo5P/1UaynrSOi9lOQCh3LZaiD2DC4Jeiv9ZchCbByntiF2CmL3mvmwgRpe7FdDLvt6gNpYOpHyRKNoodBO2oZ+ZqSDuHeUOO1XMyzzS5XudnUVx+CBDyGiU8mJlY4akiNqlFCUiezGQFUG2ZFeOfb5motgUINYYUmZdNEOVUgkQW/AXheLRqiAKokWMDHAuWPJxXpDM13QTKd3ws0/uK4x9afTMLFocSLn4zCyWR8VSQX4nayGKvsX6hJ8jdh9iNyGlbjGblVJfN5GyqPM2CYtmojFrdb1wYV2IHUGRypyxxHeuZPlJGgKk2eHEEjMxxbhTmgVEcF9b2iYkOoODC7YhIuwWAb1xNF4dZDF7VUpY64XD4W7jc2Wjeeogi/maRYJwPDsVy3ZSvgW45oxjyVOMnCfBmJRWDbkGdufyOwVYdpbIueNcq9CYM8xoHC25qLLmSkN5QC8Fpo1ConidnCsVUu1gbB1KcXPDhqLSOJ99qpDqHDAN+pkNVhpy7YuNS65jdqtxHJOUtMUmRkrCYsEDwGeCOmz2WSbfq+M9gxYuUfYwrnnd7lZJWBeL523ipRebPfiGg2jCK/cdaQKQ7x6Spymm2FIelnKw3POkSUDWvDQXADwXcp1Lmbqf0raH1zPvQTu+MUDmpTS0rxl6mQVtP/h3yfHVvgls1vxd/1Vp8c2Iljlr0aJFixYtrmBcbMelbsualxwtc3aZ0ThGKaVecJrrLo4vGeQaeNLIYpgbTOok7H7nRuNY32FuNGaNprDVzIKwOVEZUt1B5kXFw9zg2mED69jmX1sadN65o7HSMZhbHRiYTDt88lwaGIjKcrd/107qbQqiiSxjmmgXIMJWMZoUm4hcO6zk0QKC7ef8LNntbs+5OxzXYt4YTV6lcWC9iGwERepRDCwCcmm3lx25MAN7dbSlyLyB5E4lwnnnRdvwIn6HszPuVHtpZKS25wonljheGmGqIG7fKvnY9pyibRHEC8sVTGO1zB9ZCwryo9hdBPtiVcLdNBsWgINMVYyjcmHnPsgQLC5WO9GiY3tOBo+RTQ7HllxgGisbGYlF8frBuJzYhHF2xoWyVSqcmfnW/5kKgu1Fw00xraV1RDTwrHwzh7BHwywya8K0SZzX6WlkO2YmGnkmiudVWEKtGGclzBhNW2OGn0QWVVZMkclQKV96WbRKkJgjMXh1cHjMoA7RPRIVtla4YBMhbOEoF1PiGEclZq3rBSPZpHlCXrPZi6yPGJ1K3E83oYVHkfJ364UDnMXLrmMjggjUxbpGDH6HuQlrTphrgFYp48Dk8JjJJsuYVGgk0srhXJlhteNw/dAhVTngeD+S13/2fDTc3at53IwOk5gi5RtNnI+c4meLFY2wb5s9F5jL7YXmHzYQRMZT7hnrhcPMM/9y3sS0OlG8Ls+VYhYbWWexc9meRzZxlLvA/PVTsq5i0SGRdLln6ycLzJWscbLgvH+dHCucnkQGdtIojHyUmjB3ZN94PUpDRGlUYNOlKUcY3iLh+GgM/Nf9K3Lpcbnjm1r87Wi/nLVo0aJFixYtWjyC0H45u8xIVIpearE7T9FJbHj8WJ9GsR0f4SRGsd3EopdaJMphKTPQfndvbA3YBpkiY3DfLEMnseimZOUGmcOowx3qXpWgSLhDnjU0ng26ngSBJRtmDsVCDIwEiotWQyJpRDv1lXGMuZl5w9wvjZXXfzDWR1gvMaOkpimGMUsUCvU90W4BiBE9QGRDVjtkHySqZbUjNhj8nXHU+4gmjOP2+hXfOi/xOIwiiqHRYvlwvO8CUyS7adGVAAiWB/3UhUB1GlhGE0uagsZA8C/vkW1b1JFJmLeYTYrB6UaX85lpRiwlygU9G7U9MXC+l9JeYmbYwi9alm5CM85pA/84d+liBCrHJCzel/dU0ESJTlAMPcUKoEiA1cKFYxNGTwxmhZkRBo7WIHHeas/cxaideJ6BGGgudgLUdylvzRKtJWrLcQjrR1Y1CyxKZXFgTkVPaZ2BcxZPXW0wrmJ00GIsj4LCfdMMN6/VPh6I11A/M+imNkT+CDs8yh02vIHymRkjmsR+pEjin+VYS+ONkI1C2UQtZuVZmbWCr+kmkTkZZFdhs0eNmcSjcd44B8PcBB2kGFdTKxnZaBnvE0c2nI+VnJYg+7WGdQrnywTjGlgt/AXobGDJMw30s8XAbhf0i5W3QmHQuJwj5bWbZJvFLJaxXXzOzPB60Cqu9zMzrmO5foVl/eS5NISry3UZNYV8v9M+jkzWoqxlCTkXWxSxnqktcGoSI5Uklk2sOGJ8V2TpxPy2stRErhYOu3MVYuaEsT3eJwMmrwN4LUtYuug5hXkT9l3YwUmjcCiSwQ85VALoi/hRre3HJUerOWvRokWLFi2uYFxsaVK7tqx5qdEyZw8Dah+J09EOxjXo+pBh2d12U4sjPRN2al2/0+pnFvu1hgODz2Etajf34efA7pzftTPtcHYau+Dum2bYrdiV1U1t0EMA0o2kQkeWmJYKq0J2SPkOsciCjCt2akqIdu71OOuF8/qPuMO3DtjoImi7emnsqmOgdtR+aRVjbPZq5YPNI7u1VZKdA6IGS8KXz8y4CxYzWtn9Jr7r9NiSC/FLuUbY0cuuXvRMW6WErHuWxsdIyVwwaoU7/NUOGcJB5jybwGMWtk46P0ed2Mkl+hXZUVMTw/db8UagEnu00SOTemo/xmLt1bFj9Kxna2JcEZmOmaE+ULBTkVEEqPnh56qg7Vn1XatbpQpB4Cs5Oz5zr5/braIBqLAKe75Ldddr3IRpkw7YrRLYqyLbKtpCardU0PaIJko6gjMNPGbJ4hpvWMsOUWoa5TOFZRA28tbDNf7B0fkBpkiYl0yTcXZwOFQ0WC0iI3qk64IGSCmNUafB+TLFtAGesV7jeN9hpWPQTwvcsDIP2inRA0qckbWR/ZRQeDEkBXiutkoyR2XDruRJo4KxrmjkpLPvSSsNnDPouBTjOmr5xJwY4HV1VdGgstEEWroTrx0wEP30FCHSaNQx+NJeAqU0dvzYducJOtrir8oE1w2dX78poFNoxQ5OrhV3v7D2nSoGjedeuyX6SNFk9lMxcpbrhM8RVlwY391KhTgvuQdNGq7lSaNC1JZ8vnFko4S5XPFxZGOvYZVucGHqFrum5TqcNCroQMVQW/RsPIfRcJjXhcKkjoxzP+V5XAyVJ3svbKALGrjN/kGN7CgHsq9jnCaNCobX58qv/5ejxZWEljlr0aJFixYtrmBIefJBv/7SDaWFR/vlrEWLFi1atLiCkSiF5CLKmolty5qXGu0X3ssMBY3aMuuSf1fopRbXjUrMTBQpd1OayhonJpHSbp5AQaMyU8BZOGeRqBSZdvjc+TQY2G72WWYDEMpbxins1xq91PoyId93JXfeOiBm922VytsgkNpPFMsUUqJZ6x60FQCiyaa0plMYHo1RpVSYKJZDZobidLF2EEuBE0ssYSXK+RIn319EvmIyKhYc23PlS5kKZ2YqtORLabTyNg1fGVP0Lrl/UgoSWwMptYoFBxBFzCIypkUGGwJWO7TAEPHzXq1wcl+OR4XM0tyXaIo0GrxmOoqgE8XS2mrHYa9mWUOOVywUhr5xgiasLI9J+U/MRGnbwXFQUK6C9UCiuB5WcofT01gWFlRWBcG02CKIQHrHi7hZKj04Zyd8Tukwo8Gp2Bb00lhSHuaxVLSSs/w6zGRNxrJ0P8WBsrB1Cl8exxIezXQR1jUAXwoDKjvDVUWNJ60MAXCtsSmFvz/W52ucs9CIpW4g2pfsVvz9+TLF40cleilwtFfj9JTrNE+66KfG20iwMSXmqUbbGSmzybjFnqTwliGZZimMpr8OI792xVRY1mg/o9zB7Z727+d8KVVMiDn2IkmDDUdpWEKU0qo0aIg1SOLLpVolQaIgZb9jS1Fi4eCAhHv3x/mMWsmzrL1Zs9jEiB2JNAvMjAqGulI6l/MK8FxL2VKaAuT4jvd5z5Dr/nFD4+8/sSwp9ia7lQpNT8bxfUujgvnxaGHd7XjD6s0eQonYOJb45fNHHeftenxWpm9c2a1ic1KiWJ6sfBaqGNTKZ7Gc6vxcO990xHnZ8bKF0xOu9cUGocXrQ+65vctInYjP2cX8tLi0aKe0RYsWLVq0aNHiEYT2y9llhnF1EERPGg3raI+xVjSetaEhJH/IaHQS7k67qcXcKDhYGEc6aW4nsM6gk1hsz7nDnxsdjFJFPJ5p4NS+xqTW6Pg2feuZFWGmxDIh09zBrRfRiBbgDnCQ4YDxopg2AlGELYwJd/EqxM4s2lYI+zHKyZZt9lxgtIC4kxRRN2OeoqEnW+rdAUNR7lSjqWSm+fpJQ1Zi1HGBPaAAmMwKjWudZ1OiPUAvBe7ZV+Ex2pu4YB4q0UZyXLtzhF1+rrmzLz07NsxiHJIYUybKLZjHelbCm7NKVJWYtErUjNgGbPacZ4XIQonVx6Qhq8BmBL5mreD6kXVHBkYdEEiLEFva+Td7LjBwuf9s6w7GA8V5jyJr+RwRtvd8TI6MrbJxbax2yLZVFrhpxaCfAtePKjxmyVLsPYsxRYsRQMI2WheNdBtbYZgrFMkSdiuFzZ7zjJXzkUkcrIND4+1WJN5L1q80aKTaYTnn2LQ37+2nFoki1SbnWIxWxWLk+JLzVhGcV2HkzpVkOsVGYbeSdczrdVwrTGuOpTRkasSSAtYCdelZqXj8wtJ961U1eulyaKYR02StaBMhaznT8ZrqphbWmWBpc2JgkGqusf1ah/sUrEU/teimNlxXiWf2E+VCXJOcI1mbwgiudrh2T03IaO/6Rh95nll4jTDBHc8ujnL//47xDRAuXDtdbz7NhiAVoq5yTWb5SJdjFYZYGqu0P2daiYG2CkzmXq28SXRs5NGe0RUzWbJ8ZGvlPif/l6YoYbtrq8J1vl7ECLZJg3Af6ia0D7KO96LK38s2ug6DDJibb/hPyEMCyda8mJ8Wlxat5qxFixYtWrS4gnHR8U0tzXPJ0U7pZUaiMkwbjcYq3xbeYG4UtEqCniNbOCtzw79oBezXjF5yzoX4ptrOoaCxXyd4wjJ3sF+bUIMibfXCjOxUCjvzxO/iaHqb+FZ50WaRfRN2imyO2B7kmmzC8SWyNQx2juHZYi8gTIq0jAuDJhofCepmLI/YA0RWJlHSwo6gw9qrFUa589YXLthBjLx1hsQEMRpKeSNfF3bg3NkfNILtZ9FYV0xTZb4AalNGHTId2re2TxqySvI8iT7aqxWO9FzQzxUJnyfMjuysz0xjuHoe2Cb+3ziFjR7n9kgX3tDSa84yagJ3K9owmMBiKR947YJeUeZQ2IztOedOopuiqXC09BAWQaKqyLhGg9bMsxJANPIUg9XK0gaEzKsL+jzRPtWW9gOFN8aVsOx79smIrBfAV/c1ev68XL1EdvkxSyYwM/2ULMxuFc1+dyoVAqs7SQ+dpA+tkjAHuxX82lIhvkmBbJjoG8UAdXdOhsPBYaPXwMFirXDYrxOsdhysv3Z7qQ2au9LwPIkx6pmZQm3i+RQtlugXx34diyZN2KdB5nDt0AXNFOcTONrzB+D4hoPMBauF3UrhXMnA8iJZCmt8sxeZTq4pjkM0X9NG4dwsxdxMUCTAP37MPLDtooU1jtpYOItOYjHqmGAgLCySMKSThnYo254djKy5CnqzI13PpBXR5gZAmAsJci8N8JdeY1iHa5HzI4bTYng98Oww10S8X84MDjDw/ZTrK/HXnHUHjWvlmhAWPlpd8LyJibSw1HK/kiqDhLzL3ExrXheyrvZqFRjMc6W3nZnH+ybA+8X1y86/D8+rmAi3uHLRMmctWrRo0aLFFQylHdRFpJdfzGtbfGO0zNllhoNFph3mhl2a+7VBP7XYq6iBYBBxjHXamSdeFxF1P6VpGOLsuzUdaE67VwP/93wSdBV7NXeRYgh6pOvjceokGJ/mOgZoJ4o7bxqykm0YV9wZy25cdC07lcJ1yxJozB3i2RljgmRHKMaMsmOVHa4EgI8rYQ8XdUjsyJMgZDFwlE436p3YNSjskMS4sGvKYeJDskWvJrEqHIsLDJ8wXOz45LHuVtSqiMnlKKc+RaJYqCPjcxbNSPOFGCDjYiSLxGNJYPn1y6K/4mOMulIhSFwYinunsXtL9H0ANX+9jOf0miWHccXzURoVTD0XGSHRxYhxqzAGpSEDV/kop27iDnTOSaC6nPci4ZgWmQKJ3pI4mu0y7vTHXsMzrclArHdj4Llo1TZ6Dk8YWVxVWHZ8+pBt7eOq/mw7XdBXRQbP+vMyzMhqZNqhSAYwtoaCxjBjpJVxXI9y/lKdI9MFPn5fESKTxBB11AGO9mPS9V7FBVN57VBHS/duhr0a+AebJSYNzUa7Pli9NuzIFea1SBiYLnFVWsU4sK5nDEW/J0xPsaDxSxeMp6QrVbR66wXnvJNQC0c2MrLUMkeJ4nkme+MwqRMMcwutEpQGWM4P46v7OmgOBUpxvg91Ori6XwW2W66LfkqGd7XD7t9exs8pEjJDw4yxVtvzaH48M/wzY59i4L2816RRuGaJLNUgwwEmV7R6ie/EHNfKx7XFqDHRsMm1LuvszIyPicGyxFFJp6mY1sr1Jh3K4zrqxsTYV9b6qX0V9LNyTwLYJS/XkRyfxEfJtbjZd55JJhtaW3+vrZVn8nkuxLT6ckDpi/9pcWnRTmmLFi1atGjRosUjCG1Zs0WLFi1atLiCoZSD+jr29IG+vsWlRcucXWY4F00bOwlzLsUuQ3I1O4nD7jzBpNbYmWtYb0Q7azRmjfZ2Gg7IezCugXGNp+ijUeukYdmQpqek87dKlnLO+5b2ykajWYAlukQxr07KW72MJcjKj7ObkK4XGwStpAnABaFzaRCyPQEpH7L8KRYBa4XDsSUXygEso6pQPqFBbRToAtGUtUj4WVIu3K34uJRjB/4zpPwo5qr91IUsR7HvqH1Jsp/SWLefsvwrpQUpT0ou6HrhDtgvTJpYvgQQSjDyWgAHDFdLw2Oj3QZwdhZtLDItlhEs3UjeaBQcu5CvKFmDm32H432WzwD49QRfkomidzGWlXNeJGx2kDLnXk2DTOadskwtzQKJoq2FdTx+KR2dmsRSaWk4f3Lc0ohxw8hhr44lVhGuG8fsTOuAC5XGE0c2rP1JnaCbWm8hgmBNIjma/ZT2DIMs5qSKvYyFCc+T60F+rDNQzoVSVcg9zTnuL++lUGADw0pH44ZRg1xzDJ3EQkEhUSlKozDMTCiXy7m/duh8g4MLFjQiFwBig4aUnMUgd1FQLvcDKePCWcDZICcQsbmI4WvLJofjfYrVJacSAL7ixfXXDFwwKD47oyVPqnKMckCrBKsd2ocAsbQsDQHddIhemobrVLJ3K8syt5RjuwkF/+dmCtqXonmO3IGS6XrBcdKUN5o8i+WP4J79aKAseNKI873a4RzWlk0csv7YAMSy6Lji+hWj6a2S67vrbWTELoPZnwcbKCQrVO430ry0U3GtrXYcNnrx3Iu1jrw+US4YV4vdiJSCe6m35/BNRHL9AfBNDspfx/fP3Xwo0ZY1H3lop7RFixYtWrRo0eIRhPbL2WWGUgoWQDd1mDbat/0rLGU9FInzO0KyZKlnPgAcaHOfGXHNTKGUwtxM0E1pXChsiexkVzuxvV6MEfe8rcF2mSLX8JYbLuzg+5lEGPF9rN8N5tph24tqTy+Iw2O8CneooxzeEiLGrkh7ulh07FYIzJtYZ4iZ5aKBqrTYyzwMMxcsLIQhnBmaeJIRc14ofpBml+cJhHGTFnuB7IZzDR9/o/xzGf8ksVN73vqjshTj0xrDYWsmTQExWknipIZZPFaJS5JmCBFNy0575gXeZ2fRGmTPm5Wu5Gx8ODVRIebmnD8vMm8Dz56IAS/H47xBqDSWqBCvVSTeasUbfhYJGS9hVgvfbDH2j0nMkzA/m71oOSLraNIonJ1Fm45FhlFYkrnROD0lY5xph1TRCHXW6MAsLDaYiJltrtkUUfhrorEVjVNBdojsFtmzEwMTWRnNxpmzU773WiFC88gijjoNOkkPw9zAAri6b3zMWA2lNDa6zhsK8z2uHZJt2p7zfU9PVWhi2J7TRsQ4BEuIcR3NhYUhFusGuVaPdB208pOlNL7nxCRcG+M6NngcX6oA22A5d4FVE3Ph1cKFBpbjPnJImn+U0njWxhQKXD82GLI6dBKHRKVAUyHT9ODItMN1Qxeae3hPEmPcGOW2Wrhgglwk0ahZmhkA+GixeCyZ5nPKBljKTGB1F5ujSkPGb3uufGRavLZkPZAp9+yk5vvJ/WuzR9ZZexZs7E26S8Mmm2HmQoSYNGbJccg9KtcuXGtyzcp1IA0LslalQYE2RTxfiYqNRNI0ItYcwrIy+kl566HLVypU2kFfxE/brXnp0WrOWrRo0aJFiysYSl1caVK1lmyXHC1z9jBgbrS3C3DedNZBgbuuTkI27fMXaDCZ+jinxirMGj7GXW6JyswAIDAGAIK+SoxbRUMhO/PteWyzBxCek3jrDdnJsb2cu1PRQkwatsxPa2GWxMog6qnk86OFBNkcxrPQ0kDiTTLtgpZIGJpeGpkr0axJmLeMSdreSx+uPK2BgY+BWoyb4o48xuVIa3tlRUfCz6NJrPJMADUrnNcYYj3MXDCtTZTDkR4ZJ2E9RDOUJTESSN6vsrQZ2Z4rnJ6oELWUeRNZCVUWq4BJIzv3uCvXiozZauGCDo4h4tG8d5hFOw+x36gstUe1N2tdLzieUR51dYuaKInpEUhou5hmigan9Lq5uy/wnEybuL742WTsxIRU3lM0XqcnChcqjXsmwK2Ha3QSh1Q7zIzG2WmCu3ZjiDu1YVGvOKnJ5PS8bYW8tzA6iUJgtzINrBZNWNcA8ILNGUYdnr8vXNBY7TjszhWuXzY0sVUOqcrRTw2sUzhUkPJxcLDOYJjxs7QiU0yrCY732qEL14P1DPC6D7XfnnPNy/qVdSDXyrlS4dREIoL8YL0B7TAn6yPXhcSNdVMKGi9U0U5llEedk+gLeS4ju5GqHMt5Ageys0uZQSdxGOWG9yNFzVmqctSW95dpQxZIrt8i4dqcNKJRjIbUQTMHrg0xTZb1LZrJl18390wWbUhqS21YiJ1SZHCF9RU2KdNi/hyPU3Scw4zMo9zfKssxlE1cI2uFC1Y5Mma5l9HaRAWNn9zXRO8mDKjoEYV9l3i2sY93Ej2rnOPKcgyrHRf0nRJtR90dr085f9ll/NdZfM4u5qfFpUX75axFixYtWrRo0eIRhPbL2WWGAqObFtmKoz3+mYawBt3EBv1V49mjbmoxbTT2a/44x51KYyskKsPcKJyeLuhNvH7l1CQaQFZeY0MWimafI29yKt1PpQ/eFkNLMQ5lZxQ70UYdh71KOq049tqqwChIMLBo1ca1woklF4xYVzsuRBIB1J0s6tIk6Fq0KZOGu+G1wgUGcJDFneVq4QJ7JJon6VwTHY0c9/ac+qJFTQwgMTE0l1zJ4y7w7EyFnX6maRwqLJLsbqUzcbdSKJsYoizdaMKgDDLnu1+jQeaKZ/y2ffSNsIXCBggTJmMWdlFMTQExhHVe10KWU36KBFjvutDNemrCeT07PciErXb4XnLOhYUQNqBIXIi+os6MGp1Vf052fOD3io/YkvcSzRMQDX9LQ6azl5Lpy3QMdk+Uw/acxzPInNfXxbUpc2AcDYOl+5NzpuCcDVq92nJt8dpyvgOR4dqDjAyHmPyu+i5cgQP/opXDuVm6cL0a7HmT425ChqabSrxSjCyj+agL153EW3GtxbUj0U78LP7/9ETh+Zvlwk1DQ6sE3YSaxkUGTCMBkjSEqgubKxFWJ5Y4n+MFQ9O50VDOUf/qDK4dOHQSass6ifVMvobzjJkYwcr1JqxrkSCwk6JbpQaTYxFGUu4PwuINMhdY1V66HFhYmR+J5ZI5YWQbO0oX49XYKa0CsyvXi7D4wo5LEHw/43snivNhrdcJzsj+DrxGcZi50MG7XZIRlMDzTNP8WY5VWLFJE82RN/suRNWJ9lQMk1cLh2cfmQfdr6xngGvh7gtk0GgwjMuGtlvzkYdWc9aiRYsWLVpcwWiDzx95aKe0RYsWLVq0aNHiEYT2y9nDgE5ifVlNoXYKvXQZ1pkgtAVIdW/PSZfPDZsEznkD0lmjQxMAheUsSUg+Y2lYWtgqFY50WVrpJs6bnqogcrc+A3K7jOLr1Y4LZTwxbxSzRoDlgH4KHPEGrmJCula4YMOQebuOmS85DDIXTD+lrCWmjhTgirFqLF2JzcBqJ4r8RZh7rlTBVkHKmCyPIWRgPmE5ljKLhOXXRQE8GxyixYaUONe70eiVImDnS3UuZGaK2Drm8/Ezi8SFbMWdimVVKWfNDOdU8i/XCxeOA2CZT2w2AOY0Aix7ipgaYNlkXLO0Oa5l3qJxpQixpUTUTaJ5q7T9G0erE2nqWO0gNGwAXHdSGpbjFTG3zPPQ27Zsl/z79UOZIzZUdH3Zq586bzDqQo6rlK8z7XxTA3/Y6BLNZdnYQqPewucpbpcKQ98YIOLyytJM1ToK3eVzF9dWEFe76PopTQEs3SsMc+uvPYXGVZgZjXv3c1hfSq5tGT4n1yyfPW2t8ufF4TlHZvj8LoX5UiKX5gga8EZD5Uxznne8EFyMTovEYa3rcLinkaqc47UN/wyWxeR60IqWGABwqGjCZ3DueNxf3uOfTwwMM2knivYUtkE3GUIhHjclBYplTyigLv3jMZsWEHsZ3hfG3rxYDKOlrF0vWNWILYSsvUmjwu+0SjDKY/m345sMnrneYNIojLwFDcv58VrLtcOxvgtGr5LPOa2j7GCzf3DtC6RMmiUsRa92uLYWrTBEmqG15HryPvblsQpzLNfy9lwFqxranMBnF/O95BqStXXDaC2Y8IZr1zf5jDrRBuj8grntQw1JCLiYnxaXFm1Zs0WLFi1atLiCcbG6sVZzdunRTullhkKMJVFKsW1f57hQzUPUydzvSuV5J8caxtHccr/mjm67TFHZWXhOpmP7NXeS3ImJQFgE8CLsLo3CXsXt8GAh0kh2hJs9F4TswmhtlVFsC/D9Tk8iYyUCfmmFFyZmt4pmqSK0lZijlTzGCy1GofTSGGEkwt6xNyWVaB55r8pGm4BJo3CupFHl9lwFKw1hayTCiWNlq/wwi88R4bzEymz5CCUxrxSDXGESpBW/8lYV44rvnSg2TUisDpnLyIJtz9lWf9obyeY6ivoB7vqFLRP2QeKtMu3NLD1LuO7tNYw3sUwUY3REoLwYESOMn9iklEbh7gvKx9rw75NGHYjwEpuTkY+/kfWUKLIP41rhK/sqMBbWf56sk7G3eTgzI4Pyb570UpSGljDXDg1STRsN65mfs170Lg0jABsWjKPdQj91fo65nnNNxsw6BZR7gaUde8Ym1Q7PWK+wiKM9i9IoHOuT2eunDjvzSA85Z71tjf87LBxoeSNMXWUZ4yTnaNTheeunvMaKBcaZTB7PC9kdvkZMUsWqobbStJIh1Z45UxqJykKEk1y/23M2QMA0waBafgq/vm8YOTz1kA33iEHu4+OURjcdQimN1aLBfj2HVrEJwsIATQWlFFKd4NQ+GTe5hmiWSjZJzJZlHcr4EsXzBfBclEZ55klY9GgDJFFUcr/Yq7S3GjFY75rQ6HS0F5l9IDaDcN1y/hej12Sc/ZTXm0R3SUxcNKLmcZydqnANZr4B4XFDG+xtMg3cMzlo11MkLlQ9xJSZBsVsyhl45k8Mh1OV++uZ49/o+kahMlrpyH2uxZWLljlr0aJFixYtrmBcrFdZ63N26dEyZw8DuolFL7WYGwvjFFKV4/9ud8Puq7HUP5wrFTb7xpvTWt96Dvzf8wnOz1OUZh/WcVe/X2sfi0TmR7RY57wmSNinSaNwdc/5IGgcYCeEFdqpyNLJ7lQ0M6sdaoyKJEaXbPa5M92aRa3LYjyJsBuFZzqAqJ9iCHj8fNGw7c4Vpk00xD05jsckLJIwQqJhks8tPAO0WymsF9SSiC2IhB1vzyOjCHAXfbzvgi5NbDEkjkZ259sld7sz/1njOlqiiMbnmgF30aLL26vJCk4ahc1ebPnPNXVfm/1oHyA6l2FGk1aJdALIWq0XtMAQ7dha10dqzVUwe5U1dGzJedYwsm5kNtSCiai3GemKBUOMjFnrRs2WzO+4jhFYw4ys3DCj5cVa4UIU2SDnGtqdk3nc6LnANpYGeNMdv4NJDdzjbV46WvRxZKsW51OsE7bn0ZBXdIKiF9upFJTSgfkRa4O1guxbYxX6qYVSCjAVuqkNOiux8JDYLYDXWqqpNTs+qHD1Ug0FjY7uQasEjx1YONjAhlkf0wRwPS7aoeQLd9hxxbkZeSuYPT+fZYPAuPRTnufGeqbPRtpzmEm4t0NthP1tAMf7iURWUafIdXKuBO7a1eH1iQImNQ1mE5X6xw3mRuPcLMW00eEcwJKadc4hS6I9h0RXJYos2dkZr0dhWCtv5TFpqG8VZkruAdcPycZfN3TQSPg+Jc/nUmZxYslh1DFY7TicmWZ+bThvGm3xuAHZ7jvOaz//PoZrrrBVcn2Pcr7noq3LyNsLyZoSc21heG9YtijSaAsimkzrohZXDLaHmfM2G5FFLhKHjS5Nn1c7XBvCNI9yYFyJ7U6JRDmvO6Mxt3VR07m4zi8XWiuNRx5a5qxFixYtWrS4gkErjQfPfrVWGpce7ZReZhjXYCkzDCiuNRLFSJjHDCokfuc/bXTofqtt1L2sFw5fHnPX+oXdFLUtUVsFBQZFiy7n7FSFHftmjxokrYCT+9yVnZrI/8WUkeaq64UL8UISGTT2ZrClIbOz4QOEJUYm8WayA6+9kjgS2fXtVipoKST8WLRdo/xg2C8QNSSyux3lDiNvkComm5lG6KgUdkgrYL2IBrDDjOMUs0wya8rrXKI+ShgPiX8RU9aBD/UuDRmsSaNwfIk7bUbkcLcujJxE2dQLeivR5/FYHU7ux24w+WwJOH/cgMacqx0ajWqNoAMzLnasFd4gtgrapKh5qWw8b2LQKudBIoXkOfIa0SaW3gxWGBzrgHMzsm3nFlilYUZd3Ml9mUt+xrQRbdlCFI43wJUIK3bN8T0HOdfG7jzBzJCtmfmuZGp9ojbx7DTqAYGoxRxmHPtqh3FL8rho7XYrdo6m2mHSeONmH+YtYdiicxp1HK5eqmAdWSTnHPopmbzDXeqiEpWF7kjnyFhqRRPaYcbr+EkrJnTxib5JtEOF7wodZDz3EuMj7KmsldKQDbfOUzqGDNapifKdjgprvgs7T7qAs+in1ofVx85d6RI+sSRB7VErhWoKNGTnDhVkC4e5xaTh8SlosnamQapzrHYcuv5+VPtItz0f4zbK2Xl8biaGxi6sua+Mufa1Am5cMagsuy77PqopT3p4+nqFnjfw3a91YN1LA3x1nONQwdel2mHaaOxUXMeLBr5ibExNKbWqGz2HM7O4dkpDLWrUb1LbWPnrZCmzYdy781g5GPsovNWOCwHrk0Zhs+8WunB57Vy9VOPaYYyGkvN1ruQ9UrrrR17nK/cC6fSWc8Z10pYKr2S0zFmLFi1atGhxBaPt1nzkof1y1qJFixYtWlzBULg4rzKFluW71Gi/715mKKWQKE2biswGI8l+alFbhd2K35e7qcVrb3opMs1SRWNVEBiLWHW/ZjnIuBqnp9FoVWtpFWfpYZ0etRjlUZQ/aSiCljLcVultOLzoWAxWB96uYpix3FRbiufXCorRabh4sHTGspYL5cH17sELd2chZ3Av5Gq6UGo8tsTyaqJcaIc/PWF5YLUTS5+9NIpxuwnLm6sd50XZHHPlDSOHvkxZWZYlRaAuzRIiqq99LmASSmcuHM9eTRsE5naydCSlxSRW/hZyImMGJkvBLoxDzFtZqlXevJSvv2Yg5qwsqYhpp3GcezHpTRTPYeaFy1K6Wck5ZilhSV7pYt5gZVVoJhBbEyBmQw4yNnucnlDEvphPutoRwXI8ZrFwYHmPczDKo71DVyxcGtqATGs+Z5gbbybMktm0iSXnyudpiq3IWuGC2L62XEcbXR6bclIvbmjxMmVDgsxpP7W0bTANjKtxfKnyDR/Gl7eAtaKBVgk6CQX/w9wgVQ6Jil0zzlkc7jX8fea8zUqCmYnyg5lR2PX5oJVVuMeXs0d5LH2LeXFpDhoWS75qqnKfBWqBRIT7lChM6mhT0tEM5l0tMtRWeZsU5ede+cYRWm1szWIDC6wF6hIKKphYWwfsVQmMo+WPGPYqKLxgc4ZMO9y0YjHIOP9FwnMi62zgz3dpWOKW+dgq2Uwy6hgc6Tp84YK31ek0UFBYSk0oUVoHDHM2OBQJ8Lkdjd15EsyVEyU5q9EqZmvGkqrk604aFa45Wfsy9/IZ05oCfSA26Xz2fIIicTg9ZWZsptmAsz3ndSdSir1aBaNtMZ8tDT9zlJtgJzJtohRDsoL3aoV0XuLsjDYbi80jWsn9xEtK6svXENDikYeWOWvRokWLFi2uYLRlzUce2im9zNCg0aVYZmjl4JzFzGhoBcwNH1/KLH7lrvdCK7Z/59qhm5BNAGgtALB5wDkbROvbC7s745Rnd+ANPqOoOtc0zRTGatKoYDK7PefrxJRWPhPgrn6rjBYWwrpYR/PZs1O+jxg6ymdWnvmbNGRNjB+PCNrFxkNYrI1eNNUd5WT0JCpK4lq+vEe2QY5bmBYA4dgXd8jS2q49c7RozprrKOYXI1oxbJXj7iZkEodZjMgSEbbEHcln8/9RCD9cEPdWVmHkxf/nvOHqRo/vc2amQqPA9lxh4g1SZe64W49M5WqxaArL3f4Zb2siBpmZpgGn2B/s1ZHVMA7BsiP3Am7jVGAJhDkFyMyWPmZmd37Q8qI0KjSFVBY40kU4fxI3BHC81w7I7spxAEDmx95YhWsHUXheeXaSNjGci3G1yMZxfcA2PCZ/LchaWu04dHyTAcDfa5XgULGE65YbZJpr6fRE0fQVMVZI/i6QZoC9SgfDUesQhPuJ0uimlgxpjhAxttZ1GFdi4BxNZMWYNPdj6KcuML+Jzmj94dkrB4vtUmFcRaaWNjoOsBa9dBmjPEb/nJ2SQV3tAIe7DeZGIUt4zWoFoFgCnIVSYhHC6CStHOZGhWOV+drsDwEAf7GnAvNqHXDPvgp2NfG64WfJ+hHLkf1aB6aZa4Hz1s8sjvbIRHYSh15qQwMDz4XDiSXn45FUaLIQO5xRxwXWDkC43sSSQvtGn60Z533k7UxkHlc7DtYCjx2Q6bx+GA2ZDxX8jNNTBDsfYYeNE9Y5NuUMc4NrlvieO5UK9j/SlJAoAHUZGoisg2d4I7MuTWAXDvomP6QQn7OL+WlxadF+OWvRokWLFi1atHgEof1ydplhwd1ibRmHYh137LvzJOyapL2f8R7CRDnPHPH3ezUDiiurMLfTuPMuaGIZ9CnNQasIMWmdGRXCqDNNrdVqh1oliWESI1vRshQJnyO7/z0fRG0ctWXbc9Fq+B2p16MUiexiqf3oZYsRQjHmBEBgMsTeAWDQ9yCLhqsSIn79skPpd9FZEneymY9s2alUsJ4Q1kLYtbhLFXaLjJLE70QjyRgXxRBlMjWjnHM7rmJAvDBtMn9FQjZRsBg5IwbB/DzaVixaCCSeMeW5485aon7EDLif0nhT1oWYyw4z53V1PG4JcBbGorbAhO4Q9xvjqCNxN1GPtmgIK+HVvSzqHyW8PPcmtMZRpxMjsaixExuOL4/J6nQTWiNslylS7TDIDLqpw3IuBq/R4kPGcKzvgqmtzOVevXCBKdrTCDspzzk/T8kGJSmsMz7uCSGyadShfYSY2WokUNDBWsLBMioJCJYLYt0BRM3eUmaDwakwKokigyQaomHmgqmp2G6IsetXxgpPOcTxpSpnvcg0sM6gl/H8jDqcx8pSAwdnocBQ80lDXd81AzKojxnUWMoM5kbOJa+PRgOwPKY86aGTaDJ5jfaMfkLWri6hlMYwW0OqHZ4wstie0/B4ZtQBZlWuk8VjMu6gJlOMbLmWDBy4djreKFoYvI62GGbUtAHAWrcJJsnXDjhX/ZRrDEDQm4kWTXRpYk1iHW1dNnsu2L30smhp84x12hndtGJCNNt6wbUt11U/dZjWUWvXTeK9DuA120k0SuMNsj3rO/T3LjGmBaJVh1xLooEV9k8ramovF5QWr7MH99OWNS892ilt0aJFixYtrmA8nGXNN73pTVBK4bWvfW14zDmH2267DUePHkW328Vzn/tc3HXXXZfgSB89aL+cXWYY10Aphj7nCXfv2tEoEyBTdnoSdWlLmfU7NBc69gDu1hrHHV1lZsh13KlulSpozoTNOTdTwWxxJRdNRtS8rBbsUqJuCcGksTTUK3EHSN3PpmcuVnK+TkLJRRtV22j0uBitdGYmHVdRayEaMnaWqqBzo34ldlQKw1UkLoSIb88ZgVR6I1dAgr5VYIQyTXPHyqrQrSoGujuVCjE4ezXZsO0552ngNUO71WK4MuedBqzSCcexW8vPE0ZRQspF/yWaOglRL038vK2SGrt84QaXKOq/pNN1lJOp2C7ZBbbRY1h7zzcSZn5nXno2cmYUxjXnQsxtBcKwih5up4r6J3lsXHP+Z940VhgQ0c6IpiZGeTEsPa5z/l86eUeece2nHKPM0Vf3FbqpRWMVOonDrPH/96zHuELohKutwmphgq5w5qOlAACKBrbQOhjrGhc73lLtQlwRwA7ET/9V6rtYFfYqsmMA2SPnrQH6KTs3tUr89WkCs/2klQbWMaR8e67C6xnyzdix7VJhvYhmraJ/kk7Xrzc8XfPnW0GFMQBArrt4yiFzoCu4SIBUdwBFxk+C1te6vFfUBuj7YPZOEtcG524v6NlCZyiAUcdg2mhqYxsDGHZUwlRYK2rsVRrXDmiIK92SsSs3rodR7rDruxwB0TmqA1q9bkrGL9W5Z8V4XN3UYsWv192K5yPT1OMOc4NxDT+PCOtC1lOm+fkzo7BWOBzvx65x0dVWvhIwrsS02nnG3uKJKyUAYLMX9Y6j3Pn4NDKgWyUjq/bqqM0UPaeCxkavYUenvwdNGnYOiy4YSofrvfYseeKPhwy6C/fob3Z86lOfwjvf+U48+clPPvD4m9/8ZrzlLW/B29/+dnzqU5/CxsYGXvCCF2A8Hj9MI738aL+ctWjRokWLFlcwHo5szf39fbz0pS/Fu971LqysrITHnXN461vfite//vX47u/+btx4441497vfjel0it/5nd+5hEf9yEb75axFixYtWrS4gqGUu+gfANjb2zvwM5/P/9rP/Df/5t/gO7/zO/H85z//wOMnT57E2bNn8e3f/u3hsU6ng+c85zn46Ec/+tBMwCMQ7ZezywwFGkzyzxq1I83dSy32apZ4riosur6dfL/mKRLLg35KM9Dal3asU6h83U1sGcSoUYxKx7XCdcs+K7Lh+yxmQArtfsJnR0rJRew0nrTC135mm2WL3Qo+/41lhUHmSwBltG9Y8SUcIFplrOQuvKdxLHVlGr4lPhpoihA/12wGmDTA8T7HWll1IAdz0lAkzLIb8yulxX5mWEbRfj7u2Y+WHrWlqHnU4dh252xyGPimDAp443mTkmhpKOiWkgjAcQx8+WKYsXxU+AYFadSgsF1MYF04p4PMYaNLK4dMA48buCDC72XxXDGHkuJbOX4pe2zPKY4e12yAEJNNERif8QadG75kViScx/MlXyOl3trGEq5xPJ9iZyEi791Kyp5cSyLIXi8cDnmzYxHka4VQJpe1t9rheR9mDtcsOTxmyWG108A4MVpmKd96a5BjSy6sRQCYNTQcHVdiGeMbLZzFIFsBrPXzITmhcR1K6U6uv8cv802HGa0vwu+1g/L/WQBzw5xLKTNKafG65Tk6CUue6wVL9XPfwADQ/gUAvjTmmjy1r3CkK3mp0daE1zGfO64U7p2wTKngP0hrZLoIxqyjHKFxR0qOicpCQ8lKztzR9a6DdSwTjzomXO/TRsO4JprMKpZkOwmfb52ijUfDG0Guu0BToUi4Rh8/KnFiiev6XBlLezwfIoAHTgwcvjwWmwhgd55gkEWzaa0SKKWRqAy91C40rLAh4fRUhZL23CjsVQnmvhFAGjC+dbWhjUXNNdhNYjnwnn2F077ULg09vP+40LAkJtOHCoPVIsOo08W0ATb7DVY7/JyzUzZbbPSacP6fesjynNuYk2ocS+O91OFIl/eBmW9COrYU7T3kfFeW1ytAI13jaEcj199iw8lDjYtpBpAfADh27BiWl5fDz5ve9KZv+Hnve9/78Gd/9mff8Pdnz54FABw+fPjA44cPHw6/uxLwTfPl7MGKCufzOX7kR34EV111Ffr9Pl784hfj3nvvPfCcnZ0dvPzlLw8L7uUvfzl2d3cvw1G1aNGiRYsWjw7cc889uHDhQvj56Z/+6W/4nB/90R/Fe97zHhRF8de+l1IHv5065+732Dczvim+nF2MqPC1r30tPvCBD+B973sfPvKRj2B/fx8vetGLYIwJz3nJS16CO+64Ax/84AfxwQ9+EHfccQde/vKXP+jxKh/flOkOMuUAxd3stBaxPHffiaJxYy8F5kbj+iF3XeOaO5XdeRLMbIW9WTQ93akik7UY3bNeUHC9VVLs3U9pT3DaG1fWVgws+Xmnp3yPjR53nhLfMmkoCpbYpF6GIBLeq/lniR8aZnz+esHdJNkrGtKOcrGpEKNJzpM0MADAyX2yO1P/O9lVir0GEE0exRhXGCrZKQuzM/ARVSLeXy9ibJU0KEwa2kGICF4aG7Q3Vi3SaKdxpEuWbeDjogZ5NOalFQnZmcXxiXXIuKZ9wiDnDvzUJIrmxUSTpp9kQhivROsOadioDQIDmWmHQcYmiK2SO/rc25aUhhYaEo11zcB5uxSuh9WOi8L7jsOoI/YEsYmhSGioWhqFYY7AGAnDl/gYJoDMDiPJuA6PLcXIp40usJxbb60gDBXtZWrPjpLFVcGOItMOf1UmWOvSOiXXscmAsU00VhVLhb1a4WlXNd582Mc3+etPecPYr001KstzqaDgHMdUu7k3aOWatJ7pgR+n/F/O49Ee505E78LsDXKeb2FqTk14bZEZ5DEUaWT4tCbTmao8xCqJoGeYG5yZkQ060nW+0cQfE1SIGFvpWPQ9I3O4W/tzYTHwsV5nphrG1oCzgQ3UKsFSajBryN4DANI0sGtoKhhn0UkslnyTgVbRFLu2XIvdxHnrF28m3XXBPqOT0HRZDFuFqXSOrN32HGGuU52HCLA7dzS2yySY09JWg+e4m9KyZJhzjUtTizSEDLJoR1P781wazuGWF/UDwFJqMMzWUCRL2Ks51zetsjmgSIGnXcV78e48mnIbx8acyjPbsu77maH9USL3KNrmiHmvzKn14ytNtH0BpEEkstKXA5eqW3M4HB746XQ69/usT3/609ja2sLTnvY0pGmKNE3x4Q9/GL/8y7+MNE0DY/b1LNnW1tb92LRvZjzqv5xdjKjwwoUL+PVf/3X84i/+Ip7//OfjW77lW/Ce97wHn/vc5/CHf/iHAIDPf/7z+OAHP4hf+7Vfwy233IJbbrkF73rXu/Df//t/xxe/+MWH5ZhbtGjRokWLS4XL2RDwvOc9D5/73Odwxx13hJ+bb74ZL33pS3HHHXfgsY99LDY2NvChD30ovKaqKnz4wx/Grbfe+hAc/SMTj/ovZxcjKvz0pz+Nuq4PPOfo0aO48cYbw3M+9rGPYXl5Gc94xjPCc575zGdieXn5bxQnzufz+4kjASBRmW8fd6jsDJ3EwTlGpmhvh5FqmnOudoDGt57vVgxk5s7N622qxDNXCTa6zu/QXbA7KBbYBTE57WUxVoaRQLG9vkhoXCl2D5Mmms7KDrOyCufKyLKIzmW3WjAZ3YshxGIqKyHBW2WMbRJDWtGFiDmkaObkObWlJm6UOx8Hs2j8CM8OSZi5CztzicwRvZPomETHNvDM1Ml9FbQlizogYbr2amDaRENXYYLEMmHL626252QSGcKusDWLzOGZKT/jzIxjmtYximrkx5/7udypaOa7PY/MDOeQTKNEdAkrNshjtJFEZklsU7QqgQ+bdhjkZCsligmImi75+6Th2okmnGJlQiZBWBOys5FxHOXAtQMXjkPW1aRRuPVwibNThc0ecGoiFgnRmLN2nNevTdKgzRP2kecVuNvHB428+aloEwHPbCUpjnR5XtcLh8+eTwOj4eAApWGdQWMrTOoEJwYmrDkgRjQZW8M5skQKOgScA2SjqC+jYauDxdVLNbRKvKEyvCkywroUQ12J+6q8lk+sQITZEcZa9FjwJrMWBoPMYLPH32+VkbWCaeDggjWNMFUA0En6Yd2LkSrAeChneIy0y9BItUM/s9iZa8ABSJMQ8ST42lTDOoUvjb0lho3zXyzEy0n4+EbXhTn52pQaK2E7E5XCOYvGVdCK1j6C5fwwVju83mS97NdcL8PcBG3b3KiwBnk/cOEeOMjJEpdGBaNlsXuhzQg/S2w9tEqgVcK4uNTicJfVh3EF3DMB/nKs0c9oJTSuFY72Imsv951htoal1OJ4n+dJ2Hu5HuQ6u37ZYnfO8Uk02yKoLfzmtNIYDAa48cYbD/z0+32srq7ixhtvDPKk22+/HR/4wAdw55134gd+4AfQ6/Xwkpe85OEe/mXDozr4XESFn/rUp+73u79JVPjVr341PCfP8wOMmzxHXn/27Fmsr6/f7/3X19f/RnHim970JrzhDW94YAfUokWLFi1aXG5ICOjFvP4S4nWvex1msxle/epXY2dnB894xjPwB3/wBxgMBpf0cx7JeNQyZw+lqPDrn/ONnv+3vc9P//RPHxBG3nPPPXwdqPOY1BqNrcjGwKDxOi+tGPxrncKhDnUYkwaY1NTIFKnEDwF37WoMc4OdeYJxLZFMMXxaYoSA2OFnXdzVShdhrl0IEJeIkt2KzNMZrxGRbr7F0PL1gq/b8x1/Wz6iZ5jHa5W70Kh325pFM1gAQXszrjiucS3GndSubM/5+SOvBxtm0mEauxFFm8GIoHgOMs+49FKaexZB8xK7E9cLHodWZIRkvoyj5ksCkMVIdscHT0vYuPU6FglXl3isYUbNlujHRLsmzJzWEmGlwucNMo4j15G9m9YxwqafMjC872NnTo6V1zkhxCaNOtEQM1EurAX5rFHOsUn4trViHspzKSwIdV8qrKndOaOGJKYq1+xUs47jFYPTfgpcvVTjW1cb1Aa4YTkGOS9lBkVKDePEm81OG+ovNRh+Xltgey46SQa/j+vYYXv9MEY57dWxmxS2IbPVVLhuufFh0sCTDzWYNIw50yATZJ2BhUEnkQ5FrqeovyKzBACpFpdbhO5JYZb5e28hUGko8Hqc1AhdgHs1mZ1xzWMRJlTWAyOuorZwu1ReH5rFbk0fszTIhIliZzb1fsZfRwYDb1wqOqzrly0G2VWoLXVkG16ntlshdHkuHhs1XgZnZ4iB655BBIA8yQPz8/8cboKuSuaim0QNoESwydp+wnJkjYURkig7rRJ0EuliJfOXIMWhjsMgA86V8Z4lXewA1/THttJwD+H1F7Ww05qxXJWN4eTClol5tug1hXlT0FjObdDd9VOH65YdNrp83+uHDtcvN3jssMZ1y3MMM7LLYjac6QJLWYLvOLaPRCF0lhrPqK8XDtApbhiVjLDKyZZK1aM2vG9JBNXlgtLqon8uBn/yJ3+Ct771rXE8SuG2227DmTNnUJYlPvzhD+PGG2+8yKN8dOFBfTn73//7f+NlL3sZbrnlFpw+fRoA8Nu//dv4yEc+ckkH9zfhUogKNzY2UFUVdnZ2/sbn3Hfffff7/HPnzv2N4sROp3M/cWSLFi1atGjRosXfhgf85ew//+f/jO/4ju9At9vFZz7zmWAyNx6Pcfvtt1/yAf51uBSiwqc97WnIsuzAc86cOYM777wzPOeWW27BhQsX8MlPfjI85xOf+AQuXLhwRYkTW7Ro0aLFNykSffE/LS4pHvCM/tzP/Rx+9Vd/Fe9617uQZbGGdOutt+LP/uzPLung/iZcClHh8vIyfvAHfxA/8RM/gT/6oz/CZz7zGbzsZS/DTTfdFBoMnvCEJ+CFL3whXvnKV+LjH/84Pv7xj+OVr3wlXvSiF+Hxj3/8Ax63goZztAtQ0JgZ/n3aaIxyYK1osFexlLLSYY7gesE29LnRKBvS4GK1UFuFns9HDKWRucJmj/YI/dTnLhYu5GSynRzBGHV3zpLGekFR7kaPJcDVIlL2UhoT41gACyUuhNeLnQMAL4Lm82I+IkW5UpISsfSoEy0jxHx1d86S42I23emJt6Co1IFyRqZpNSECXeNYxqh9A8O4VsHmQhoPmI3HzxzX/DxpMFjJRUTP5gcRpIs4PfFl4Z63CClSnhfJGBSLjZ2KuZkjb90h5rGrHRfyQ41T3nCXJWZptBjlLpSxJZNQBOTDLJZopGQi8yAGsmNfci6NlIeZ1ylzWDa0bpAyORAtHTh3cW4zL/be9GujNDzmvcqbI/tycy916Pj3GPmyPBBtPjINnFgCbhw5TH1ps/YGwl1vRHqsH7M8Rfyf+zLwY4d1WEeC0oDCdWhAp7h2OMdqwfPVSaKoWikq2B2Y6bjZp7Bf7Bd4fapgCCtlt0SnvG5D2dMFkb1grcuyakdbfN+15YFzstmLRrr91GG7ZDlt11tHFIlvLvE2I8xo9Avb0Cw2URkSnfr1BV++jk0KANehCPLv3lOYNRqpyjFrNDq+JC1ieR5IyvKt4rFpBfTERmOhBc/BAbZBojJmxGY0Cu6nNH8VixVZN2IOvZI79DODTPNeJjm5p/a5LjUSJCrDILsqHPes8QuxmnqrEpZNh5kLDSRHezSQPuUbeZ51uA73hF0vO9CKazZRvNYkD7eysZlFe3uTSQNkOkOqcljXYNQxKJIUznGdTxsEY9nH++zNQWawWjRh3te7DtePKqQ6R550sdI5iuGC5RBfw3shTIVBnvqGEBeaQ6TkvShruGyQWv3F/LS4pHjADQFf/OIX8exnP/t+jw+Hw0ecMevfRVT4S7/0S0jTFN/7vd+L2WyG5z3vefjN3/xNJEm86b33ve/Fa17zmtDV+eIXvxhvf/vbL/vxtGjRokWLFi2++fGAv5wdOXIEX/rSl3DNNdccePwjH/kIHvvYx16qcT0o/Mmf/MmBv4uo8LbbbvtrX1MUBd72trfhbW9721/7nEOHDuE973nPJRolkCdddJIZtErQWO5+h7nBFy5kSFSGfmagVYw2kt1yJ7GobBIYqUkDL5I1uHHkcHKfu8fVwoW2fIlGMk6E77RbENal9ALU0scxFQlb8te73AmPa+VZNxXjgkpg2KfFRKYp5h/kFBpnOj53AgpbxdzVOD6PAlkyYWVDIX4/pUHqiYELTFY/g7eT4FjHFbDZpxVBkUbWAXBhhyri9dWCkUi9TMTXNE8deDFytJCgIBsArh26EP3TT/nZsosdV5wnMagdV0Av4+9HuQvjFLuERNFMdJi5wHyVDVnB7XJx/vkesoveq8lwiWifDBvP85aPYSoNPzvYXBgg6wAzExsskjSyh3I+9moVjkFMda1nKivLhgQ5ZplLgOxD17OZYgMCgAL0nI/1U4fCAdcuz5EpNrz0UzZwnCvJ+M1NJOpF3N1JLBqr0PEWD52EDJp12sd+8f1P7SusFmStpjXwuEPA3Xti4olotJTm6Dr+eatUGOUN5lZjbrzpqWdEtEqwWjQ4PeGJyD3b60ATaOcsnIvMmHELVB0iUWAd2fBhVgNIkWqHgTahSQagAWnZkJEWQ+YiBTLPcOY9MuGrRTQqhgK0SyjGdxaZLqCgPRNIxnWvVrS5SHgb76dkijuJxWqH86hUjD/KvcXGXq34fqkLDJ1xNRLlMDFsnmhchQQAmopNB856lo4s3tzHvvWzyCQLG182wJMPOXz+gsJqYZCoFH3PtO1WvLeE+CYodHQfqdrCVqlw85ohg+QsNnoNOvMEX7jA8zlteD6KZAlX9+c4PUloqZEbVDbDqMM5sRahCac2CmUS454mjfJNTXEciQKG+RpgKhjXYJQbJCqDg0WmgZc8bo7/9tUOGyAUm1gmjcYqyIbNDK+fxyw1sM6glyzDwuDUJN67EgWcnfHcOt/EIffV2HzE6zPTDoUCVrq4bFAJoC6iW3OBwG1xifCAy5qvetWr8KM/+qP4xCc+AaUUvva1r+G9730vfvInfxKvfvWrH4oxtmjRokWLFi0eKrRlzUccHvCXs9e97nX4ru/6Lvz9v//3sb+/j2c/+9n4V//qX+FVr3oVfviHf/ihGOM3Fbh/J1MGkE2g9gK4acXAIe7QxXw1UTSjXekYrHe5+xx1hN3wsRn+/XoZvPljND0UQ9LdKtpOlA1CzBNA1oqmpdxR9jxzRBNZjmfLt/n3M76PmLKOOs6HkpMpkWgk0auVhrt141QwrRSmQsKHeQz8jHHN3b4wMv3UeVsMMfaMNiDbPk5FGAex3ags7TOOdKMBaC+Lmi2Au9VBRnuNfkoNS+L1XltlNOy0DrhmwHGKJu1Q4a0tFIJ5rczreiH2FGS7RJ8mLfKi1dJeQ0ZmkXEyYkEg0VoSTA+QNRzkDmtdskczr+PTGsF8VixSjKOuSYx4xbSTVivxRtrLolGxhLqXDV8rweViXVEk1EmNOg6bfdHgcY62ZnyOhJcD/jNziyLheRAd1t17Yq1hMTcaxseVWaegFdndYkFDVxpgrcu53S5TrBYuWCpMGoXvOTH110sZLCAmDRmcfsa/dxK3YIWR0AoHGl+8kOA8ZURBiyaQa3GRQYvh56INJAvXTXWwtQgB3sabB1c8R2IZoxfuuoumx6KFqiwCW4X5nH4tYKRRolxYD2SHsjDWckGjVRoy7ZxDjnW1Q1ZZrjdXz4JmjWwiMLc6WHlAaaCp+BwfxE6dZAdzo7BdRtZsZrjerx/y+hvmlrYeiQ3WLnLdVlbhuqEL4evKuTAX/ZTxWfDxWqIZ7CYO610TYriGufURXjzeccX1aS0ZytWC19tmP2pkxSrI+GvwpkPUjBkHdHQfMA0aV2Gt66CUhnPORyyt4nDXorbAzGhs9GqcGudIVIbdimOjzi0J60sjCfcPObeA2L5YzJoaxqnAmIvNUW3gH6fR72WDCDwv5qfFJcWDMqF94xvfiNe//vX48z//c1hr8cQnPhFLS0uXemwtWrRo0aJFixZXHB50/2uv18PNN9+Mpz/96e0XsweARGcwrsF+raEUY5wMGqTa4enrNeaGu8VeajHqNFjvcvc16nDXWNnY1TWtownmZp87sdL4KKXcINcSjsznSxfgepddhr0Fc9gjPUYIFd64tjRkdHbnZKfKRuJZ+GdhtcSkVToJt0p2Yo1yMlGZN161lp1Lhd8OiA5KOhuBqJHSKhozVj7UXWKKpBNrx5t3TmqEeB5h26RDsfTRLomSaBXGrpyeKB+hw9f1vP7rSC9GCUk3ZWXJKlqvD2KUFpmfcaVwvoxRPVszHu9WyblZ7dCQV34nx8iON/ju2LizJ7PAx4uEmrVJo3C8T/bwnn3l2UOFzT539RJoP+o4H7WFEHgv7OF6QXNLCfgWtnXdaxOla7e2nJdeRnaHRpgqvHZcITC2O74zTjR2Iz9fwnx0U4vHDdhhlyhGdDWWn/OUQyZUQjLtQqemrOWO196d9MyBrI9eRmZua8Yuz2HGNdtLZX2TuVBgmHmugY5v8e/ogzFESikopfC4ocV1yzwHwqaRvUugoH2XZjQ+pQ7Jh7X7+WGHJ1nvRTPUXsY1Msz52MkxWWlhe/opu3FrH9J9zrOsT7uqiTeMcg5pH1VQmDY6dAR/y6pnAy01acOMcyLRbH7AGOQpcq2w2TfBQLmXLgNNRVbQWSQ69XPItRcYfB0ZQQWNXDtkukAncTgxiPcX6Z5lhzmZ0M0edYWrPtR7e85KwLhiQDzHxxcuZSaMWYLl+6nFatGgn7LzfGuWoJ/xPM79utOKHZ5PGLGiMMijoXY0kY73qN05Q8aNA568avHsI1VYD7ANKxt+HY29AbRxTWDnpo3GIDO4dnke2EqA91Xq+xKkSJEj84a6CDFOofLnLHppJ+heBZNazHEduonDk0YOlwtKXaQJ7d9i7N7igeMBM2dlWeJtb3sb/viP/xhbW1uw9qBQ9nLaabRo0aJFixYtLhIX61XW+pxdcjzgL2f/8l/+S3zoQx/C93zP9+DpT396+425RYsWLVq0aPGoRF3X+PZv/3b8h//wH3D99dc/3MMJeMBfzv7H//gf+P3f/30861nPeijGc0WgcRXLc0gAGGb9OaHHaeJZW5aIeilLBtcONfaqJlhSVJZiV9mvrHQab2lBGn8psyhNimsHDuOapbZzM9L+UpI8OxOhN81SJQ9w0gCJLw/2M9oVGKdwdc/h3qmUHLy43IvEJatu6nMQuwlLmJL1ueoNaseVAiCl0WjDIOWxcaWCCa2Uj6SUOa2BbsHjk89f77ogjO8mLgiTxfJCRLm1pR3DetchUb4UU3OcUnKofSmMuaIsCWYamICl0H6GULI9N2MJ+VDB17M8rIKVyHbJEuAgY5mln7FsIWa7k0bhC7sKx5bE2JRzdHbK0mjZ8PzW1jdJVCyTiQ1KpmNW8XpBg1GApU0pf0rjhjQjGKdwbkYLjNI3C4ip8LkZ7UlyzXkcV2zo2Ku5ZhKFYIgrTRX91IXycNmwoaOTMBc20w6pF/lX3tqg9k0SFP/Hcr1xLAexZMb1by2wWrCiJ+dwd67wuR1NsbfmXBkXS3BpxRJVnnRpoqtYikuVwzA3vjyXhpKlYCWnBYhSKhjPhlKeUrDWIVEZNBJYZ7zxs0XtFIbahSaBxhrUNvHHx+vKptGoebPvDYu9Uev5kudfDGilPJ5pQFsHwHfc+OpEYytYl/iMVoelLFYtFJiDOvVl/s2eN3S1DTq6j9Lto5OwmeTsVAEXztJWBBa8IjW0SmgVUcMb+mrAMovU1TOobt+Pr8BetQ9Amhy4ZimnsLSGyI3PXVU4O6V8o7I8Ru1Yxsx1F7ANkOQhU3a3Ys4mnMVmv8DWbMbxAjjlFHppBx3dQzfdQWlSb1LcwDiWEbVTGHj5wnbJ9V2bKFPQOjbEpCrHWjFBaTqcRG/2qzCHcxZLmcVqB5ibCTLNdX9ulmKtaNBNbCh/bs2Uv/9lwHwKZAUw3Q3nZtJE6cBKzmaH1c7VONI9E0yzt0saZM98NulupXBN9/KFa15sPubFZms+nMiyDHfeeecjjmh6wFzk5ubmFZUM36JFixYtWnxT4wrv1nzFK16BX//1X3+4h3EAD/jL2S/+4i/ip37qp/DVr371oRjPFYHalj7iJvo6dBKLVDNqZSklk7aUGdwwanD3BYVcd6E9QzPIuZmW2BkLoEi6gTVbL5w3rJWYonjtTBqKuHe9aFxsJijOZ7xPrslcTWpp62eL/Od3uTOXaByJilktyBzQZDYKnkUILMJ641Sw+hBz2NzHR3FeuLMVpkTay/ln/uHM1EcdVTz2PR95dG7Gz6ktn7s9VyEqalzzWMW2YK3rbSBSzqEwWfL+AHDDSNhLjnG1cGFcpeHfhdk6N+P7056EdhSF/7/1TEhl47zJvWyQw0fd0M5CxPhiHyEWC8ISJopsmOysxxVZy706xmBtz2mzwnngmEqjsNF1gX0rEs71akGrk9pG1kZYVBnbKHdY7USrkkV7EWkCkXFdPxQWkEzkUmbxlX3aq1SWYn6K9GmXAQDdhEa0YgwLUBAuNgm7c45V4qVuWHbeloWMxGbfoZsOgTQH5vuAs8h1NzBu06YJTR5ik5GoWDDopTasY7HM0IrMmVIqNAQkiizToq0G1zybATpJP65hFc1NJfZsUsc1LGJ1YT6Nk/PivD2LA5qKYvkFTS8jlsTQWeFwLzYOKGgkilYrjWUsmXUK0Cky3fFj41o1DnDn7wEU2TI4Rlqlip0LRYpgbwHbwLjaW2lo1JZWGnft6mDdUaTRUqWfGTx5Re4HZEQlukuMYa2lxYlWCVCX/pwpf69h7BSSFL10hEyz2UQ+Q6sESmk2TOWRaX38qPYxX/zsQSavgWfLIzNe+/uigwvjgrXBNkSBDGon6SPTDrWdhzX0tanCZn8F3ZRNGMZbCYUGjCQFbANXz8JjpWfDVnIy+4waU2Feast7UtdHptHCKMbgtXjoUVUV3vGOd+BpT3saXvWqV+HHf/zHD/w8HHjAZc2bb74ZZVnisY99LHq93oF8TQA4f/78JRtcixYtWrRo0eIhxsWyX49y5uzOO+/Et37rtwIA7r777gO/e7jKnQ/4y9n3f//34/Tp07j99ttx+PDhR1yd9tGAWWN9O3yDpZTxJplmW/y5MsUwM5g2CnmSo5NYrHUdGlcF+wExMpVYoFTTNFEim7bnClcVjddqOYxyhdNTMjen9hnEPfBhy2I5IAHf8BougGxIoqiHeNbGHLtVjlP70fSVho6MSdrsiwWH8mHlQOlb+iU6iIxNNJId5S6Ep/dTvs9qERmwqR9fPyO7ttnn+4p1xrQm4zDKEVrmha0DfLB4Eg0gacXhQpyVMHP9lI4FlWeTjFO4a4esWdIh69FPqVm7YUQNnwSMSySTWAqICWhtyNpJXJTot8hO8XWThpFRElSeJcBkTkuPQa6Chi5RZOl2Kj62V/s5rslwBXsAg6BHKhRwekIWDaAtAOfd22c0PIbjSw57Ncc78GNcyflZuTe3Xe9GU1iZe9GbCTvwuIHDtcvzA0ayAHxoPXxUjsK9U4UbVizZMU2Gd27EriLHtHEhIJ3ms9GgN1Hw4egJZo3GakF2URgx5wyUaaBVAYDHe36eYpQb7MxTLHu9T+Mq5GA2TidhOLtxCrWt0E0HXoOYBHsMBY1EZ561icHomXLhuYlKQ3SSfLYwY6KpJKsGr6WkRm+3iqz17pzXZrCZqMtwz1DOwcHiCxeorTKGWiulqCtTjtYVd+8pHy+koJUFFA1lrTOYm8zrDRVwfg8YXBU+RykdLCO0QmTtNDWycJznSU2G8fqhwxcuKG/kTIPrInHI/HnPNBk8pWgl0k0sjvSi7qvxEVGurKG6I2S6g37K9aAV4NIOEldDKxci6bZmCtY10EjQTSy25yroH7tp/PvpCY1oR7nDl/d439ia8FqRa6o0QGVmyBPvc2KbYOuhlIZyDqN8A7W9D6nOQ1XgaM+hk/TRTXfgnEU/5X2DkWYOjfbaR1PBuB66Cc/nqX2FEwNvY2MboNwLOk+5B+/5WDSJVxvkX+e18RDiStacAcAf//EfP9xDuB8e8Jezj370o/jYxz6GpzzlKQ/FeFq0aNGiRYsWLR4W3HvvvVBKYXNz82EdxwPWnN1www2YzWYPxViuCChozBqNTDvMTYnUx79wx0pGoHbUHGgknilgMPFeFTVqa747ctZonJlkaGwVWIxMA720g0wD+7XCE1e4JWMnEHUntWWA+UrugqnsVsndfWkQND6ih/nKXo7P73KnR92J6K+Uj/VRQbsm5oqL4dmi9RDNCUDWY1pH3dlm3/kIKB+HohE6E9elywyMPuplkT38ypj6q2HGnfm5WWR3VnLqvqQrSiKeMs3jF/Yu84ySjHe1ECaJmpKtGVmN3YoMWmnIPArrd74kM3lupsI4OX80qq38e/N4aQI86nD8pyfRnFR0ccJMdX1n3+kJ50reZ8t3d3GHLdo1FUxlhYWRzt5Jw3PHv8dz/OW9yD5IZUM+Y5A5rHcdvvvEBONKsStPR6ZvteNw63qD2gCnJirorQCySrVVeNKInaKVJeN00wrNlKeNRqpptgxwTVlnwrqSOB7GBTn0vTFuL7U43neYG43dOZ+XKoowlc4AS2ZF9E2f3OrAOOC+WdyHzpo6dGV+9L7MHzc/1zmHPMmDYa10dSYq9V3VJpxXMmMaiUqDXk6uyURF7dDpSdTMiXmx6AmpnVPh/PC6pA4MdQk0/mKy1JdNa14/NC/2F7ymzmm3At7wtJegl1qMK3iGuIEFGcCduQ5jdON9xjM5AIbmq4lKMepQs8rJ8FFYNe8fic7w5EP83bXLcwC8bs+VyuvPFPbqBJ3EwjiFfmagkaDwYfai7YtzYQDbhHNRWxXYx9KM2T3qr5U9zxIDvE/WTuLIot5Lrt3jSy7MvzDTGz1qLhlIz27gacN77JMPsTvUOYNMF4EJ1U2NpSzG7F074P3UOYteuowiWQpaVerbllAa6h7hrGfTyESud3mux5XivNdl6Jyf1nJPkfsW10mqLqPm7ApvCLDW4v/9f/9fLC8v4zGPeQyOHz+O0WiEn/3Zn72fl+vlwgNmzn7+538eP/ETP4E3vvGNuOmmm+6nORsOh5dscC1atGjRokWLhxhKHwx9fTCvfxTj9a9/PX79138dP//zP49nPetZcM7h//yf/4PbbrsNZVnijW9842Uf0wP+cvbCF74QAPC85z3vwOPOOSilYMzlq5O3aNGiRYsWLS4OKlFQF8F+XcxrHwl497vfjV/7tV/Di1/84vDYU57yFGxubuLVr371o+PL2SNROPdoQ+0U1ooGc8OWcFjr2+8bnJulONwlne7AMudWqWBsg3GdoZs4nJkqrBUUdWsFfGkvwVNW5ygSWmD0U4qHa9/GP8pNKBWWRmGzYKlMyoi9LJYcjaOofpgBd1/wJo5W4Utjlr9EvCw5k2LBIMy2GDJWVlFPnESbCskELVIKhnMNHFui1cLJfZbu1rosU270HPqpz6vMsVD2UTi+xMYAEU4XKUX7Z6cqWGSISF5sPIYZ32977lv2LbDWjYLsM1OK53fn0XQVYAnmjDd+lYzP1cKXo2qWJnMdLSpoEeLHXrIUKeWYTDts9KJFRWn4ebXlca53HbRvsGGp0cUGAvC81BaAdtBO+ZKOOnDuxIhYxl5rloHFEJglJYe1LsuX1wzYQNLzTRdZEj97t2LZ9qpiHb1simkdbQEmoAXIoYINLZJzKAbKgJj7ulA2ra3C3HCHPfeNDgBLldaxK6qbskHgaVdRcJ5rjrlIOF/TRuPMTOHMjGv/+JJDqjsAdNi9JzoK3598iI0xw5z2BXAWk1rjUIfPHeUUs7OxJvHnqQhNBpK1qBGzNru+FGsXqk5iJC2NADL/1nGNnJuxXCXl+Mo3xtQGyLJYSq4s8IULGtiwcPUMzhgoyzKZRoIs4TW9VysMsuLAfWWrVHjTHb+Dv7fhvLmwg3M0kVXQWM4tTk8pqUA5jy901ksrElhrcHamUCuD1DcFxPOZoTTwYvkmNMBsl7Q02at5fuX4G8u543Xjy54Vy/9zo2jRAZYW2ZAATGqNUW5Qmn0UyQCpToItyu5cIdUsOTfe5uaMlzBoFa1utmYsgUrW7LhSuPGwwaRJMK1ZkpZGHa0SXD+a0yrEN31oJNCapfJ+ZrEzr2FdgdWiwWfPZJjbCYpkAOfY2JWB6zNRWbAdgbWhHGu8j7BkHwtoB8T1UVmuhSIFVjvAl8cqNFe0eOhx/vx53HDDDfd7/IYbbnjYHCge8Jez5zznOQ/FOFq0aNGiRYsWDwdCm+5FvP5RjKc85Sl4+9vfjl/+5V8+8Pjb3/72h6358QF/OfvTP/3Tv/H3z372sx/0YK4EhKgZL+ZdypYBAIe7DsbVSDU1fLLWM03xamm425SYn+05mZZZEwXoJ5ZoCwAAu/MGN1+VYrukOaVYYohhLJkImpOemsRdW9nQPmJ7Dvw/Gwb/9zwFvTeuGMyN9uaTFOrL+2SaonftRf8ibO1lFLxbz84VHbbFS7SScfBifWkCIAskdhVbsyiSXi/YFi8ieuNjgYQxKlIgE3204t8lCupIl8L+RVZDxtpP2Vq/3vXGt56lm9ZRsL9auBBRI3FMZNji8a7kMU6oSMkqAbSCANg8MPI2J4A0S3Bnv9HjuZA5KRvaiIghb6Iccj/w3TnnRCu+h7UIwn+Au+7aAntesA4gmHEmyoVmA4lu4lzSmsE4AL7BYq3Luf2Hx+bI9SpOLE1wcp+i/srSUqFIaJGw1nWBHU11DqBC6qO3/nKs8Pc2yJDs1xpa8QpgzA/H2EvF7NhAQ6GxCnfv8TNowcG1YBxwZqr9GGhF8ZTVmqay9ZQGoN5+QgxSHz8qYR3HCQBQkfkCgGesl/ivX+16KxsNC4NMdWgrgdiAI+akZPdSVKYKvxOj2sWGiCcsO5yZ8byveGPm0vA64fki81zkZITWuzw3uzOuWQDAwmfA0DZj4htoBrlDojMyfL5Z4MSSw6mJOhAFp5RmTBLINAujjMYE4XqILVIKicqwVjgv1reAsrhvluFxGeCcxcl9BZgKRRIjzvopGSJpUugk1s832bgiIV00rXnfGFcKncShsRXgEsBUXoTPRg8LhDHnuhvuF6OOg0YKBdoHndrnNTk3bLIyjgyosP3CwK8WjO/qJhrTmvM+rsjSOjBmDDoFlEaCFKnOkagM0Dk6icNq0cVSZnBV0eDEUoq96jyWeqtoUGFaR6sgBYVZM8bAW7kkyiFPvTWQv7aE1UZvhCLdhlmwz5CGm14aGfTLhivc5+zNb34zvvM7vxN/+Id/iFtuuQVKKXz0ox/FPffcg9///d9/WMb0gL+cPfe5z73fY4teZ63mrEWLFi1atGjxaMFznvMc3H333fiVX/kVfOELX4BzDt/93d+NV7/61Th69OjDMqYH/OVsZ2fnwN/rusZnPvMZ/MzP/MzDIpp7tEFa8QF4HQbND5fSQxjX2xjmtBjYnmsYV+OqwmKj53CuzAJbMq4QQri7qcOLHkO6rJc6nNzXmNY038y0w2rh2+EbsmZ7tQrWGdZRczPMHJJcdDAK6wX/vNZtYF2CrZnC8WMV7p3kKI1GssCAMz6JzJjous5OybyUxm/IEtHnKG9/ES02ioRmqpXfiR8qqAE6O2Uo9D37jDa5+wINasXKoeuZP9GLHV8iC1Qa5Y1WyUBYR7NXYapEDyZGtGKOK+HfPusZ1w7Jco1yr/MC2UVhiI4viQUHUHhGaqNHI93Em9Aax+MQbZ7oT3ItAeIcowQxT4JRbNTyyecB1McBCMHORQIMfVi69tosMTy1NoaZi12JBM7XRsx2oxUKrReAIgdWU7GWUD7E26DnI6R2fTyU6Bd5DslOfvlCjmsGZHsy7TCptdc2VkiUw9emOW1YlMPRfu2ZpsRrdUpYZ5CoxFtwWHzqnMZOxWORwPhrBg225ym0os2IcUBqLFw5huqtgEepFoyPU5SmQeMUA8rzHlBHBnut63DNEpks5y0dEp3BWgOlNJyPNlJKA97uRiMJ56yyDn2lAKcDawYw+PvzF1JkOuqiCq/nW9QGVp4RYvC1Q6kVagPANEG7tAjRDu7OFTLVIbvn2a++/925WRpsKTQSQCWB2RMWlQvam9w6GgADPL5zpY/Ssg5IvUYtoZ7qySvOs48DFIkNmsmyAfrdRf0pY5USlaG21jOqtK4RLeOs0YypaiqkSY61ogysW570oMDYukzPwlptXAXraMdCmx2Hxil87L7cr2XO5dAzVMJGJ4pWQoOc94ZhQTNZrRI01vv2KB3sQ1KdA02DxioMsquQ6rPItAvnEiCTOOpEQ26HBQsS22B3rryBNnWqZRNjrkyiQ9h92QDG3wu2S4XReoNprS9rpfBKN6E9deoUjh079g2/w5w6dQrHjx+/7GN6wF/OlpeX7/fYC17wAnQ6HfzYj/0YPv3pT1+SgbVo0aJFixYtLgMSzZ+Lef2jGCdOnMCZM2ewvr5+4PHt7W2cOHHiYakIXrIZXVtbwxe/+MVL9Xbf1LC+004phX2vlUl1x0ed2Bh9Auprhhm7mGoLnC8RzEQl+HfojRJT7eNkNHBqnMM6YKVjaAiZLuiSCrJMx5b4mEQRSTefVsBjBjW6PkplmJPR0sphvaCZYz91mC4Eqgtrdm5Ghqs0NLiV7s4iYTh5ZX33oA95Fi1JbX2gux/jZp+M0KGCYzrux0qTXGqVrGV3KlkcdsPtVdx9yueVDU1AF7tVhTUbeS2QhCX/7Le9BEUSNX0Sq1IaMg6ioeun3EEXCYOWd+fKG+By3EXCc1CkPCbtg6+BaPorZr0rOQ1sjYPXxiB05Mm8lg2PVbpddysyYOOKr8s8E5JpmuVqr8MbdfjaNa/bsv4xraPx6UaXa0Z0bKudGCVk/Xw7OPQzs9B1yfcB2Gl5ekqN3dkZgk7LOuqKGDhPLdFqp0EnsRh1DIYZ2Y9o8sq1ztdQX1mkcb2y082zkpZszV6tcO9+5s1aS2rOlIYD46doEDwK150EnkuXY2NpOnr3Ho9VxqKg4Rw1oLWd0yYINGyVzkKAjKdcpwDHLkg1r5MyRGpxHq714fBBVwauzyKN7HZpEJkcTmZgdIqE6xZgcLeYpwKMMNqrgM/u8HqXzlgHdsN2U+uvC3/xJClQTeGcgfbsGsBrlFo2C2jP4Fjq0jqJBRJqsjLfGc254LXfWIW5oSZsmJtgsG2dof7Ud3g2ntmToHAFheuXm9AZalztg94THO05amITh1kzQWVnyDQ7zW9c4bE9YWTwpBFZ434mLBVwvM+5GuUNrBODZnZgd3QvsKDO+blUKugL5XWZ6qCXWm+UDNw3o9bPuNoz0fD3pATddBDO1XOONCj9PUHuvdf58++cReYZ5yzh/WFacz5FU1mkB1nTFg8dxArs67G/v4+iKL7BKx56PGDm7LOf/eyBvzvncObMGfz8z/98G+nUokWLFi1aPNqQ4CIbAi7ZSC4rfvzHfxwAdfM/8zM/g16vF35njMEnPvEJPPWpT31YxvaAv5w99alPhVJ+p7GAZz7zmfiN3/iNSzawFi1atGjRosVDD6UuUnN2ubtLLxE+85nPACDJ9LnPfQ55noff5XmOpzzlKfjJn/zJh2VsD/jL2cmTJw/8XWuNtbW1h436e7QhURngykD1A4rlEpUg0wUyXUErliBSnYcGgr0qweFefaAEOa5ZPugkNJ1d6RiU5uAWZtooXFUw1662aqGUCDx2YPHR+5JgVyB2EQAFzaTyWVpzzuGO7RSliXmBiQI2OiwBnhxTlD/ISdGLAHdaIwhdjy/RtqI2MT8y82XDTMcGgu2SpU6h+HcqNh1IGW+Qs7Q38iW4saWB7WrBEuzunO+z1mUJbsPbXDCH0gWhrgjo93x7/Rs/8zuoLOdhtXAoG4WdSjIUKTSW8tO6L30miuOZGRVsQRZNeQGWCneVmMaydCGNCJIZWCSxjAuwxCFNAaNOLAcBLHmudpzPQqUJaJGwwSTzRsHdhPYTx5doOdDPeKxidivn8NSEGZlF4rDaief1CSPnf9egslNYxznuZwiWILUBOglzHI/0KObXiqahvZRlcDGalfXcSx1y3YVNZt74tQOAN3cNlgNT7dDPLCqbYLXDphAAeNKKw7SJSoxh5ps1rKWA3lpAp3DOYtWXXROdxdxMiH3NKmpbwjjlMyXhf0+jWgUFB+tLmxaJ0sEwVYTt0lzSSWy4RgdZH7OGx9VLXTBtFluP3bkCQMuEnQo40hOrFJ8fmkpJHqERQEk8nrNwzqKbqGBl07gq2m0keSj3DjWvmY2uQ21LZLpAqhMMc4NxlWCnAhdUkvuScOXLdA1SlaOflkjLKZyP87l3P8PNQ1p57MxZNpZjFhNdKW9qRWPizJ9HschQiqbXYomSessNNJU/VoVDRYO7LxR4/Iil5crOoJT2jU3OZ6RmWM6Nl3Mwm3VuNI4vVfjaNINxWbDBKRI2EgEsOcv672WUE3C8vOEp51heVcqXOhto09B2xVSoLRuNnjiy+NMzHXzrSoPazkMDkcgQOroP2BngLJ68OsP/97WBP++0UFnp0MJk2lw40Cwitj27c14rvDe1/6Y+1BBT/X/xL/4F/t2/+3ePqPjJB/zl7DGPecxDMY4WLVq0aNGixcOBK9zn7K1vfSuaprnf4+fPn0eapg/Ll7a/05ezr3fN/Zvwmte85kEP5kpAJ+nCmjG0SjA3FLMyVSbuwDPtcKjTAMiwVyfY6JkQfSOi/cprRYVRsQ6hlZ+WD8DhnoN1fD+AYvm1IQAwXulCpVGkwPXLFn/8tQRrXcY2AewU6SQUEBsHjL2gvbJkdFYzMlB7NS/K9a4wXkDiWRrjAJvGCCNhfhIllgIqsFxZzuPa8jE3EjMku85EcXe54W01+hlZnlGHzJzW3HWOOtyhbs34OyAycz0fwXTNwOEvLihUVgUT235K5qqXcayyE659rEqWkBnL/eNi/Fv41nyJ4hEj3yPeakMrCqUlhqmy0Ry2NHwu433Imu3OgSM9LordOVAnZMNkPrdLL3g2HIswLbk//l5GVlEH+w4eT2mA0r92u1SBgTxfAvDs0Sh3IfLqzIyfOchTFMkAR3p7yHWKYeaC5chq4ZAojc0+xed7NVDbOYqki8aRbdj2c2AdyMpkJbTK0EkKGDf3TJtBqnLUbo5M00pB2K7ScH60YpzYZt9h5JnQiVJ4wsjfUMUWwkPGqKC92S2jjHi0Kgi+eb2xgUGuP+WbCu4HH3OkFvqoRMDO1er8NajQSRjtU9nIis0MI4yKFFgBGeZ+Gt/HuIVGAT9WaA2kkQ2vrNjCcD4Da6h4b+inMQoo0xyTBeOb1ooGxuW8xq2FyvvBwFZsQ2hEC7jpjm8ayHF+Ho/x1ET58ZbIdOqvTYfzFRngbmqxlBoUicKs8bYRjvFzk6bjrTwcZo236BhfAAaHUbsGmSJLOjMaczNBpjsokgHmZg+9FDg7Uzg3S/HElRxF0qWlTipNSwa7VeojnJRvGCADPmloOCvXzrUDh7t2VFh7S6kB6hLO1FCObCvPwZznt4n2MKuFwZ+cyQCdoq5LHOkmODlWMBWbGMicjYGmwnJ+HOvdCU1oDW2LzDdYVrUhw0pjaLJ8xgFaP2Du5MHjCk8I+Gf/7J/hH//jf4xXv/rVBx5///vfj9/7vd97WIxo/05n/5d+6Zf+Tm+mlGq/nLVo0aJFixaPIlzpweef+MQn8Ja3vOV+jz/3uc/F61//+odhRH/HL2dfrzNrcRFwsklJkCjjNWR+9wrldTg5Jo3DijPYnSdYyix25gmWMoMbRilOeWuI64YO3dRiXCcYZNz9M0KFupRDnQa7VRLiXDb7ZIwOFWQyvrLPXfLOnOzHdkkj2Kv7JjAXp/YV1rtsfd/sAYPa4exMDDgB7XVimWdS4I8EILOVaUbw7M4VugWZKK2jZUY/8wHQVnaQOBBYPvAastoA/Y7D6anyjA0CY8Rgc6D0hpNbfnx9r/v5ypg7Zuuo5dqecw66iQsas+1SecsJMn1iYruo/drocVzDjLtz7W0dJMx5UitknpHaqXjs58vI/Iy9iayEiyfKofYB4Gtdb2aZcfx9H6Sufei3xDYNF3bfYqNRKGEWyRhOvT3KyMdl9bLgiuBNMJUPagYOFdQpkR1VISQd4Dicc2jsHKtFg40e9Xl7XtNjHDdk/CyDs7MUxtXopcuo6hnXTN8h1TkqU0EpsjcAvO1AFtgsrRIkOkVjq2BgeqRLyxJhBYuU2ksx4+2n1KYtxhDBMZJnr+aaUD4Oinq2DmAbWGXgEPVwi+yzAxk2RgTlmDYN0pSxRlzZGolKgwmtVtHQdlG/ZhzPYW2BGrweRznNg3fnXCO9Bf2oHM/ZKV8XjgcIzJlSOhj/1sbbXWgdWMPzfo2IualWDgoKlZmGMdaW68qVhjYW8hmAj3CicXBgIpOUTJu39djoOjSuClqtsgEyzTU2qWkse7RXAdAY5mRE5fwCCKwndZwa2JsAR8EoJ7+m96oEZ6Z7ODE4CmUNuqnF2d2E9wGrkKocedJFaWpohRBr188M1osMk8YF9lhMnBOVhfWbeZNnpTQqs881ZJtgHpskKe/JaY6kBmAbzI1GJ6m9FQzPT2lm6KdLwdjX2BqqGnPerEUn6aM003DNlYbHho7BMFvDuDqD9W40rh7kvN90E4siRZi7Fg895vP5Nyxr1nWN2Wz2MIzoIn3OnHP369ps0aJFixYtWjyKoPXF/zyK8W3f9m145zvfeb/Hf/VXfxVPe9rTHoYRPcgvZ7/1W7+Fm266Cd1uF91uF09+8pPx27/925d6bN+ccBapctCgOWMn6WNuJp45yDA3KoT+AtQfXFVIpxhNU6c1sOGf0tEO+3UC4yy6qUVvocOxl1rMGo3tecoOxA4NSUvDXe713hCxSNhdV6TAU1dd0HHszFPcfJXDt676WBsFnJ6SdRF2qvbM2flSolLIxOxUZE3WfSi2REeJ7lQkDrXPV+6njuHoKRmbTLsQc5R4gmC7pHZDjGHZ9SbMCrsQJzXZpRMDdhSenvJxMWbNfNdnN3E4OVahA7PwnXK15Z/ZcUoNVubnPFEMYJ8ZsnrTmuM+0uNYqRUjy8MIKTJMmf8zTWnZGSkGr+w4VT52yuuQfCxN1JrFsHOJ3mK3pzfWbfi60xPq4jZ67JoVDZ2EbddG2ExqWnYqMqVibttPHUadqKsbdRwuVAap7mA5P4y9WuG5Ryqsd/kcmnKawGTdvDbHXkUDTzE93Z5zPWtFZiHXXVhnYJ3xLFQWzGHF7LWTkDk7MTCw3rRYjrOTWJQNcM3Ad96JUadOgSSFq2ewziDXwuwxENuCmiCYBrUtg+bMwZv8Omo6nWfeFDRSlQctmjA/vA47PH/ehNb5/2i4yjihrtecZf6cTmqej7IB/uXjpyHQftKQ4ZFYoyzxelKlAdPAzRnNBqWhVYJJ7c93g2CGG8PLuW4G3ug4892SMzOGcw7nyjToD504G/vXCktjnaFhsrPhH9yT+/H2tVvRQFWrhLFNJl6juQZmjUKiNJRSKJIuEpWhNEDmu3ITxfV9ZqrRS5cBa+Hm1ODWjveJuVF4993eb8oyQilEMPlu3UwXganbnSesMKQWA69FndQcl5hNJ4oM4LgC7trluk9Uhr8qp9S+NV8XMg8FJDk1hKaBVhLqTjZezHm/NJZ7GkPmA+None+A5V+lo/pCpXhuq2noNh/kNMUtDRm9TmIxqXFgzT3k0Orifx7FeOMb34hf+7Vfw7Of/Wy84Q1vwBve8AY8+9nPxm/8xm/g9ttvf1jG9IC/nL3lLW/Bv/7X/xr/6B/9I7z//e/H7/7u7+KFL3whfuiHfujvrE1r0aJFixYtWrR4JOBZz3oWPvaxj+HYsWN4//vfj//23/4bHve4x+Gzn/0s/t7f+3sPy5gecDvI2972NrzjHe/AK17xivDYP/kn/wRPetKTcNttt+HHfuzHLukAW7Ro0aJFixYPIS62NPkoL2sCNNh/73vf+3API+ABz+iZM2dw66233u/xW2+9FWfOnLkkg/qmhm0wzA266RAKLFVUdgYHF8ooWiUYZgYOFnOjYJ3CpOapqixLk4kXwK4WGY04AV8SZTljWlMQvDunKeixJZbeNns0YEwUcOcuyyzd1OJoz2JrxrKFdWxnZykIuG6ZpRXJggRYwtvsO28ay+zNlZxZk5IjWRoVbBu2Sy/E9SU1Cl9ZgullLNNJk8CJgfP2F3wgS/jeklMp70mBO18jeZFSMp00LP+Iqa31ZRHjWFY5OVboe4F9plm6lMzSsuGfa0ubim7CMe5ULGeyJMXnzIzyInkeq5QlJW9zd+7zPEUQ7suwUoo8N4uCfCCK8QHO66RRISO0mzisdaPGk00RLpx/sWLYmil0EylRRsPZ1cIFCxMZh5SZxRB3WvNzpVScaYfMsDxGm48KL79uH5Oa5UbrgCeNOKZUOy+ub1Ak3WB6DLAMlegMFsYXAS0ynyervXkt4M1oFbM8D/eaUHI23sYk0zQn3p4jlISlNFdqirqta3BImk8UG2I6mmUmOAvjmgNWGaOOw36tkWqWpqw06CjmRNaWY4TSoSQr+bcAhfkaSWgaqK2CBUuaUvrLvQg9S2j7cOvhGmOfkbo7Z5PK8b4L50QsLlDOOcmKZdZhzvnItC97GT7PKItTE4Vzs9iUAACp4+umDbCUWV/uBIOqTcUSm2NuppyDIgWQejG6s0FUz3sVGyVomg2sFryWy4Zrr5M4JDr15el+GIdSGpVlg9FeRUuOpewQ0KPRqnMWjVXhGk5UNPzt++zgygKfPc8ysrE1ji9xvUmGaCexYfySWwlwbgHg5D6vgdWO81nBCe48HyUksA1/Gt/w4CyKRB1omtCKn2mdQapzXD/k9cXydAJna86dNxEe+5L8Zt/hqsLQisRUQFZgXCmcnfLecGJA2QEtdyhjkPV0WXCFa84WMZvNsLe3d+Dn4cADntHHPe5xeP/733+/x3/3d38X11133SUZVIsWLVq0aNGixeXAdDrFD//wD2N9fR1LS0tYWVk58PNw4AGXNd/whjfg+77v+/Cnf/qneNazngWlFD7ykY/gj/7oj77hl7YW90eiGGFjnEWRLGG/Pg/nLE0ME+5ie37nNDfcgXUSh0w5LOcWpyYJjHPYnafopX3sVfvIdAbrVBDnZgnQS3l6h5nB0Z7FhUrjK/sKI89WreRkUoKtRUrbicePyNj1U4dxDRwqEpwvuXs91gfumSDEsADAtUMXmKNrh2SLrAWKjOabk0ZhYriL3KsVnjBiO/2pfbJXInwfV/KeEue0aE1AFmJacwe97s0sjVPYmnGneXZKoXhtyWQNc7I7ow7ZiWEOHF9ymDTA9cvAVklR/V5NFklsOcQItDQ0dBU2beTjjaR13roohk4UUPqopW7icGquoL0xJ0W/NKWdNEDP0I5itQAGmscunyMND2xw4HjETFdsP4oUfo75mpnhmI/7pgt5rkQG0XiW5yxRwLmZNBVwRz9pyN4lCjCaAuW9mq/rpSmgNIrK4jlHDPpZhm4yRJHOMcxoQvuVfeCoN6Jd7VVIVIpGUdhfW+3XfIpEpZg7g8SzQHw8C9FIme6gNPvQPqevm1gMMhfMhskGk3Hc7HPuP7ud49uupiWERsKmALgQGybC/8yzYsJ+OWVDhNooT4PQnEastMtoXAXjFDqJ9pYf0TIj1Qm6iaW5LRwAi9Q38gwzg5nROO8Z5eNLZIInNd0rtCLLqDVgDELTjAjYd+eAM7Vncrz3jm1QK0ZOWRubNoT5ss7ghmWH/3NfZITvnWigqdDLlmHcBXQ0mwZWCweVaThnoHQKWAsLE0xZrQVUZwB37izQt6gNwnGXBtBNDesMz4fGgtmz14YjgVMOmS5C5qKCwrR23vKCz9ezMVyvC6Q5HAztRzzTOsgZEaUBDHMbzGV5raWwMDg7VXjKqjfe9tYmU8+WS/PLqEOLIAuD3XmK2nhrGcf3uXqpjsJ7E5sk5LOVUv7vbHQAGJ3m4NDRfXz2fONZLh53eA/AV0Z4To1TGHUM1osEmE/Z4KEZf1dZ3gsFWiU4seQOGCU/5FAXKep/lGZrCv7tv/23+OM//mP8+3//7/GKV7wCv/Irv4L/P3tvHmZZVZ6Lv2utPZ1z6pw6VdVd3U1D092AIIKgtmgTRhFFfwqouZpgUHC4RuOUgGYwuXBzZVCjmJhHQROJ4EBuojdxCopKNAaQiBIUVGYamm6qu6Zz6pyzhzX8/vjWWvsUDUg1PYDsl6eeos+49t5r79rr/d7vfTdv3ozLLrsMF1988V4Z05Jvzl7zmtfgRz/6ES655BL8y7/8C4wxOPTQQ3HjjTfiOc95zu4YY4UKFSpUqFBhd+Fprjn72te+hiuuuAInnHAC3vSmN+HYY4/FgQceiP333x9f+MIX8PrXv36Pj2mn8iGe97zn4fOf//yuHsvTA0oh4MK2olObfqFTq8kgszvOhF9xLhQCnULYEGHSjQACzZB0OcoU6EvmtTqdooz4qQVNtKKBXxDVA4PlCa3ytvaBNQ16zGk2nj1OWqpMle3hnNEKUBtFOi9GK70kKNv/BaNVc65JS8K5i2Ki4O1UwseoTCT0ntyaYTo9kbO0UPZznL3D6oZ7PelzElHqzByclswZuWqr8yk4MQh9qwNz7FEigF5Aq2sVlDYNrl2/byOqtAaUfY6Cl4lh0xooWGkfkOvSAqNc+dPrutJFV9FBWGltN9oxsV5KlUHrAFBYQ80kKPeD06Glivn9BVh21DJdQLkPXURTTwIHtgxmc2JTUkX7gwwvic1x8UPO6HbNCFmMNELg/1uTkt1BEMFs+QUOHauDIwFnAtMp2bkwxnDkhCR9WagQcjIyzVQPQB29gtgpMn0NyRuRac+YGct4aagdThVtSJPnzFxDQXNTGRt8Hxkc0LITRWtiamz0TtsGn7vzLBaaYpdEAChYfSfZaxS6jCFyEU7KULA17ZsRYt209ho5srXVpKHUBUKe2DFTVNBAcYScWMrVDVjTVWfREiIW2s8ldzxnrSXJhMu7dlYZmqweMvQR8oaPCaOxOs1YgJFQoR0H2NwjZhZgQLaAIBhHTwrEXHtDZeaciaMA4BxKlwwS56BQ9IU+MCZJ02jtM7QGWXxYPajWwHReGukWmvRlfCgiaywipmllna4d/YLYdpP3gP4AbJmAAbGnW/vMBrgzzOVbsQzjaFnNmda0uVwpKCORKjLHbscU/ZTZfU5sM81nipgjzePymsG2ATGq0ylZt/h54TR+WgKRtfEwmnw8bfi64AEAjX3qZIXEGPOaVac5A7NzTJORsbOccdYmR0yQQE9BQmv48a1uGG9STSzzDqdDhd2ImZkZrFu3DgDQarUwMzMDADjmmGPw9re/fa+Macm3uyeeeCL+/u//HvPz87tjPBUqVKhQoUKFPYmneUPA+vXrce+99wIADj30UC/R+trXvoZ2u71XxrTkPXr44Yfjz//8z7Fy5Uq85jWvwb/8y78gz/Nf/8YKBM5hjPGrVLdSJ4PJAu1I0aoMHMoU1viQOplqgUbAjWdnYkEJDYmgVeB4LNGTxJ4Ulh1oxwqZZUe0YVhZIx3ZfiOkX3MrtIlE4p4FhoC7sGLSxTx3GelLCsMwGhm0ImXNZoGxiL5n00LJngG0is41dXQ6DZRjB2g1S8+5qJlUEqMT2e42x0i1Y4oUcqatvpvSaluU1dj1ZMl+FarsaA2HOjmd2ePKOhYFmCtTBk6719fDMgLHmWYWmmKWcuvN6Zi2kBu0QkOvUTTezTYcOhS0DaSnI8av0Axb+gzrRoildO+dTmmVXw9Js+a6vByjNpkYGwNT7t9eQTq+fkE6JaDsUG2ExJqRTs2ybDZiJ7V6nOHVedcaoE5bjdrJq3MsTwqMSGIBkA5QC6i72BiNV6yRWJ4Yyz64DjZmg7NDzGUCghnLGkprOmuNX43xOjMAkCb3YeIMxFJw0DE+coK62HrW8HcguY+O2rTAcEg79910TNMEDFjk96eDDyi3ZqOukzDiNczmDCOh8uymM1n1QejuMsk4GLhlupn33qQOVBpDwI1lnOlYEWNJHbfDnbjtSPluZNe1KRjpNXPLVNkLA/02Gqk9iVx4uGChZ2kMDPpWN1cPqfsv5IY+Z9DBQ/0AmdX/9aQzDrXUndVIcQg/vyACmEEKGI3xxI5Ha5qPYYJM9crzhtNvx2j7/WfZUIoB00gVw0wKGy1nwEQMM9+FscH3ZPpMxrLKlNfGWGh085KRh8xR6BTjCTGpUjMUNtw+5H5zkGvX6V3udxeR1I4BpgpwlPFb4KRJBA/o+ixzeo5RJ2/AIsScjq0Gde0eMa6I6XPErxr6W6ilZ8DdvUszVIC0Hb/2nJysledfIyBt5MOrA7sdT3MT2rPPPhv//d//DQD40z/9U3zyk59EHMf4wz/8Q7zvfe/bK2Naclnzb/7mb/Dxj38c3/nOd/DFL34Rb3zjGyGEwG//9m/j9a9/PY4//vjdMc4KFSpUqFChwu6Au1l/Iu9/CmPYn/XEE0/EL3/5S/z4xz/GAQccgCOOOGKvjGmnjgbnHC95yUvwD//wD3jooYdw2WWX4cYbb8SLXvSiXT2+ChUqVKhQocJvEC666CI8//nPR7PZxOTkJE4//XT86le/WvQaYwzOP/987LPPPqjVajjhhBNw66237rIxjI+PY/v27QCAN73pTeh2u/65NWvW4NWvfvVeuzEDdvLmzGHr1q249NJL8aEPfQi33HILNmzYsKvG9ZsLrYkq1xqZotLlcIbaSKggTe6pds7I7NKVG+uBRqGJzu/kAgYarYho8mYIa29AiyDBQtQCKolyRiW4+ZzZ11FzwYp6gVRROcZlbVKeIP1I27QwkByZcuJxGut+IxK5ptJbyKmEA1B5byKmkpq2NhLTKZVuOKdFlrN6UIbEu/lQFacdkXh4JiXhrjOddaU+stmg1/dtma5Q9F0Nm8/ZzakxYDql51zZQdvypjPDjTiVhfsFvYaE8vB2FQCNsVdQOciVQ8OhsoPLuXSWG6sbZfkxESQWbsfGm3U2QuD2eSordgrmbULcPpgakAVHKuFLJlv7ZBwbWpPfyVo5jmZkfKlvZb00V50aUIv+2mZZJm3HtG/XNel1ua1qzdqyq8tuXDOSQTAO05+FhARyKm/XghYa4RgOGk2xf9OVCI01ajU2L5NKaLOZ8MfJNwXwAAGPvAmssoav0uT2+Atf2tQGuL1DzSNUNqfzYN86lXjXjBi0ouVlCdCKujkTaMcGzxor9wVQlq+M0b5UGfIENWHwizkya3bjMtDWKNfYMZXMghuzm09u29jDLqdOfE/GorRvV9UNGCN7js09KmO7kvvWPsPKOh2rYeNTgKw1nDWOMzb2AnT3fdx4s2J6HQMYh5EDTA2oIWAuo3GAczAm/Da5bFAGMsM1/Vkgd1mkbhAaz2wrP4ZGSOdPKyobYbQps0ZdI5E7/s6oFgCW1ySMyqjpQJOlUKa4vy4UCohEzZehp9LSuNkdZ8qvLRmbTHF0rdWOs8dxpXttlLe9cdcrKIl8yGAYSnorlkJngJZ0TINoKKeUoxZon8HqrmWNsDTNhdFAFAJF6nNhaV66SaPtPKL5M5eVkg1neNyO1SM2yew27GHN2fe//338wR/8AW644QZcc801kFLiJS95CXq9nn/Nhz/8YXzsYx/D3/7t3+K//uu/sHLlSpx88smLbqKeCPI89wazn/vc55Cm6S753F2FJZc1O50OvvzlL+OLX/wi/v3f/x3r16/HGWecgauuugoHHnjg7hhjhQoVKlSoUGF34Ynqxpb43quvvnrRvy+//HJMTk7ipptuwnHHHQdjDD7+8Y/jAx/4AF796lcDoBuoFStW4Itf/CLe9ra37fxYLTZu3IjTTz8dz3ve82CMwbvf/W7UarVHfO1nP/vZJ/x9S8WSb85WrFiBsbExvPa1r8WFF16I5z//+btjXL+54CQqhsoplQW2QQAUM5OIxIqnOaTOUQtoRULsGOzqkmwLZjN6jRMfBzzCZAJsGZQryk4uMBJqTCQSnVwA4OgWZPIKkPi2GRq0I4V7OiEmaxoDyaGNhjZAX3Ioo9EItGWQBGrCQFvx9OqGwbYBswwOMJOSGN+ZalIkCfPGk9MpsQjTKRmLOtPVVo0sHJzlBkXv0GvrIYmlU8683YXWQAp6zco6fc7apsGmBebjW8TQqrZXlPE/ysZKkTktjT3XsEa2tG9c3FMnJ5PQkDPPFrhmgFQBrZDYD8eOCUZNAe67XBzNdMq87cZws0QqaVyOXXFsXaFoG5ythtvunmSYtPuqHdNj3ZyhGRkIRvE9nNP7G6GNksqJkRGMYqtatvkhtI0NEScm1a3g+wUQiYhsBIxGwCIYrRGLBhIxAgw6mEjGAMxCGTM0PxkEC2y8j8E9CwzPX0ZiecegAGQVoIz08TROZB9ZE1dnC5Npjq19ErdvWqA5FHKDn07T5G1GJP4HK0oxN4gxFoxsYmBo7gBOYC7AGLeNC2T4oAwwYY1UfYwU6DwdDJEXxphF/59phhEAmdIIuYJgAUJufORaKzRo1IAtg7IpZjplCFiEwmRYM0LWEmTTQvYqcxlZvThzWaLmtLfL6Ns+ikQYhDwmtscZ8IKOt7PkcE04xEwJxDbSi+KhNIwqwMLER17Fog5lJHoSQNqx9HtAc5IHgJZY3aABuOtLbo2QO9bGhR43ECxAzOsoTIbJGrFOPRsdFXKKjKMPKACZQrBl4Mx4hjsJiOGE0YgFmVknQdnIE/IEuTb47xmBDcskYm58g4VriHIWO2Q6q1AojjkJpPacdOJ9hnLuQEkwEUHqDKHMYQINhIl/3VxG+9nAwBhiVsXD72tkThFOMkfEnX0KsDwpyLYop32YSgA2iovmLTGQ2misqhcAYjzV8PCooziOEce/fjuc+8P4+DgA4J577sHWrVvxkpe8ZNFnHX/88bjuuut2yc3Z5z//eVxyySW46667wBjD/Pz8k4o9W/LN2b/+67/ixS9+MfhTvHW2QoUKFSpUqIBdZkK73377LXr4vPPOw/nnn/+YbzXG4I/+6I9wzDHH4LDDDgNAkimAyKBhrFixAvfdd9/Oj/Nhn+Xc/9etW4crr7wSExMTu+SzdwWWfHM2fCdbYScgc9JScNLlDBvOkjVDAgZiIBhjWDOSY6AoCgcgbVi/oPbyX84JnLQ6wz51BmHbv+t29bq5BxQ6Ra/gaEUKIR9uUaeYEzcNG6GCYMbbZywUDI3QoFPQKrHQDPVAox4YBNwgEQwDBcxmwrNmqSQmy8UBOQZodcNgYFvoQ2uP4RikfkGr3J5kmM3p8UQA3YJWmy6yx7FYoWWWnEmn+/+5jN7nIlAaAcVDTSQlezaRUAxQyIcDvw1W1oG7OrSSHosM+kUZZVQPnTWHtUKwGqJhSw/aP8NjZ34805JMXadTYrscg5YE9JsYQae7gzcXbQRkVOuCyENhNXOCNIV3dpi3B3DWIT1Jx6FfAKEprUXascHUgJG5rd3/Y5Hxn11osjHpFeV3t0JipCRyYlbyfjl9dY5A5uCBNSxlTnflGJMQMEDMDdY0DA4azaA06ayMcTpK4XVbGsQ4aaNs6LiyrJa1fqm74wc8o2VwZ4djdYPGrzVp1YacEmCKAQw0pgYMz1smvT7JsSowZCQLJa2uzGAysdo7w7yWyNl+cFbafhiQsShj3D4WQFldpnucWXOGgNF5MDUo49GcVtPFQ1EYPbG17bg0XnamwmTrYGlilYOzhtex5Zp5PZbbj7fNcT/3QmHnp93nP59jOGbVkI7N/SF2UUOMk3UE03Qe1VPSTTFO47H7cWANqwdWHzYWkdlrxEvdJ2BtOWQKxSWmBmSxQlFKNL6AGaA/5w12Ax55Nq4eaKSS0xwxgd8nPrJKScRRHYXuoVfARmwR4+/Mrd25oSTwjHFi7kIBtIYcRAAy+fb72u4DRHUUOkNizYWNCKnKwZg1DoefEwsFXVN7md2XlsmEJv0aQBfCTgEIRno1aNKsEetN56TTVc7mDNpIrKqHyHul3cxuxy66Obv//vvRarX8w4+HNXvnO9+JW265BT/84Q93eI49LBbKGLPDY7sC99xzzy7/zCeKnUoIqFChQoUKFSpUGEar1Vp0c/br8K53vQtf/epX8YMf/AD77ruvf3zlypUAiEFbtWqVf3xqamoHNu03FVVtci8g5hQPUhPad/gY0ErKdbIJHkJpiWVJHdowH8xcE9ozLu2Yui9b1ri20Cn6krodXefkeKIQMoNOLkh/EWgyZ+TU8Rlwij3pFMKyagzdgvQ62jCMxQqcAQuSY952CzZDx74xb9jqmK3plAKe6yF1DvYk8x2SruvL6aucJiaVxNgkAXD/gtUAJdS1xq1mYzol9spF4AC0Db2CfpPehVggF0M0rE8DgEPa1FlWD8t4F9chF3LYCBZaydatBssZQ66sk6GqY6QEW7xC39wjA9ctfRoP57TNszlp77b2GWZtaLnrWu3mNG7XoTeRUOdoT5KRbdcSIy5YXTDqwJys2fgea7LZCMvtdNoX18U5NbD6N0HMQzcvu19dgPvUAJ5129qnfTJswuqYs0KnXiemjPRsrmM8XDcvZIrRyPjj7U0+QaavzmBZmhxK08F0nY7ETpHpZ6Fp37nQcKcNm06J9VOm1CWVUUfUYRdx+PE1QtIGDTN30NKPtx4MdfUNdchxJiwPVmrNGON23xA76LbbadUMtO+MBuiY5rrsos01sZIGBsttsP14QtsyWaN9lj68SU8b0kIx7rs/5zIs6uhUusBkAt+12ytIq0fsG8eBTQoi992afiOJMXKaNcfooJ+CxRFgtGfBAWLswTi2DQKM2S7shBKgvMmuMgXtMyX952mjkAiDyRqNUQNA1ocpFCDJhNh1ose285l2OLcdwKVeE1oi4DF1hSfGdlISgzaX075x50YS0OeFPEbE6ZwolO0atReGkC9mdzQzFKVnO+sLnSJTHAGLUAs0Fgrh99dIqJFYs2kUaXlMpAKMRs9m19cEsUAhT4AggOAh5vLyelYoum5MxKTXi0TNdzDvCTDGnvDPUmCMwTvf+U585Stfwfe+9z0fneSwbt06rFy5Etdcc41/LM9zfP/738fRRx+9S7b5yY6KOatQoUKFChWezmBPsKzJlvbeP/iDP8AXv/hF/Ou//iuazabXmI2OjqJWq4Exhve+97248MILcdBBB+Gggw7ChRdeiHq9jjPOOGPnx/kUwpKPxhVXXIEsy3Z4PM9zXHHFFbtkUBUqVKhQoUKF30x86lOfwvz8PE444QSsWrXK//zjP/6jf8373/9+vPe978U73vEObNiwAZs3b8a3v/1tNJvNvTjyPYcl35ydffbZjxh63u12cfbZZ++SQf1Gw2gEPAaMxkioPD3OwH17uTIFGWUyhoBHvvwykBzSMOxbN5jNBBoB8EAvRMAFCp0hU/T+idiW1myphXLnqKSpDEPDtm8rQyXReqCxUHCMx1T+fNZ47psDmiFZeKyoGUzW6PPrgfEC1m5O5UQnWncWFq5sya0dhft/V2Kcy6i06EosXdv+70w5U0XWCa2QTGELDbQjGrezs6DMy7I86kqZylA5kYxjqRSSKoZbZ+k7+kVpfQGU39XJ6TOVdS9IBP2mEiM1CrjvDTmVVNxic8IK+icSKqW4MmShgIEqt71nXR/IYoQ+bzoj+46pAUMjoIYPl1XoPl8ZKj+6rM25rDT0dELyVFF5pWkzT+cytiiTtJPTPnLvm07pucmaax4omy0MDAZSAyKCmbkPkIpKkowBIkDIY2SKyjSdXCAWGoVm3mA54BEaAZXBBAttKVN6Y1KlZSm0H8qaHTZyzRQ1Bri5EvLSqNcZEQeuJGU02T0oCQZmzY7JCiTiZJtBO1KS0FyXJcGbp0trGbK2oaaAMluT+XE7k9yAC1+65MyWKq39jMvDdfMisse2U7hjUfh52M3hy9dTAxpHv8BQtqZVr2tp8yep/NmKsGgbOBO+RBYKKu9PDZhtgBAYKNqOtqvgcQ7IlBgPLakMWaQwMHReaA3UaTK0QtC+ZRztSPmSsDNQTiU1BqQS1riaTLGhqRRLx1ijJ+mcnEltA4m23Un2WrdQCDQjEtk/e9zQXDJuPxpfejaq8BYoPcm8YXGumbfScfOkUGW5fToFtg3oPO7mAFSOhYLbJhbtfzLVQyfPAU12L9LkNrczwUQsccMUGzpHOGbSxWVm4+QAWiPkZC3Ujm2ZnAkgCqGNwn4jNsdX0fzWhq4FlF+72EB5t2MPm9AaYx7x56yzzvKvYYzh/PPPx5YtW5CmKb7//e/7bs5djRNOOAFXXHEFBoPBbvn8ncGSb84erVvigQcewOjo6C4ZVIUKFSpUqFBhD+FpHnz+vOc9D+9///uxcuVKvPWtb8UNN9ywt4f0+G/OnvOc5+C5z30uGGM46aST8NznPtf/HHHEETj22GPx4he/eHeO9TcGgpHULxYJAh55kXXIaaWa64FfoQsWQhuGkVB5a4tEkMh1y4Bh2yCAYCEMNGLBMRo5kTaZccaCYqLGY4laYCCYQaeANU80iLlBLaAV3k+2c8tQERXTCpVnRAIWYd+RHLGgFewzRw1iQSL+dkymmMmQgtGxU6k1mXVt9vWQVq2uLb4R0qKrHpLwXjBaJU+nlu2xhrmJINbogJbx7IBjjwQjQf6dHYaJmFgFZ9PRjmllGnKyzXBCeGfo2pOl3YaLoaGooJKVc9YfLgKpk7vnmLctcGa3/aKMmHLjbATE4HUKeJuOZkQ2I06oH9rt6xZ0kXO2GmMRbW/DNmE4mxJut9k1T7jPnMtKI1tnjplKGntq2boZ67PYsM0JUwP4RoVc0+coXZDQv94GZuYBzjEmlnk2SbCQGCMe+TkWchthpKW3onAmykAptlemwGzGMJDUFFDodFHTAGPMxtoIpBJYXiMWMFVkexIKt7+IDfI2CCr37EXEnb0H2cbQXBvzZq4OyhT+WLvGBjaknxE2ksqNj8xpid1wkWqO8Tag5ppEjPjYrZZlKQtNDGW/AKYGXQgWoCdpXj9vmcHmHh3HQqNktx7GngkWeJNWxwxBlZFVAwXM5SWTqgyxTEYV+OUcWX04A2Vi40pmSjBiHTkjRh7a+GYB16BgRAipaX/3JUWWufnbk7TvYmEF84xoZ22UZcMlUknj89tnzVhpHMBAMkyndK4eMJoTm1IM/JicDYeDO5eoIYPm+qo6zf9WRK/t2OYmZSSUAZ49bixDbGCM8gynt79gxPBuSwOgKI2RG4EGZ2TkWw9dzBhDt2DlsXCfoyQg6SBM1gyUIcaQQ1DzAWcIC4VuTvPB2Q+1bbOC1LlnV/cY9jBz9mTDRz/6UWzevBlXXHEFtm3bhuOOOw6HHnoo/uqv/goPPfTQXhnT424IOP300wEAN998M1760pdiZGTEPxdFEdauXYvXvOY1u3yAFSpUqFChQoUKuxNCCJx22mk47bTTsG3bNlx22WX4i7/4C/zZn/0ZXv7yl+Pd7343XvSiF+2x8Tzum7PzzjsPALB27Vq87nWvQ5Iku21Qv9GwK7OARQh5jEJnkNoFSNdhjIbSEuCwwcuJ138BZN7IWamjuL3D8BIm8NAgxD51oB0rFDpAIoiBGwmI1agHGnO5wXiiMTUQliXgGFjGYyCB5y6jJWC3oMgnalEnSw3GOGJu0IoUHuwFEAxY18rx3QcTjEVAGJWGqI5pagXEHjWj0pyyX8C2vZMlgrZaNNIVEdvQZczHngzrt+7pulgkp0Gh1zvLhkZARrSTNYN6SM9pVhrfbunbqCRe6uMaATFHrRDIQboVp21xtgSpLCNhOAcS+/5Ullq7VkQr+1wDoWXM1owYTGcMLWug2bH7wm1Xqiji554uw6o67Q/ByFqhm9N+2WINSmdS0tw1ArIAgaaxOxNbx65FdhHrtHGO9XBaslSVTGQKIGQuKJ6eDw2QGgqdFowoONPtgY02gd4MmFFA1CBTT2tP0Yo0MsWgTNlSX+gMsaghYBGUsYavRgPWoqMwDL2CYybjGI9TRJx5RsoYstH41Tz3thEHtAzm7BgjbtlLZlkux3QVRAlqKPQKe84Y7SOFIHMKAof0r1VGohlxTKU0RxeKDIlQYGDeFuPhMKC4NcFye27BG9MG3Pj4KIDGwBnzejllgO1piH3qNQAp2rHBmmaOlfUYcxkxQFNO9qLkou8NeIxc90ibGIIO9FB8071dhnbkzi3LMllm7IAWnYCdAljdgLd6cBAsBFQOhgS3zzMgtkLJIKI4J6sRrAWk7fvlHMPymvHzJpU0tzPFbSwdUVmFTq2RtEKhiQVVhiyBKFjdMnRaYnsq0AopMm5tmEMZBWiKnGuGNIe1gdeytWOa984yRRs6xyeSUoc6WYM9JgHec9gcbpwiG6O5jK5pYzGxVMaa7NI+4RSzJHMYaASM2DMOAc5om52lymhUoB2Lcl97E1pjrTSINUsVfBg8tIFZ2AYgspFtpIO7dcCw3wjN35AlYNiTJrRPsDT5FC9rDuPGG2/E5Zdfji996UuYnJzEWWedhS1btuCVr3wl3v72t+Ov/uqv9sg4lmyl8cY3vhEAdWdOTU1Ba73o+TVr1uyakVWoUKFChQoVdj84e4IJAU/tm7OpqSlceeWVuPzyy3HHHXfgla98Ja666iq89KUv9QvO1772tTj99NP32M3Zko/GHXfcgWOPPRa1Wg37778/1q1bh3Xr1mHt2rU7GMlVeAS4VT4PELAI2kiKtoFGIpowMMg1rb6pg0VDaoZOLsAZIA2FQs/b7sZUkv7hoT7dZ68ZyRALCikvdIqRUKBXcHBrROuYKoBWlwEzdnVPWo+RUNvvGjKCBLzWqBUq9CQxdMuTAoeNGduBxrw+qx6W5purG9R9OJcBmxYeZppqqJOJjFiJVXMdlCGnz3LsFOdk5OgCkLcNSF+WWrYusXE1rpPSsW3uetOTFDDtwsldJ+VsTqvrXJdaHQDeXDfi8Bq20OpdHrYeocNpP7Mmyo7VzT1i79x1rzHEUAlGnag9ybxhsOs07RekVena7lGnMSMWiQ7eIW2rLVRldFNi9TCNoHxuPIGP1wq5C9g2iDh9vtOnJaKM/WmEQD1oU7cjQPoZqWju9ufs+EPPhtYEGY3GwqAmyB3cQKNbMAge+i41bRQ0FIVrFwLKMGzqRhhICiJn4Ah5DAONgeK4q8PssaOux7aNNXJMZiOE17b5bk3hQtWtESwjZtiHhDsYDW0YlCkwl1G3cKY5Fgpho9OoO1Mb+Jgnx5bQ9hnUgobfVmO0HT9910gowDkZNQMluzusmco1saXuWDnd4kRit0fm5QQ2pN9y7Khj5rzezmh/Xq2ypsqCASyIAZWjHVHH5GSt1Bx6pgc2JodxBDwiTZjW/pi3IwAyt8bDDShIhIIMo3uSzuFhFk2Z0pRX6hwr6waCB8h12aUcckOf704oo3F7h/Rb9UCjHdvqgNXBUbckFum7Uklzo9DUsdkIaPtc6LljIH86LRCwCOtbB2J5TfrzDAAibqhT1WnwGEcsGhRwriVyNfBaYMfC0r4lrS9pDO2AuD2RXayWlp4lX1kfmqtpBuR9r2l1UXHLa5YxB83BYR1mhd2LfffdF3/3d3+HN77xjXjggQfwz//8zzjllFMWNT8eddRReP7zn7/HxrRk5uyss85CEAT4+te/jlWrVu2WnKsKFSpUqFChwh7CLsrWfKriu9/9Lo499tjHfE2r1cK11167h0a0EzdnN998M2666SYccsghu2M8FSpUqFChQoU9iae55uy8887DV77yFbTb7UWPdzodnH766fje9763x8e05NvdQw89FNu3b98dY3l6wFBLNoyG4KEvF5KJJN0rS01lAcZIUMsZPQbAm1w64X07NmBgqNlSVj0IoA0Jy102G2XLkTEmZ7Z8xQ0WCkZlUjs0bZjPqZvLAgwUx0CSKLsvM2uZQKJ8KnvaspM102xGtIDaNqCSXiMw6BRkgdCTVNYrFJXfcmsZsM1mPxY273Nrn9rppzNbCrT2FEBpbEs2GMDt8wzjCYn5lSnLhlv7zAv+ARpPI6Dxbu3TuLj9Tv/esLTSKBS8ZYErwbjvTa0lBlA2CTRd2dOWdCNeliiVoe93dhmu5Et5nGXJa8q+xuUUuhzOdmSovKtKg9yJhEpKAH2mK0/2JOVxbhtQE0ES0LgKVY7Z5ZRODawNCCfx+GwObyxMticK9SAgewq3Kg4TKqGJCAwMAReQJoew5U/BDAKQWWkrXI79m4XNVqQSPgDkagBlCmztB+jZvNaB4jCG8gyd+as2JG4XQ9f8262NhtvvvcI2BJghWwhr38A5lewhImumvAxmfjMgAr8tgbX+CDmwtklNCNIwSJP7EpQyDIXOoDRtC+ViakidQ7AAnBksFNw3PTBwMEbWG84+xpX6C0XzWhkat2B07LWdJ9qU8w7KhjJGIf3hM5Tx6MTlPh/TLC591UOylHHHH1EdUBKJoFKslyrooTxSZo1ueQDBArRCA5NlO7Ah7jhKnSPkpXzgrg7DvV2ar3d0GAQz4CwAZA4NRVmtEN5WJOIk+ofWMNqWN2XuZQV9SeVjb20ChlgYv39YSAJ9dw3Uhgy6R0JqBPHWOCFda144WdA8SRfsNYbOG2MUepJTQ5aWvjGBM4GZjNlsTQOmnZeI9vYsMGQjs7lP8gRhDY+Hj4lRBbS7btiGgIBHQJr761mh6dx01whlbMPJcLZthd2O73//+8jzHbNM0zTFf/zHf+yFEe0Ec/ahD30I73//+3HhhRfi8MMPRxiGi55fSiJ9hQoVKlSoUGEv42la1rzlllsAkLn+bbfd5jM+AUAphauvvhqrV6/eK2Nb8s2ZM5o96aSTFj3ukgOUqu72HxPGWgpwDmY4tU1bwakzNnT/z5mA4KH9N7FVsbXUaATANhD7YmBshIlCyGNrikknC9l1SC9YF8xgJFRWtMswlwmMJxIhN8gUQ6YYGqHGXCYwEjJIMATGIOR0XANuMJsDK+vUpODgopza1uIilWTbANAK0UUKAcTsEINn0IyYtdEoxeipLKOTujZWSDBgrqD/zy3L1uClVUQrJNbAidSpScBgOmVYXiNLCsfObVogEb4T2aeSVrD1ELi3w9GOjTfK5Kxc0c5lZTRVTwJtURrLjif0fFEAwjJwiWD+PTRGYi4SASAyyDXDfXMchy5TmMtIXN3kpeC9FRps7RMjMSHKFXhPUuPBQJX7JrEMWshpX6eKGLGxCGhGZePBNlMa97r9rk25TYKRlQaxsU1qAAjsceZByQrAIGARcj0AbASZMowsKoxGEjSxrrkNjMU2akdCmhzaKAwkx3UPcRy/yorENUOuDXKdoREkKDTzbFJqjVznctofxMhao18BH38GbbwQW5kCYxExxdLkiDjFTGF+GmitImNRw5EphpoVn6+oaQhGcTzaKBjLBmqQ4L+v5tEMl4EZstEw0NagtGOtZsrz1jEez2zbRhtrmNyMSBh+3UMhNiwXOKBFDS0NO4a5zM5tAfpj118cJUPb8ijXFMZ8cwdAon8vVDcarUhBmQIRD4EQMMqAPdLnGFOa0Fp2TTAaT8AjYkp1gDUNg83Mms8WZQNNoRgKQ7FzsLZA9TAGYxyJjY3TBsSWKlVmpWmJRkgMstTMs6eu0iA1se1JAEBEEPZP13gCz+ArWzGYzcuGoFwzjMWKLCwY0I4lnjEaYEufgTGBTk5HeLixgoFYZXBO1Yy876X52gw1d5gI+zXIjPvns5xYWW6ZXMt2Oluc6QyWcUyowSYe8abQ7bg0g55ILEPJY+zRAKc9HHz+ZMGRRx5JzUiMPaKHWa1Wwyc+8Ym9MLKduDnbk4K4ChUqVKhQoUKF3YF77rkHxhisX78eN954I5YvX+6fi6IIk5OTEEI8xifsPiz5dvf4449/zJ89iU996lN49rOfjVarhVarhY0bN+Lf/u3f/PPGGJx//vnYZ599UKvVcMIJJ+DWW29d9BlZluFd73oXli1bhkajgVNPPRUPPPDAotfMzs7izDPPxOjoKEZHR3HmmWdibm5u5wbN+BAbJqg9ndcBAwptZhyx0D66yYUpx4IsNZzhYk+W+qth3RpALeikRZJWv0B6DWdkSxFMBmOx9nq2vo1aCrhBr+BoRRqRDT7PrPasFdURC4P7F5hvX+eM2K6ptIxEchYQvYIYpFwTK7C1b1vlLXMznVIEjAtHj6z+qRkRw7S1TytYp6/pWTsIp0FLrREstwyaM251thjOpkBbXU8zKlkmZ8UwbDibSiC243XxUf2CIqRaIdmCOC2PYyXGovJ1AD1OrBRpb9aMkM2A0/qkinRv3ZzMafcd1X6/tGPLuAXO5oMMdZ0OLpXAM0aNN+KNrH4GoNU8Z6XJ7VxG7GozMj5Oam7IfqWbOz0d/XQKeDYxVUCQkd+C6c/C+a+YqTvsl6XeXgIgFmQ2E6S7KVLLtgRIRA0hi6ENmbpKq93pS46VdWJ7nWYIIFa30BkEoxgkgIx8GyGwue/0gjR/HHvKjPGrdqMyCvG25p/u3PCWBNa6oa4oM8wFl89lpFly5s4u/JyBexYHsCyd0WDWcsI97j5HamIGlSkQsAgTiSYDV5S6xEZgsG3AYIzGdMasBYnG1j5pHttxeUwhVenbYrV0zrPVXUuG4eZkIyj1mc7eIRYGmdIUoZSBdroNPSdLDWIdDbS3dkFelN9hx9HJ++BMYLKm/L5zc7uwzJbUpDEzRmE+Z3ZuCvQKez7lwKZuRAyS0n4COI0eQDFZmWaAlgh5gq0DBm2tOJCMACrHZM3g7nm2SPPodKTtuDS/pqpBAER1jAQaA0XMLMIEA0lxW8PaPalzf9w4E0CR+j+UhbHh8UYDgw4EA8ZiRfo4rYHYfpbVa6ZW+0raVqqaGGPA2quxsm78vo44sarEtId2e/bgTcHTNFtz//33x9q1a6G1xoYNG7D//vv7n1WrVu21GzNgJ5gzAPiP//gPXHbZZbj77rvxT//0T1i9ejWuvPJKrFu3Dsccc8yuHuOjYt9998XFF1+MAw88EADwuc99Dqeddhp++tOf4lnPehY+/OEP42Mf+xj+4R/+Ac94xjPwwQ9+ECeffDJ+9atfodlsAgDe+9734mtf+xquuuoqTExM4JxzzsErXvEK3HTTTf7AnHHGGXjggQdw9dVXAwD+5//8nzjzzDPxta99bY9ta4UKFSpUqLBb8DTUnH31q1/Fy172MoRhiK9+9auP+dpTTz11D42qxJJvzr785S/jzDPPxOtf/3r85Cc/QZaR0KHb7eLCCy/EN7/5zV0+yEfDK1/5ykX/vuCCC/CpT30KN9xwAw499FB8/OMfxwc+8AG8+tWvBkA3bytWrMAXv/hFvO1tb8P8/Dz+/u//HldeeaXX0n3+85/Hfvvth+985zt46Utfil/84he4+uqrccMNN+AFL3gBAOAzn/kMNm7ciF/96lc4+OCDlzZoHkAbZTu9BJQukIQ2p5RxGK0RcLop5EzYDh9aGRKbQFoMbZyxKLEDATcodAEuBEIbL5QphkSMoB7MQBmGkZC6LWNhmRxdhjaHHBgJS2atFmgfaC01RfMYQ+Hq9ZCMImOh0ZdlZxS3bA7CMk6oUxBDBJTmqM5Ec9hUtWRPSq3afk3jdVFzGZk09iSZQLqA6E6+OBKqm9NKVRtiuqZTYqVyDbRtU9pkzWA2L7tEXTg4QJoPp/ly3+3+3bPBzK4zFCi7UDtWD1dYrZeLkhqzHaxaA1MF852mjaCMcWra6CfHuDlNFQUj075ox8TQ3Nul7QfofW6fzWWWHcuoG3TTgp0jijpXUwWsstFPzqh0NmeYSWn7J2vl/mtGAJREFNWBhfmSvUkHQKMJaGnjeFwEEsPKekGLZy0BUffT3Rm3KiP9cc41dYu2Vmjc0xXQhmF7GmBVvUC3AELO8LOZ0H42aXE2ThrcMsO8TqcVUYcbjO3SzAvqcFQSAY/Rs/FMZli5Y3VAyBaAehuxMJahBn4+x3BQ242ZWbNcjUIHnvljjAEigFY5OIQPcg+4gTEGYNpuo0IjHMNIOIOxiOPeLrzhqGODGeMYi4xnWp2Wci4Dmq7HSg+NHcBA9iBYE4kAtmZYxJwNG5a6+LSJxECGAYTRqIUaM1ngDZupLVDDDHcEaolM9VC3c9soZWOp6N99OY+ZLMDKOsfWvqCwbqvN1PoRCBQlMafEkOGrY7+BboHyD7rWQJigHg68phIoO9QFC3x0lzJAzhQiI9ApGPZrGtQCqg5wVnaQdvPFnb6Chch0H7HQXjOGqA5leqTzHdqXPTlL72UcBgZGSwpIt4bgvYL2lSkGqAXEfDq9H2uugBl0SKdZpJjLRvz1IbSGzACAIsXWPhl3uy73rg2F91FnexLDMWg7+/6nGE4//XRs3boVk5OTPjv8kbC3tPRL3qMf/OAHcemll+Izn/nMok7No48+Gj/5yU926eCWAqUUrrrqKvR6PWzcuBH33HMPtm7dipe85CX+NXEc4/jjj8d1110HALjppptQFMWi1+yzzz447LDD/Guuv/56jI6O+hszAHjhC1+I0dFR/5pHQpZl6HQ6i34qVKhQoUKFCnsfWmtMTk76/3+0n73V5Ljkm7Nf/epXOO6443Z4vNVq7bwO6wngZz/7GUZGRhDHMX7/938f/+///T8ceuihviV2xYoVi16/YsUK/9zWrVsRRRHGxsYe8zXuAA5jcnJyUdvtw3HRRRd5jdro6Cj222+/J7SdFSpUqFChwm6BY86eyM9TGPfee+/eHsIOWPIeXbVqFe68884dHv/hD3+I9evX75JBLQUHH3wwbr75Ztxwww14+9vfjje+8Y247bbb/PMPj5dylh+PhYe/5pFe/+s+50//9E8xPz/vf+6//377xpKy9kaXuoDra9dQMMZAsAAho5qB1CTAd1mHATe+9EXlwQKCGQh7gihDOZJzOZVOa4KaCpyBbcCNbyzIFLNGmyRs7RVEu48EtFoYKMrl1KBW/pAn1oQWqAXcG5c6kb8Tm7tSnWv979iyxHRGjxeKSjjJUGE9ldQanwgS9haKSpO+fDvE9CeizNkrxfb0eU4APzWgnUpmvfR99bBsFHDlziQoDS1TSeXYQpWmts7MtmtzOCeS0hA2tKWayI4vHMqodKaympxTvOmoM590pd1EGKxuGFv6oBKIK+20Y8oudA0OycP0qc6exH2na8oYs+Jy10wxkZCdiCujzOYMrdB4awNn+REK+5kiIKuINLPCdFPmaxoNZaSfU27OFZotulAHPIJgVMoZyB4WCoGFQmBrP8SakbJJgsx6mbVy4cgUx/0LVHbe3GPeUsPtu1SV88l/nytZGg0D7UtaZG1hz2GpqJnBkNC+0MzafADPX6b8thhrlwGQMfNDg9CXR40h02fOBEKe2GzFwGeDUk4u2YzEQnsJgTN/bthGFGO0n5+x0H6eAmU5zhT24NkdfVcn8c0nhaZj5AxkORNIFdmrDH/GQHUARWW5mGt/vpnhkulQCa3QZDYNzsCs5nY6c+fXAgJOub+bemTd0S/KeS8YWXhEnPYRjMYvZiP/2e58dcaspIOg70i5xLYBfH6mgfYmtAZUjnfXmgU5AxhNWbyRwYpagVrAfdOPs4QZbsRhxlijb+7zbhFEkJpZOxh37BUKnQ2VVmmiNUPaT51c0L63maTcZhPXXRFJDRmZigitkI73yjqdD34eTd2BgSqbidy1IJXwZsxs6X+edx5Oc/ZEfp7CWL9+PY455hhcdtllmJmZ2dvDAbATN2dve9vb8J73vAc/+tGPwBjDgw8+iC984Qs499xz8Y53vGN3jPExEUURDjzwQGzYsAEXXXQRjjjiCPz1X/81Vq5cCQA7sFtTU1OeTVu5ciXyPMfs7Oxjvuahhx7a4Xu3bdu2Ays3jDiOfRep+6lQoUKFChUqPLnw4x//GBs3bsQHP/hB7LPPPjjttNPwT//0T15Tvzew5Juz97///Tj99NNx4oknYmFhAccddxze8pa34G1vexve+c537o4xLgnGGGRZhnXr1mHlypW45ppr/HN5nuP73/8+jj76aADA8573PIRhuOg1W7Zswc9//nP/mo0bN2J+fh433nijf82PfvQjzM/P+9csFYKHkCa3ZpZuuQ6AU5SI4IGNWiFbANfiz1m5ynbmlu3YQGqFRqAR8hgBj8hKgwN9yfxrAaAmytUoRRIxbwNAInti5xohfUe3EBgJFGJB5reJGIFgAXoFjWcgtWehKMLEWlQEtDp2ovdOXhqoLq8Nm7LS8xEnxozYJrJXcGL3TsE8S5XaWCX3PQCtShuBs6Ggx7p5ybS41bqzunAorEtBy7JkjrVwhrMTCUU8+dgd0pd7M1rH/DlBtHvOvV8w2yiQkymmsxcJOYnZHQM0l1HjQDenRgD3XMMadgJ0XEJhWURVGvY681zHDmhN37G1b4XTGl5A37UL+pATu+GaD1xDhItx6tt4ILKMeARm2DJVBtoaGWMRg+bLG6aMJCMLCIZOITCTBXigx3H7PDFl93SZNz9+aBAi1/S6XDtWkdjKyZrGQaPGmw6nqpwj0HLRELVRqIfuONCkMKY0VQUA05u20WQSrYgYMmXIgFlDQfAQfRtdtlCUl0lqDOBD30Xf8XCWI9cDZIr78zWxonBlgJU1sgwpNDAR0/F9YJ57O5mTVtvmhrwo7TSkxIO9wG97uU2SGDRTRns5a5ltA4ZeMQeIAO2IzuO+bUJBrui9Q1YdND9iTCSKrCACMlV1bG2hU9SEhjIF2tbuxp1frgGIGHRqNgDjuHWWGFqlKcqoJ4nd+/F2az1hJ29fzvtz6P4Fsl3ZNgg8Q1Xo8vOVIbouEdRgwRmxTJni/rpTD+k5wMZ42VimVJGJdiMEBrKDnrRNI4yT7YgkO5SepLmcqdTvF/DAVhrg2UaKlWJ0fdGSjJBFWQ5wcV3E1gli4qQEFhawulFG0Q0bCCs71j0Kxh5/+fIRf56aVhoOz33uc/GRj3wEmzZtwr/9279hcnISb3vb2zA5OYk3velNe2VMO2WlccEFF+ADH/gAbrvtNmitceihh2JkZGRXj+3X4s/+7M/wspe9DPvttx+63S6uuuoq/Pu//zuuvvpqMMbw3ve+FxdeeCEOOuggHHTQQbjwwgtRr9dxxhlnAABGR0fx5je/Geeccw4mJiYwPj6Oc889F4cffrjv3nzmM5+JU045BW9961tx2WWXASArjVe84hVL79SsUKFChQoVnmx4GnZrPhIYYzjxxBNx4okn4u1vfzve/OY343Of+xw++9nP7vGx7NTNGQDU63Vs2LBhV45lyXjooYdw5plnYsuWLRgdHcWzn/1sXH311Tj55JMBEMs3GAzwjne8A7Ozs3jBC16Ab3/7297jDAAuueQSBEGA1772tRgMBjjppJPwD//wD4vM577whS/g3e9+t+/qPPXUU/G3f/u3Oz1uYzQy1UPAnTYnBqxhZqEzij6B05IFaEUKc1kZkSM1w1xOegtnLNopBCZrAhwCK+sZHhqE6BUCDKQZi4VBocncsx1LzGW0Chxm0tx3CGawIEmr044MClOabHImkAT0vm1p6OOWetbyoWG1Fy4uKgnICkEZG8Nj2SZnf5FYXZczXp2WzOu1FCuZqpATmzWd0rY3FLwtgGPlCg0oy5A1IxpXKyqjc6YGZfzR6gbpWDqFZfCsrs0xTVozr0PbNmBoRmRAu2mB9CPdHD7IuRGUurVOXjJ29ZAkKI5Nc5qZVBLz5ZihJKDHJhKDVDEfWN6OgS39khF0LOVcVuqvAPrtVt6cExvTjo03YnXMmjs2W/slm9q0+wd8sSGvSbswtSZJIR27MhTjxCFswLWwYxJY3Sgsi0PaL8FCb6ERcgOpGWYzgZU1g60Div+KODCTBkgVsK5VYCA5pu2/nTYPAPZpFABC3NsV4AZYHtvnhv8oDMU3zaRuHgooQ9YYPLAaLUXGqwUYlCmQygScGcs4UwwaBbYDnVxgJNTWgBbEwPCS8eaMmHBiEiUGUiPkCn05j1hoaMMp6NvqiuZyOp6FTlEPA8zmZJGzT5MMaxMBjIQakNq6J5dCrZtmGZbX6Bzwdhs2Lot0gHQOFZqOays06BbACq0RcQbBtNc1GWdC63xeVA4wCm3PFAMLQ0BrMBEDKOwQFLQh+5+eJAPmUJBFjmDEACeCjFqdBok0lMzPU2d1QalJHMaKJmNeR8hTpFbe2MkFvr9F4P9bzW0sHY17a+5MtzUOaBncOsusibbEXE4nSq6BhC+ePwAg0j4KzVATdC3oFNuQCApRhyE7D6dZnMvIAHehEIDMEXCyh7mnK8jexpr3ZopBakGaM6NhZEb7VSqgRvtgakDH3BiNXPcR2nNqxtryOD2iO1cN9J5nzioAAO6//3586Utfwhe/+EX87Gc/w8aNG5/Q3/ongiXfnKVpik984hO49tprMTU1BT2s0gb2qJ3G3//93z/m84wxnH/++Tj//PMf9TVJkuATn/jEY+ZnjY+P4/Of//zODrNChQoVKlR48uJpzpx9+tOfxhe+8AX853/+Jw4++GC8/vWvx7/8y79g7dq1e21MS745e9Ob3oRrrrkGv/3bv42jjjrq13Y+VqhQoUKFChWexHgaJgQM4//8n/+D3/md38Ff//Vf48gjj9zbwwGwEzdn3/jGN/DNb34Tv/Vbv7U7xvO0wUB10dCxzSjU1AjAQnL7ZxGUKXx234oalXso54/at38xx7GuWZZW6LeAgcZ4LMFZiPmceUF0oRm0bQDIFPdWDoKRNUemXFmScuJaoUKnEIiFxoJ0dhoKHAJTA/jxKEOlA5f12Y7L9nBXThOMhMpzGZUCnSN6r6AyTGLLDK2wzOeby+DF5j0JtCPahiSg8t/mHvP2GK7s5+w7XLmxZUubAwU0AV9ecskEqbXLcKLmRkif3c3pudBer9qx8XmOzxqj73almcSU294Igb4BVtYNtvYZRFyWEl3Z1gnZnXWF05E79/h2bMeJMomgsML+iZi+S5uyBOtSAYBy3xagUqzL63SZpc5WoxmWLvJAmVNZp0oWpSVoadv5hzB0AXZlFyfE5oxSI+jBchU+UB3URAuZ6mPbIEAsNFqJwnQa4bsPckzWaP79+CGOlXUSdG9LXRYhbUs3Bw5oNfHAQroox7FQIAsaxkm8riU1Kxjjt42sIThZOwRDpSKjIQ2lF9RDEnZvGwTYp1F40b8ywHc2C5y6vy4d+I0GbPbmMJSRkDr39hyUUemsNEJf1p+1ZW9pckynASVrMOOPQSjo3PL7O7UHV2s7v5kv+TIn4gaAvE+Zq7bRZDoFHpgXeOm+9DxjDAKc8lPdYTR68W8ewBiN8UQCgYCZ74OJAK2wADhHwEOMJ0Cm+9ja595GZi6jBqSVdTp3qLlCghuy7tjco0SEnk0TGfONHOU+DHmCVKVox/RwLdDUEMPp2K1tGtzVYZiIgUxpIAAObhf48fbINrQYLBTCW6x0bfk4DAFpGBBEMLP3A1HZaHPz9shmAgeA6gNRHcgp2DQUNK969lhEvAbIHJt7DOOJbS4xGiEXmMsENQxpTXPQJWso6Rt7qFxJNiR0EafPLe2QymvFXCawqh5UxMcexKZNm550+3vJN2erV69epNmqUKFChQoVKjyF8TQsa95yyy047LDDwDnHz372s8d87bOf/ew9NKoSS745++hHP4o//uM/xqWXXor9999/d4zpNxtaeoYMDL4Fn/I2Q2+HYYz2LfuJGAFntCqPhUHIDQ5sDWfJhZCazC+N0WjHpehWsNCuzlxuJuVlhpxW7IVm1lgSaMfKCqM5gliiFRJzx0EiZW0UGOcQzODWOYaRkJMBJS/zAB2jMZEYTA0YEkGWHc6KgvMyx9KNsRGWwt16SKteZUoj1v1GiB2ay9w2kfC4X5SieMeI0XbQKntlnewLGlZw347L/DrHMgDlY8QsMVrUqvK5icSyfJqeF5bRSxXQMM7KwyC3zRUu/zO1jJo2wGRocM+QoH9t03i7g05OWZdTA4apAbCuadCOKcNvVZ0E4BNJmdnpttOZbbp90CmAyYC2yxnjphIoGLEad3UY1owQS+me7+bAKhuF2bEWJK0QAOPgD9wK5PYgDAcncm6tXhgCaAACy2uSMhllDoQJDKhZwBkpBzyybIjBRCwR2aaXlTWDX85znLxa4RdzAuubGh0iapDb7TukbdDkbbSiB9EIibktNNmyePaFM2+7wBjz7GmhUxhDtjRBIIAgAlINiAgxy2GMwboRg4HkuG2OY58G/HkEUONILdCLMjoZGAIeQeoctUBD6YLeAzq3BAuR6wF6Utj5QMeoGRlwzvDzWYYX76tQE/BNGxF39g8gKxsVlNTxEMPULUrm0xgDNsR+NSOap82IzsFWWD5nbFPPVFoyzR7W9gKCrjcTMTFnjrVThuZDxGvelNUZKk93AxwyKTGXlbmhzl7EaIleQQ00yhRQJsZYVDK2w9vFGPfztRWRwbUfHoxvuukXwFwusEZoBNZ2JxYagnEsFNw3B7mGoEJSc0GuBghBht6uGee6qaAcgpJgTMAoCc4iukaFCTUEhAo1VdqYeAuXIkUrStDJiZF0zC2LGjBaAyLAeEIZsBMJFrOtmub5ZELHfS4rz+9OIYB0AQErDXx3O56GN2dHHnmkTwA68sgjyUDaDJ3n9t97K1tzyTdnGzZsQJqmWL9+Per1+qJ8TQBPGnfdChUqVKhQocLjwNPw5uyee+7B8uXL/f8/2bDkm7Pf/d3fxebNm3HhhRdixYoVT7o67ZMejIMZ4zUsFDUTQuoMASIkYsRrzjgTYIwjESMo9Ky1w6D9/Ys5hme2DRoBtf5nSlitC+kjlAH6lvQgxo1WmHO5sO3bzl4DaHGDXsERC4oi6RW0ms+sMSdFOJEthzEaEwmxOi6aJhRAUdAK0OmaAFoBb1pgdgykG3OsWcuu8hNrVOuilJwZrGOrQkErT6cNS2y8UE8CNWclEQANRq8XjGKbJuIygqnQ9BMKIiO2DUi/5VwE5jKGemi8kapjA50exNljNGwU0+qGwaYF0odNDcgk9Z4usVuANbg1wGSN7DqSgJ5PBDF0MylwV4d5XVUi6PlWSKzV5h7pxSYSilnqSfgfNy6nRwNK9hEg7U3HGtq6OKZuDnTz8vvccy6Wp9T0uSglmqeYmS2zp5xOhpcX8cgyaQ/1AyxPCroWmHJecwhwLjwD3I4VOjlHKyJrBDfmbk7MbE8KZIpjLiPj4RR0vBoBgN4MRkKFXkFvIo0eyALCMRKdDtBqgUNgNi+ITbbWCCGPiftyBqGcI2AGuTZY18rxUD9EMzRWP0cTS2pm9VQlkwajwUCRVIVOEXGy6fAMOOD1otsGsbUAof3dzRke7HKsH9NgIPb6gCadQ50C3ji3JrRnbiGlH69DarWLDAxGF56B6uY0P/pFqUl0iASxXhNDpsnIU6ABr59CVAeQYjRaBuAhsoPg5Z+ImmhhgA6kzpFrYrrWjEls7rnnyyiuIaIRqQRmUoWIk+ZuLKLfAMA48+PPNbCQcrQispLoFDQ2bRTGYo1CkT6wkwsgSD17DRDLkalSK9rNrT2FADo5R6oWEDKOTkGGsbkGZlKrH7Mw1ofHM1ZBhLtnAhy7zJBliZ2Pyth5pCUZRHOyLDG6oP04ZEI7kwJrRoy3wXE6YkiFRJRWQU5HmFtTaDLN3WmnqwqPA8OVv/vuuw9HH300gmDxPpdS4rrrrtsrVcIlH/3rrrsO119/PY444ojdMZ4KFSpUqFChwh7FE2TO9mQO6G7AiSeeiC1btmBycnLR4/Pz8zjxxBP3SllzyXv0kEMOwWAw+PUvrPDI4GTSWQ9G7Sqc2ChpyOA1EnUKTuaxD18mLZrxAebKMGycNKjbmKRuYSN+eIKQJxAsRLcA6gExGAPFyYjTlB2bDvWg/P9YaLRChVZE2rOQm0WvDXgEZaTXUQWcmDen20hl2U04nbJF3ZpO/5UExCjlls3Smli0QpdmrQNF5quF7RxsBMTytGPbqShK1ohiiGzHoaAVuTOadZFPIS+D04c1WtMphSOvrNNAQ16ydY5FcjFLrjNNGeDeLqPInyGmbyxarJULOWlwnG7OhbJ3c1oZr6zDRzE5Nou6K43XIM1l5ecngoxxnbFvT9JxdyHSznx0a5+YulSVmjpuPUE5o20ms1v6dzMs98fqhsGYPRYsiGHmu5Y5c1qzoIxvsvFODBz7jhTWdDik1yjq9JQmJyWWNXWlOUbs7+qGwXQK3LSdWLLb5wPMZfDh1R0bsdMIgbFYweQ932W8ql6G2UNJ+k7OgT6xGxrKsoTMfj91bSKISl0ap3MqFhzjsSznsikjmgrDMJGUbDUAu2103kqT0zlh46Mce5brAQIeYXtKXaztuGS7arFGIzBIFR3n0UhDasd0WiY7stFKebEoG2s6JcZXMGJrfWyVDUB3ofaclSbFJJPkCFgEA9I5pcoyVqmlr+znGxGCMU7XJgcReD2ou75Ik3vtY2jjtRpBaahM+yn3F4ZCA/d2IySCzhN3/QDnYA3qXuRMoB0DQagxNaC55LZRmcLqyuijD24bGF34+VtoBsFCxMJ4M1enUaPNI7NhimPiOH4VsVZrWwaTNVOyWXDni/AGx7fPWzY4iGDkgK63uT0X0oHvclcG3hDY5D1iHUHH454u6VhdbJ/rGnbd1V2rnW1FNGapHcu2OJZst+JpHnzutGUPx/T0NBqNxl4Y0U4wZxdffDHOOeccXHDBBTj88MN30JxVAd8VKlSoUKFChSc7Xv3qVwOgsvhZZ52FOC7r/kop3HLLLTudof1EseSbs1NOOQUAcNJJJy16fG92NVSoUKFChQoVdg6McbAnEBnFnoINAQDlawN0/9JsNlGr1fxzURThhS98Id761rfulbEt+ebs2muv3R3jePpAUFZbFNQBcHAtoEGZmjAkRi1MCmUKGJT2FQNJgn2HuZza8Ds5MJMF4MyAgVlLjgAhL6jdHgYBI6sAV6J0uZe1QCMWGgEzWCg4liUSISeLBJfFyZlATVAZR7AA0+kAqQyRWLPMgSqtHVw5rW7zNgUjMWynYN6SQmsS7AtWlttcu70rCzYCovp7kso4qaLntw3KHMl2TN8xndnXWGuIhi35ubLkZI1KZD0JRBGVVmtWeLuuabBtQCWHiDvRNpWPnFjXZVS67E5XFt3cIzuMUNC2DeyapBEASpWlUGXo+1fWremsADppmWOZDpU9mxGVTN02UznWIBG0v/ZrGv96t/2LppYdG5UuqdQZCmtVYsckGJVZAHpNKktR9T1d+h5nQwFtLRhc54QtnyFMoJGCgduSELdlJ5urqXIoTXPRCecBZ55LczERZIXR1rYxxP5d+PkcW2SL0smB5TUJyBxxECHXpUFxKkHj8SaqVF7hEFCmQK6Z/X5GDTeiNKpFmCDUcwDgLS8mYis2B6B0gUxxTMRUFvNWGozbvFpB+4ZppMqgJYQv3Uqt0AgbEIxkCO5ccJYaA8WwUAgkgd0fikqS2wbMNnyYUv/jBPOyLHErA29Nw6IGjUxL3yQhWGklwQFABIhEDT05i1X1oaYdKcuytdb+OHHDyArCPt6OARiNXA8Q8ZrPdh1uTnHnV8RBpT5VTk5qyqEcW2cZsrwGMClgrEWLNgp9ex2gfZhjcy8BJpzBL52D4yFZC0FTSTEJgC39CBOJgLRSiYG1g8kLKhXGguxeYDS2DWIc1E4RTdW8bEGafNF5RIa5dAw6fl/lQJGiHdfJIieKwKX05rdrRmgf0f6U/j2rnTGvBjjoWu/OLWeFE3IatzPQXSi4PfR7sCHgaditCQCXX345AGDt2rV43/veh3q9vpdHVGLJR//444/fHeOoUKFChQoVKlTY43jDG96AzZs346CDDlr0+B133IEwDPdKxuZO3e7+x3/8B37v934PRx99NDZv3gwAuPLKK/HDH/5wlw7uNxKcVu8hp5wSwSgyRZkCUDkYY55tEIwoDGM0Cs1QaOYZsEQAmxaIYerkAq1I23iQAJwJvwo3RmNZoq0dhrGMRClyjriBNAytSKMeaN8IABBjwJlAPaDxUbPB4uifVXX6/3rojC+J4XIGs3d1iFlyK3knUg9FGafUKciSIrQi70ZI1g6rG2WDgGOJerZB4P4u8yaOzWhIOB+UguBhK4HCiu1rgr4nCUg8ryyzQSaatB0RtyJd+5qVdYN2bN8naOxtG6XjopMmEmLpkqBkFQB4xu15Exr3zXEfL+WMMEPP0NH+aw/ZDFAsFvOsi2MsANrH7rMnEoPQsoHNiLbRNTIAtH3OjJeOK41hLiM7AbddzspDGWsLwDmJZOWOUgVjNAIeIVXWToVTNI1RGSBzX+Yo2TX4mB3XX0CGt2ZRfI3bn82I2MkkABoBsXYRL7fNzUNvoKo10G4CnOb/REJxTJyJsqmFcTIbDWIgTBAL8j7Z1I3QyYnNm8mcwJsm3HRWMhm04WXcGu2H0n5DQ0Fqhk4uoKxgPVP0XscWCQbUBLFlADXVzGZiEdM7m1kG0rX1D+1/dxyFtVsYhmsCcMe5FdlILUO2JtqUjTb05YvX5gaGmpCsbQQAQATE6Giytwh45CON5nJr9Kpo/itDx0wbS4lriSSwbHWgffOL1nTe+0FrsirpSSu2t2hHAHgAqXNwez0hdn3xdj/YC+j6CTrvItu8kwRlhJw2Csj7uL3DEHOD2XzINsYeV2K+JAQL8Nr1Rbl/3XOg/ZcqoFtsBwCMxxI3brMTeshUF1oDRYrl1qojVSgjwKQCON/BDNidz3OZsAztHrSpcszZE/l5CuOss87Cddddt8PjP/rRj3DWWWft+QFhJ5izL3/5yzjzzDPx+te/Hj/5yU+QZXQ17Xa7uPDCC/HNb35zlw+yQoUKFSpUqLCb8DQtazr89Kc/fcS88Be+8IV45zvf+ajve+5zn7uk72GM4atf/SpWr179a1+75JuzD37wg7j00kvxhje8AVdddZV//Oijj8Zf/uVfLvXjnn7gHGAGXBvAaAhOUU7caiJcfAQ1WJSmhSE3GAkUlLXCCDmxHM2ItF9rRvJFkU+hIJsM1xofsO6igGCAbA2kYYi5Bmfc2nHQMAULwZmCMQaxtfAwRqPubC0iMrLtFfDmq6GNVHIB3c7ywmm0ElEyXIBjeoC6bU938UNzWRkOXg8BFCUblmv67HpYmncm9nFtAG7tLQaKrCd6BbXLC8bQKRi408ZZu4tG6Cw1ADWgcXgdiCUsHAsZcYq/SSx74wLJ2zYuR7iYqIi2XVsmoyfJgHX/Nvcar8Ju+7YBkOUcuq4tA2X3JQe4oc/tFKUJLkD7xX0usWoMm3vENE6njFhMXW5DT1oNjqbtTFXJwrVj4zVDTmfXLQAMOvRl9QSYnad5K3NrVAqvwRpITkwJbBi61jBqAM7GF1kUMMYhmLQpUIZC7hXw3GUSN0wFUIb5EPu5vGSAUkmvZ0kbI5gFQPMvEWTqCpmXbfxRTIwD49jcI4Hf8ftg0XjJJDSic48F1sCZ+fgyrzkzBbQhHd6BLTKz9SHrILuOvpQYCWNk1oqCgs8jdHKygSDzY4aZlKEdG9RDe1zteZhKYpnmMuHnL+kXieFzlgtGKTBOAd/9ggEwXrPo/yiKCMDAz8l+wRAHZCoNJSF46LWmTt+HKCyvSVpC6gwhT4DUHnttgCDCxJBRKwzQt8xZK6S3utghd44+1A88+xZxp0Pj2Nq3OkrLtGOIANNQxJSB5kUkapjLjT+2tUDbaCPSA9LxsybSlm3LFFmf/HKWIw5K+xEarwYGPUR8DJxRHNS2AbCqBm+F4jfRGIzFqmTChvRz7toS8zogFWJhsGGZwXcefBjLJRWQF4ht1YJsgiSxYVICUQiV0fnmmL7ltVJHC5l7M+QKux+MMXS73R0en5+ff8wmx5tvvhnnnHMORkZGfu13GGNw8cUXe0Lr12HJN2e/+tWvcNxxx+3weKvVwtzc3FI/rkKFChUqVKiwN/FEvcqe4j5nxx57LC666CJ86UtfghB2gaYULrroIhxzzDGP+d73ve99O5jXPho++tGPPu4xLXmPrlq1CnfeeecOj//whz/E+vXrl/pxTzsMB6tCBKgHoyhM5lkHinZyXZV25QxjI5eo86gWaM+atSOD+ZxRALOR1N3JONqR8WHlwnb9RJx55sJ1zgWMNED1QHtjWc4oXsqFmQ9nXhtoHNAijdNcFhCro+gnsfFIPRsyDtBK2elkEkHncLegVavTUbkVd8t2eboVpNOajUXEWD3Y5ZhJnVaO3jORkA4EKLs0nR5unxFjmQR6z6ZZQUxTUYaDOxYSKMfhGKnGULySY7oo5Jz0PCEvWcK5vDSNTVWp8wrtOB1T4lifkNM+aIbAeF2Tia7VwrnO0cSylGOR1anxxT+rG0ChKCx9MoE3cd02KCNhuO0Em87o82ZSej7iwAEtmle5ZeUma8Yb6EIOGZS6C+9gQMyTzMHAbJg1w6p6jsJ2RtJ7JIxlplJVrkYbVtMI0DxzBr2FZj56yDE7uQZm+twfF4wsQyMMyWg1BF60j8J+TWO7Q2XJ7FlMJLRPGDjqwcNWtSIA0gUYGBS6QC3QPpT9hinqHMz1AJzZDmNvZuu0c8JquCgAfWCZpIWCk97M0GucIXMzonPswQXSON6/ULIsCwX350fTHuNMsbLzTypiWjiFeo8nBhOJ05yVWiiECZQBXndAhnZMjKhnqRmH0MCmhYjOMQUKOXcelVpbE1tZMoxWj6aM9BFs2pA57lwmEHJg+4JAN6eO7FZEn6sM8OPtiyOZEgE80KO4qlV12icP2s802vjPfmiB+0D1iNd81zBjxGzO5dZ8124TQOcxzZvQMsLEGDaC8hy4u0vHCXlBZtSGodDUbd2OAOU0ZfYzc12arLdCeC0ajPbXKc4Cv43+nAEWxzf1U7Qi7cPec2U/126zuz64a4S7dtzTZTvoCXc7nuaasw9/+MP43ve+h4MPPhhnn302zj77bBx88MH4wQ9+gI985COP+r7hfM7Hg9tuu+1xR0EteY++7W1vw3ve8x786Ec/AmMMDz74IL7whS/g3HPPxTve8Y6lflyFChUqVKhQYW/iaX5zduihh+KWW27Ba1/7WkxNTaHb7eINb3gDfvnLX+Kwww571Pftv//+S8oX32+//Twz9+uw5LLm+9//fp83laYpjjvuOMRxjHPPPfcxhXMVKlSoUKFChQpPRuyzzz648MILl/y+k046CX/wB3/g0wYeju3bt+Ooo47C3XffvaTPXdLNmVIKP/zhD3HOOefgAx/4AG677TZorXHooYc+LkHcV7/61SUNDgBOPvnkRa69T3VQxltMtLUmc1cOAcPKUoAyBTgTvpXaQHvaXFuDWACYiOn3nV2Gl1oq3RnXNmzuptQZGOMYCancORIoaCOQKYaa0N5So2HLOiE3CG3piTEqBxSyQMCFL3mEnIT/3FpytGMyWnQWGsqU5Uo3bmcVoTV8ubRlMxQ398rMQIAsLag0QyW4rjWn7BfalxBc2W9qsDhHzxnFNgL6PiqNUdlw2YhCoUsTXmWATQvMW3o4rKzTGFIrkndGlK5ZwJnlCkb7uB3DG6cqQ2XZbYMyQ1AZEjQf0DLozTCf/emOUT2kKMJUleXaTkFZl6ftr3Htg8KXtV0p0FlhLK8ZdIpSUOxE16482y9Kcb0zqHXHZGuf+SYAMjZlGIvocRLaM3LydOinwDiAMIHRXQQsgjQZJiNRiv8NWQi48rrWCgZkldCKFKbTAAPFkSmGlXUr4o7J+NiZ5jY5lb3G69rnrfbVPBIxgkQUUAZoRRrTqShNaKUNC7VlPtfMYaBtM0JYlq6MhlGZL8NyRnmGAR8qsQ0YegVHNwfGE+ktQTjnXprAmUHIYmQqhzYKPSkwnQqMxQqZ6mM6a6CTCz9f27FBI6RjBNC2Ss3w02nXkFAa1tqBwCgDZstgSUDHT9tGGHAOGLLdMIzyOduR8hKD6cwa2gKAzNEIdGkdYcFESGe10ch1ipDHMKoor0XaHn8RQOoMsaZGolAA68YVegUZJ7v55U1bOTU1uFL/L+eYz8F1YzDGUManVFCmwEiivf2FYFTCBiObkmaofPat4NQlFHCDzT2at69eB0wkGvU+nSvOEBsgWUMimgBnmO4zcGa84fOaBs09aO2vydsGBQLOgELSsTCa9gngjXTn8i2Y5ByCGWzqsdK4GaUxsBmk3r4okwy5NhgJEzvhJJ3rdj5MxDs2Te1R1/2nebcmQBZhl112Ge6++2780z/9E1avXo0rr7wS69ate0zd2bXXXovvf//7+MAHPoD//b//9w7PK6Vw3333LXk8S7o5E0LgpS99KX7xi19gfHwcGzZsWNKXnX766Ut6PWMMd9xxR6Vlq1ChQoUKFXYXnuYNAU/UIuxTn/oU3ve+9+GWW27BlVde+bjIql+HJe/Rww8/fMn03DC2bt0KrfXj+nkyRSnsKigrqgWjk4FpBQ0FBu5X9i4GJuCxj/vgzHgxdcy1X+U7GGhIk0Pq3BtkBtwgVQsIeUJJLIasOGqBRj0wNnLHsWGlMS0fKqErU6CwUTwAWSeMRSXbQKazzK+GnUEoUNppuBVzaA1c3Yq2Y9miycSK6BWJp1vWCHYmLe0j+gWJajkjJi0UwD0zxHy41aez1HBjSBWwfkx7Y9mepPc7hsKJcAF4U0raF/TzwLywRqn0Hs5KI1rHFLg4oZCTtUOqiNk4dqXGC5YbHL1C4+TVCjHXaFuzXPf+4QinXJP9gWPVlKHVtBtPIryO2NopEApNIum2XXm3wsUGtANFnz2b0z5y43bWGe4zWlHJoB25zIrM3RfqoX8bDe2ZVe7nHhnSLvgVeKoWELAIykgbRVbOL6kZbtxG28qZwYQ1J+0UZTTR8ho1auSWqcn1ADXR8iJ7bcq5AS13YPl6EtjcJwsMBlZGS4nAWyNQswz354o2DMtrZD9TE47FpvEalI06BtpGrtHjnZx7E9RCA9tTgTs7IVJJzKCbr9yeBxQJRcejFmhvCqutnUahhxoCAGoIgJ3jds5NxFhk8eDOvVqg8dAC9w0mnIG2WUtMJNKfA0QdSyBMLANH8U3aKGAw52OdDAxeuYauV4XJAC0xkJzE9tbodSKmeSYYNa90c+aZlFZIzLA7Vm5u7jNi3WjtIN01y5m8UjNJuW31gPYFmQ/XPEOqNTGwIU+QKbKUSVUZb5UIYtelzoAoRKHI1oOY/yGjatcUwDkGimNFzXgTXfe4mw/KAP96bw3gHCEP0SuwOOYpTPxx04ahJyl6LREBNSbYZouzDh6gm5eG2W4fORNq93egwu6Hswj7zGc+gzAsadCjjz4aP/nJT37t+0877TRcf/31uO2227Bx48YndI/ksOSbswsuuADnnnsuvv71r2PLli3odDqLfh4Lb3zjG5dUovy93/s9tFqtpQ6xQoUKFSpUqPB4wdgTbAjYg2kGuwG7wiLsmc98Jm688Ubst99+eP7zn4/vfOc7T2hMS745O+WUU/Df//3fOPXUU7HvvvtibGwMY2NjaLfbGBsbe8z3Xn755Wg2m4/7uz71qU9h2bJlSx3ikxoGZEVA8SyJZ8oMNEU7qdwH3mqjKLoEpWksZwaxoB/BSDfhIm+0UdZ2o0ArdBFKA6+tofByAw5iLBJBLBpnxjIHQ+M0ZB0wbCRa6NQb1c6kxJZtXxAYT0jf4mwZnJnqREwr2KZdTW/tk16rbYO9G2EZUO7ikTb3GGZz0pYo6+LgLDrc6tJp3ho1ZeN8jNeJjUUlg+Z++gVpz5ohsW79orS/aATA/IB7k1ZljUBbITDZVJislbExTj/mNF6LjGFzYP0oHZOpQWkJMRKSlq8Rah9ufvQK5RkQxzgAwMq68ezdqrpl+wpOocj2OxdSMtjsDDGJm3s0vlV1ep2LzlJD7NJEUq7QBSPdnzI0nomYGAtt6Pn9R+yKfZhC9eyZ9vORgQyMjTHgTECwAEyEQJiAMeaZtWHWFQC29kMkAlhl2bHlNYkH5rmfs3pIM9QIgUQECFmMwNBrBqo0QvXgHEhzH0w+kZQB36O6QZE/3O4Mx7oYBWW0N1nOFMNqS9ZvWoiwUHCsGTGYTgMY6CGNmrDvJ/sQbRiUlsgUw3QG3DxNMWupKo/DdEpzr2dZUqdFo+NO29opnM2KobFyTjujTzSQ0yi2QtovALxtAzHcQD2IMV6nqCQfQg4ASiLgERoBnbvMux0nliUL0MkF2UgMMXIGGqsatCMFC4B4BIUNISez29LkeHpIT+bsTXqS9IOOGX6wy8FZqQlkNs+t0BkiTvO0GQGBNd0FD7xJ7OqGsZrS0GrgGMYTYyPAAty3wFAT5bnXCmnfRtyGm0eJN6zljB6/fZ6V1iVGA2GCvuSIRQOAZeC0BgtqQJD46LoDWqRPc5FMg4yXc2soxokzsj6Zy4C+JIsZR5FOxNJfM51dkbPxgYj2rAnt07xbc1dZhI2OjuIb3/gG3vrWt+LlL385Lrnkkp0e05K7Na+99tqd/rIKFSpUqFChQgUA+OQnP4mPfOQj2LJlC571rGfh4x//OI499tg9Pg5nEfbZz37WW4Rdf/31OPfcc/G//tf/esz3PtxKgzGGiy++GM95znPw5je/Gd/73vd2akxLvjk7/vjjd+qLHo40TfGJT3wC1157LaampqCHQ2OBx1XnfSqi0ClgSJNQmAyh13nZvB8R+fBdbSQMKNBcamcEyRBy6nxLBPcxRwxOE0Gr3FUN5rUhE7FGIgIUuoAygQ+Cns0Y2nHZsRmLkj1LlUE9CKFMgYEUiAUZc7r3rqwTSzTWUNg2oMgiZxS5vEab4sw1yVjW+GggZWiFPJ2WuqdeYUmCgnQ/ADFk2nZfdl3TGCtX5y4EuyeZ73KbzakzqhkZYpJyWpkua2ivs5pKiS1y2rPxuvZjddFBuaYxdnKrceMl85RJMrpUBhjY7i1w6p69fXuAwyZpRez0Z8RyGoxGGlMDgZFQI1XUVea6S1shdUlyG2q/pQ+sscHva5sGt88zWoFz7Tv7ptMypskxMo2AmAe3rYWm/eS0bo6BEwzoqvJ17vnZHJhIFJBy0sY4oe+w4FemAKM5WxjmKxohTwCQUW2m+tQhByBTFPtVaIZcM8xmHCvrpmSJAKywbJ3rWFvTMACIFeZMEJNR5F5z9os57nU+xtg2YGvKysCwacGa0DIOs7ANZmx5yWoEZEjaCNoo9FaEHHgw415PZIzGXZ0ADds56DRhPojaLNYDNULlz82pAbPbTFqjrYPFkVxFwbCqrjGdBog4sD3lnkVShvZ/LIZEaO63ZaGaIb0mkiCtXUjsuzYKAwUkYgQDlRGLFlry05qokq4rRju2rb+cE3tvT/pMDzOlVl9nNHVvWxanq2Y8Y5xroDcQqCXKn5Odgs51x05OJMD8gKHQBuOJgTZkPtwpUBroAih0gZ5MUA9t+LmSi6LeiNFmlkWna2WmGLQpmefNPeYZdsfkbe3TuaqNAsLEnttkQtvNGRCV11aa5wGkZKiLUQDb6PpkNJCMgKkciaDzfiymeCYGOi4jySPrw1ohdc92c4YHehHacR8xYDtUGaa7AVa3JUXX1cpubAQRuGaP+Jm7BXuhW/Mf//Ef8d73vhef/OQn8Vu/9Vu47LLL8LKXEzVDDQABAABJREFUvQy33XYb1qxZs/Nj2Qk8EYuwRcbyQ3jd616Hgw8+eMmNkA5Lvjn7wQ9+8JjPP1Ld9pHwpje9Cddccw1++7d/G0cdddSSjNwqVKhQoUKFCrsIe+Hm7GMf+xje/OY34y1veQsA4OMf/zi+9a1v4VOf+hQuuuiinR/LTuKCCy7YKYuwa6+9FuPj44/43JFHHombbroJ3/jGN5Y8niXfnJ1wwgk7PDZ8Y/VYIaHD+MY3voFvfvObj5gEX6FChQoVKlR4auHhTYFxHCOO4x1el+c5brrpJvzJn/zJosdf8pKX4LrrrtutY3ws1Ov1JVuE/bpq4sTEBN7whjcseSxLvjmbnZ1d9O+iKPDTn/4Uf/EXf4ELLrjgcX/O6tWrl9Qc8BsFK0yWOkPIRwBly5KMA1pCG0k2GkOC/HasoA0wUGQoqw2ZOq6uU/ln+LWRqKEdZZjLBGayAAcjAGNE+Y+ECguFAGdAprm1hyBLjYHmCDg1CQAkBi40gzJUIm1FIQJO3Qe5Bm7vkPmkq3htG5RGp84OY9iqwpXOEkFlzImEShjT1l7AWWm4fMyIlyLpQjHUQ+PLgM2otKDQdj3gzG0jbpBret69XrDy+wHYbNDS6FYZEkqHtmwR8TIr0zUhuG3YZ8T4Vv2JpDSg/eUcw7IRhYNaZBsxajMVA24gGEehSbDMWWn3MVkrjTldJmC3oDIxANQDg8195vM2Hbo58JwJgx9vZzhxlcEts5RPCQB3z5MxsCvHdQrazrmMmgbunuUYr2usrFPzAlA2CkQcaIYK6GtadAWCDF4djAYy8nRgQ/1EyhQk1GY0P2JRJ9NWJjCQHCOhgDTKZ2r2JEOqDJ4tNDo5HZSeJAF315aie77pQVhxtEQ7pjG3IyrX+kzNvACS2M5bsmN5sGvH158DxpbT+RVEQJGC8RABp9dzmy/rck8BarTp2Dk6qR9WtrDluFhoGKORKY5cU7POnLVkmc85JmLKetSm3K5CGGxacMa71lbFNkI4C5VGYK0btC7LjwD2GylLrIUGoDUk0xCwcglQWVObDKl0RscJoMn19oFeRNmVsEJ8TZIJBMJvkzK2rmZLqoxxLK+FQM+AgeP+hVlMpTUkwjbS1JUfkzuHpzN4W6DpFBitUTOMs9EI+VC+J2dAEmOhEGQXY61woCWa9hwIeYyelNZ6BT4rOFNU5lzXpPk5l5XXCGVojvSksU0mChAR2Y0Ikjg0I2O3eXFZsy9tFqfW1EBg82TBAy8baQQk6jfQOGaFwS0zpQHycLm2FSl0CspE7RXcNwSYLIPUDGvGJGZtY5K7JvYL2CzPIWfb3Q1mf57I+0HxRMM477zzcP755+/w8u3bt0MphRUrVix6fMWKFdi6desTGMjjx6M5+j8SvvKVrzzm89deey1+8pOf4IUvfKEv0V5wwQUYDAY4/fTT8Td/8zdLNtNf8s3Z6OjoDo+dfPLJiOMYf/iHf4ibbrrpcX3ORz/6UfzxH/8xLr300scdBFqhQoUKFSpU2LUwxjyqdurxvh8A7r///kX2V4/Emg3j4XImY8wekzg90r3MzuAzn/kM3v72t2Pt2rX4wAc+gPPOOw8XXHABzjzzTHDO8fnPfx4TExO4+OKLl/S5S745ezQsX74cv/rVrx736zds2IA0TbF+/XrU6/VFxm8AMDMzs6uG9uSDXT2xgJgyH9VkV8jOSoOBWUsLifGYVrSFZlgoBGJBkUQ/nWZYM0IruIHkaIRkuDlZy3HHPMNCQQaTxhi70mRYKEioqm1MCkBsR81GOLnXERPHvFEtA7WdtyINQGBLn1bwJK43KCI6qZzNRG4XkKFl0IZFw+51gsGbkLo2dWcg6x6btA0Cw6L3qQGxQJt7tEJ2FhL9gkT1jYBW8M4NgsTn9P+uicLFTIUcaAp4sbJgxAqM1mgfO4GxNs5o1iwaP2fw1g2HjZEtyUzGsL6lsFBwjDC6CI3FCrku2SYXR9OMgE2zYlG8lLPsGIsNNi1w2zBA70sN0O+FOHpFZhtEDLQmFsFZemwbWFbRmtnOZWRBUWgSLycC3gDTvcYxbPVA2zgkXhq7cutxYc2TybZFgwOLGDSnPakHbeSq7+esMgW01aFvHTCsrBnL1JHNyFxOjQ9zGfOiaGfRIFgAZSS4yrG5RyyUs1eBtqyGtgwQ4164P5Jomt9FQfYfQ/FNMBqCBXb+A83Q4OZpjgNaBoXOsLIugD7z5JWzc4CSgIgWWcxIzTCXC3RygYmYmmW2DsicuRmRXch0WrKwM32OTqH8XO/Y4Tu2OBa2Mcgxljaaai6j45cIYGuXjGVzPUDNaBSGmgACFuEVaxS+s1lAMFhLiBmAB7h9LirNUgE6jlDgbp/AWv0ElrLSJKRvhssANo16MArOZr2lzIoR7ZsUnOH0tD2f3L5255xjr938PqBlgB6sMz3DQ4OQjHN1yQqmEkBUh+AhHuwxDKyVDoeAsVOyUwCHjQ/A2QTWj1KcU8hLhtExoYxxwL4+4GS9U6jFbPSwbmr4OyAVkC0AoPNLMGBlfcTuIoVntDNcuyUhW5OHNTo0wzEIJu2xMEjEiL/OF5qB2znhxtuz84TslvaclQY1nj1yU8PjfT9AvmCPx5t02bJlEELswJJNTU3twKbtLrzqVa/CKaecgiiKntDn/PVf/zUuueQSvOtd78LVV1+NV77ylfi7v/s7vPGNbwRAUrA//dM/3f03Z7fccsuifxtjsGXLFlx88cU44ogjHvfn/O7v/i42b96MCy+8ECtWrKgaAipUqFChQoWnAaIowvOe9zxcc801eNWrXuUfv+aaa3DaaaftkTG86lWvwtatW7F8+XIIIbBlyxZMTk4u+XPuvvtunHrqqQDIB5YxhqOOOso//4IXvAD333//kj93yTdnRx55JBhjO1CgL3zhC/HZz372cX/Oddddh+uvv35JN3S/CWDgfmVKocIBhURzDogEkCkYZ2BgYLZ93cBgNGphatD11gMhNxiPSW/mVofK0OczcMSijkwpwMZCaUNxM7WAQYN0NtrQ9xBbRqwbZwKFLuwxpuBkZRg4owBpqRnqgYY2wmvKqDWeec0SQPqP8YTG6rQ8bpXqdFbOdLFTkH5omNGaTMpw8bs6zEcfhZxWr04vNRET4zAWkSZsv6bB1j68nsdpeaYzF/ViFmnPnJmmM2x1Brr7NDVCyy45S4pGAAyYQW9ALBcdBxrPmhGD3lCskovSWShIaxawCIWmcXNGJrKvPzDHz2ZCHNKWuFoR08K5wTErDO5ZoOP6YJ9jwzKDn88ybyg71QlQbxRY18rxWzJGO1ZQhmOyZtCTzO/DVkhjC62FxjNGDbb2mbfTGLaJcKxNKoHxZATA9tLKwZmhAqSFgY0wMgqCGWhrX8GGRCvCcB93RNos0i4GMDigSdqsrqJ5nGuD1Q0KsH7dASk+f0eCmjURLazmbKGYxpiKMGl1irfOMjxcCoZOD6iTeSi39iQAKEbHxqAhTIBsAUa5SKkC2iQoNMMhbdIOvVwb/HKOzJafNWZsOLw1oWWO9ciITIRCLdDY1I0wn3PP+oWc2OSBDbN3c7sREKN3qz2ebr/P5nQOUOySsZFLlkYKBcA5ukV5zpx+UE7kFMiWR+oca0ZCe67T5xTaaq1s/NDN08wfb4zUAcYhdY5oqFMv4jWwFfvCTG/3nxsFFJfEe/MYTwTaEbBpgS4tiQCmugJRTCHobpuMzAAReJZN2MJA28aEbe2zcm4BeKgfoBXCa9McWNSA1At4oBeQxtDNQS0RckH7MxwFA8NMWs4ZZ43j5oLDRELG0A8uMMiCY7L5MD2l0YgFs5FgnK5ZWsPIDCyIsbpB152aIHaIgSPixI6SqXh/EXMW8AjtWGJqADRCTTpHe14NFGnyJhKgyMtt98yjGqY5dy+G48l29v1LxR/90R/hzDPPxIYNG7Bx40Z8+tOfxqZNm/D7v//7Oz2OpWD58uW44YYb8MpXvvIJlVPTNF2kJ3t4E0Qcx5BSPtJbHxNLvjm75557Fv2bc47ly5cjSZIlfc4hhxyCwWCw1K+vUKFChQoVKuxCGKOfUJbnzrz3da97Haanp/GXf/mX2LJlCw477DB885vf3GMa9N///d/HaaedZtNMGFauXPmor30sFwrGGLrdLpIk8Td5CwsLvnP118VaPhqWfHP2SDtubm5uyTdnF198Mc455xxccMEFOPzww3fQnP2mZmoa6DI+Boo0LNbQU0OBaw0mBHVfQtkuS4GQJ5B6ATUbNeOCml3Q9UByq38SNNkg0CkU9o0M6RdA2piARYh5Dm2YjYMSxGhwA6k1YhFCaoZEcBRaW12aIV2T7bYLuPGrYccMACWzNZkAU6nxBqmuQzPiFCYOKL+yd8+lCj6GSlhtSMSBLQsCjZrCXE4dm+3YeGPbYW1atyi7QJ2JrPvOeggbdExdnFs7DOtHDe5foNfIgqNR02hFwERiMG2jqR6YERhrlNqgZgTwAogaCj3pusFohX5vl+Go5Qab+7QSFoyOSchp3wkegbMc2wZlpM6ypMC6Jse+jRzTWYhQGLzxGRkGkmMiIZayFtAxSLcHWN0gZmyiKZEIoB1JnLBPAWUYBAuxvkmdgD1JY0gsG+m6N+/tlivD5TXqUm3FizvoQg7EvE5sgTFlxyBAv502ycZ7LUiBdpyDIyRdjwiAvG9fTvOYzI0VQu6iekoWlVs9Y6+g8PXxmLZtLNZQRmCgSEfFuQAs4ygYRWB9+Y7Ih3aDM5jBAEwTwzuXDzFnsCy11cs5hkTq3Aefh9xAMGKzNi1EOHLC4P4F6pLtDy967XuV0Ygs69OKFO6cj3B7h2KKNi0wPGOUWDMXiaWyksVtBKXu0s3hRjCsueTU0R0MUT+c9FvOvPmIiQGga6RPtUxMrgGoHHd3OSJLdg5fbxJB5yu9mPaHgfZsqDZ0ffjhts34rSgEohAGtD/ddtfFKJQZIFXAbI8Y5FqivM7Ls+eWjRtY0+aVdUMaMpTnPYkiNRAEyDWx2+48gwjIeLrWQqQU5vKCumdj0PwyGgHnmM5K1sd18i6kHCOJ9qzkQAG5GgC8Bq1Jh9eMDBp1Oo/lULcmC2L0CuXHnwyzdayG++YMuDCIjIDR1NEcC43JGhYFpEMbQBtInWM6JWY/Frpkl7VGI1DUSarLQPX5AXVSe2Pl33C84x3vwDve8Y698t3nn38+fud3fgd33nknTj31VFx++eVot9tL/hxjDJ7xjGcs+vdznvOcRf/eGVZuyTdnH/rQh7B27Vq87nWvAwC89rWvxT//8z9j1apV+OY3v/m4y5SnnHIKAOCkk05a9LjbkMfrl1ahQoUKFSpU2HnsjbLmkwGHHHIIDjnkEJx33nn4H//jf6Bery/5M3ZXpOWSb84uu+wyfP7znwdA4r1rrrkGV199Nf7v//2/eN/73odvf/vbj+tzqozOChUqVKhQYe+DrDSeSFnzqXlz5nDeeedBSonvfOc7uOuuu3DGGWeg2WziwQcfRKvVesykgF0VaflwLPnmbMuWLd5o7utf/zpe+9rX4iUveQnWrl2LF7zgBY/53ltuuQWHHXYYOOePa4NuvfVWHHzwwQiCJQ/zSQvBQt+OH7AIEAG4EVC6gGIhOFyJE4A18WTgEIwj05yy2jSDtvlw7ZgsCfqSQzCDWNQhWAhtlDVPNUAQIZQxAp7ZnEJnLkst5sKacJb5nLDWB8zac2gsFALKZIgFWS2EvMycTBWwukGlqVCUlg/dnJoCWmFpddGoKW+R4HLxepLKDy7rcktHYFVLYToDglCjFdKYdGC8HcSkraI3I2qJz3XZQj+RUDZlT4Jm+JCtBwBwbjCTkgXATMqwYoSyNXsFsKUTYLJJxpFjDbUoy9MJ6ENeZnz2C4ZGzeA5Ewb7jhS4cVuE1XWOWNCbJhKJgBvbeEGNA1Iza4xJZctYaKxtki3I8kRiWxqg0Ay9gqMVGf9Zm3sM65oG/YIhVcBMFmC/EQapc5ywT0H7N+BQBZUsX76fwo+mBJqR8du/ZsSgHQG3zNDxn52nsjFn5T40MEA/BRMCJh8SJWtb5mRkwaCNQq/gi600lAT6PYBxcCNsSZ4aV1wJsxmWlijCmvR27NyZSMZQ6AIjoUbEBbZn9NkNHQM89+WfWJhSzG00lemGrhMbJymPlDMBRCH9to0xbEhoPZ9TQ0w7VrhhKkSnAGbSABMx8Mu5smwecGFZfSo5FpohDssW/ERQ6bwVAonNYHVzpRHQ3L63W1qWLLJPkKWQXljbFS8qD219kjNvrhpxoB4AyMns11jLi24eAoyjWzC/f4ePjTN77hQAEho7hzWj1QUKzRYzIFFY/lvmQEzXpk02w7JVLzM1XXnWW1cEMYxMrYjfeAPnbk72Ig8tcCAC2Z9whu/dJxBHtM2pBMADtCNAMo1I1LDV1pZTBaBIAUbn2O8eUACIoA2J7teMGNylNfoFXXsEo13ImQCURKeIrDWLxoNdKn+6eUk7JMDWgSbrjCAiE1qtrfyEY7xO5VUMOt5Sph6U1zwwTjYo7p+sPG6Zotdzey5tT0NM1qypsjXDRqgxUADjIZDunFapwtJx33334ZRTTsGmTZuQZRlOPvlkNJtNfPjDH0aaprj00ksf8X1L0ZMtVarFf/1LFmNsbMy3hV599dV48YtfDIDunH9dKfI5z3kOpqenH/d3bdy4EZs2bVrqECtUqFChQoUKjxNmF/z3VMZ73vMebNiwAbOzs4s6L1/1qlfhu9/97qO+r91uY2xs7HH9LBVLpqRe/epX44wzzsBBBx2E6elpvOxlLwMA3HzzzTjwwAMf873GGPzFX/zF467r5nm+1OE96UFsmQBEgJAHQJ6DWTPIQqcIEXpbAmM0Qp74OKdMMTTqDJnSGChaOc5lHO3IeFErWWlQ/Mh0lmK/ETIOZYyjFTEv0C6sJYYx2rNmnAkrkqbFeqEZsXWMDGtnsgDLkwIBLxkQ196/uUe/JwOyrIgDgyggy4TE2iI45ikR1rTSLg3GrLC+sGxDEBKTFXIA9rscSycYoC3LM90lc9JGQGzZ1j6J9KcG9JlJUJqvujb8gTWeDIeWJU6cvbZp8NCC8YaZjYAiXrb2iWXaNqBtdILuMw7MMJ0G+Ob9wjdJrG6QqWqmGAaSYc2IXMRIDNsEDJQzHQaOGFdo2UHVAo0He2TKWQvo+GxYZnD9FMP6psHmHrPGpgEOaEVQWuKg0Qw3b697y4zfWkmNBSfvq3HVXSE4A9Y1DdY0gANGM9w+n6AngRetkfj3BwQiTo0H3QIYyA5qeUGlCikXMVLg1grG9K3tikJfAs2IIVd9hKw0ruXWCsYxuQ4hN4hsk4EyQMwNNiwzuKvDUBMtzPRnsaJWQJnQG8ma7lawZBSZpGYOwDKjTjStS9GtMdrbnxjHqgGlyajKvRje2XE4dmNdk47jVttI7mK0BAvBjPGMVqY4JpL6ImZqLmNYXjOYGpAtiBPHF5pYs1Zoo41gLU44xXOtrDNrz1DGVUFmiy8c2iDLObZBI8u5FeoLuL+JyhRIRALwAMevyvGv99LANUphuTvvhuegQWnbkSkysM4UA/ICLI58LBznJJAvdIaJmMyCCw30bayaMtSw0wwN7dOoDqTzUIbMorf0SeweRyTUH0k0PDegDWqx9udoTwLGHstULSDkibfX6RSAKQZWoB/iOctiJIJiABsB2e6srAO9wqBrY9UmYhv5pHOkKvLHeyShWKnYXmNcfN5/TXH8z3365XyRiuaMnVfKACbvAaCmn1pAj7PaKIwzK9bU7MBAMV6zOTUCCR7ac0jgv6dDTNnouOmUxl8PiTk0uoBRe+7v364yoX2q4oc//CH+8z//cwdD2v333x+bN29+1PcNy7Puvfde/Mmf/AnOOussbNy4EQBw/fXX43Of+9xOBbkv+ebskksuwdq1a3H//ffjwx/+sK/Fbtmy5dd2XRx33HFLShHYuHHjkvOoKlSoUKFChQoVHi+01o9Y+XvggQceMwN8WJ71l3/5l/jYxz6G3/3d3/WPnXrqqTj88MPx6U9/2icGPF4s+eYsDEOce+65Ozz+3ve+99e+99///d+X+nW/cdBQgI2MUUYisOaWDBRxAx6DgUObHAbGR9dErI6QG8tGaASMtEvNiHQYmWJoJcoagwZg4KWVAOMIeYyQx8hUHwxk0xCLBMpIMFBwM1lamEWmjdqQnk0Zim4ic0/SYoU2LqgZltEs3Zx0cMpGHa0fNZjLiDEoFPNhw1FATEMcGHT79LstyJxynxHjw8Sd5YIyFLHkdC0RB6KYTqbpjFbVLiZqLrd6Hmt0Wxti6rQBMRDKIA4M6qHxepn9RxTuqDPM5bTankqBE/aR+MamEO0YuP3BGM9cneH+LpnFrqgV6OTCRgwRI9STpNPjjNjJRhhiIAswq7natMCwrukYFYaRUCPgkdehZYqhJjT6kuGm7QxHTGjM5QKTNYVGEHiGrh46+4cQuTZWb6hx3Er6nvFYQiQGDw1CNIIQiaBtWlGXWFUvACSIOMV/jde115tFnIwzd4CLb+IBwAMYqf38AKy1BqzpMYiRYYyCnhlj4BAYCRQWJIeyJqluvwlm0AyJXQCI0XCRTge0rM4rWwDqY9YSBDhinCGTDEYOrEUGA6IQ0BKCh7h1lnRXykiIeoO0noaCvpmSQECsUKcQ6EsGbRgOGyOd2vLJAj/ZHqEdA2MxaTwZhnRgbpdAeHaQM4NQGK+fdLpKpy8btncZ1llyRudHbYjNClgEmEF5Alpd1kiioQxQi7W3Y4HR9Lw9Rwyj+edsJ8jomtCTdJ449s5ZaDiGyH2m1PZYBxT0zcDoNbUWIqQodIGFlFiwOLDnMweU/f+BAhCPAIxjy/YYa9amZIAda+cwQdsrtY+oGtaljkXExBTaRcb1IBidj1ozstJgHJIxFDpDM1wGZSS2DciyY3OvZO9DTubOykgfJ8XAkQjtNY+xGDquYYJ6OCDG1R3vIUuLng2Uh8oBTueaP1/qbZpbeZ/YMbtt7jrWyQWE4cQxcY57usxXEro5Q8TpujeXWX8Nd3z2APaGz9mTCSeffDI+/vGP49Of/jQAeK+y8847Dy9/+csf12dcf/31j6hN27BhA97ylrcseUw7rbS/7bbbsGnTph1Kjy7GoEKFChUqVKjw5MfT1UrD4WMf+xhe9KIX4dBDD0WapjjjjDNwxx13YNmyZfjSl770uD5jv/32w6WXXoqPfvSjix6/7LLLfBPlUrDkm7O7774br3rVq/Czn/1sUYyT03tU/mSPDQZrMAmrgzA5BAtgYKB0BjAs0s5Q7E/mDWCNASLOIK2J7JoGsLnvwqVL1kOZAqsbCiE3MIzZ1eIIMtWH4IGPo8nVwGpv2CJdEBmbUiddTwo0AoWe5BAsBGfSp8oAtJLUNvZoIeVY1tA+vmlrvwwH59x4w9meJD2X695yIeT1kN6jNcMhYxrTKfNhwy5QfSIGHuxyMoPk8EyMW12TxqTUkvEhjVnIAR7TqnkuBybqZURTI9Q4arnBj7czHLNS4l/vCxAL49+7bkWGbg7EgcG6JpnLFprikGYyhlUN0otwZvDQgGFdU9vvpG46CsimTsP9RoztkqVOxoBTwDm3DNzKugQQQhoGqRnGE4Vckx5o4yTFDC1LJAw0RsI6tg1SjCcKzxxL8fOZGkJOK/pbpiMoUxrMjoR0jGdSMqZ1OqmO7TSsh0Mdfo8WOcK4NS8mPZ3TIA630zOtwDiDhoJgIRQKcGbAQQyNmy+OYXQGpmwofLpQDO2I9h36PWCceyZqNuNYWTeLNGeIQmBmHnyNwINdjgPHy9V8xOJydW80IHPPerlj9HMbCTWXCc/SnLDKoJ9yaDgtkYSBQacQEDxExGvQZhahZTSVooguN+8cU9aO4ee4iwjr5syH3HdzYmN9Z6HRtP9dO6Qmhnch5QhCjWaYABmoo08T+5oqYua/vomuL6ka2p888OcQGbnScdRG2vBxjpmUQZocjVDTvpTExAd5DqMkNGfgWnj2zoWYF7o0fnUa1MJkCACMjWXoyTKqijOgNxDgNeW/F6BzEaBjSxpPiVzT+In9Iy3Z1r7dH5wDBlgoMiwLFIwQaMcGSQDkmfCdpIUG9hmhCgQCTpFWINPcjmXnR8LYm84iTFDoge/OfM6EARRonhlimCdi2neOseSgfSJ1Dl1vIOr3PNupDF2ECg3c2eE2eqpknZshmS8LVpoW7zPi6Og9x0Y93Zmz1atX4+abb8ZVV12Fm266CVprvPnNb8brX//6xy2tuuSSS/Ca17wG3/rWt/DCF74QAHDDDTfgrrvuwpe//OUlj2nJ3Zrvec97sG7dOjz00EOo1+u49dZb8YMf/AAbNmyoypYVKlSoUKFChacMiqLA+vXrcc899+Dss8/G3/7t3+KTn/wk3vKWtyxJ8/7yl78cd9xxB0477TTMzMxgenoap512Gm6//fbHXRodxpKZs+uvvx7f+973sHz5cnDOwTnHMcccg4suugjvfve78dOf/nTJg6hQoUKFChUq7B08ncuaYRgiy7Kdilga9m4FgH333RcXXHDBo75+Kd6tS2bOlFK+Q3PZsmV48MEHAVDL6VI6MZ+uCLhV6UsS/INxBHyo5KKI9naC6kcCYwyBL4kRtg0Cb41hQKanq+oFagG1SLvSKQPlMIbWGJWeC1FoBsEDDCSHtqW0QtPvhYLbHE47dM2wfUFgdd0gzwQyWZZnRhKNngTWj5at7M4cth2RODcRVLLqSSoRzvaEN/t05a12TCXQjs3KdGJ+V47Yd1SjHlI5ThtgqiswtxAgsU0KW/tk1NqyRrMAlUxaIWX9vXg1lam6OZV6utaMdE0zx2St3K9U7qVW97kceOEk2T68YLLw+6PQwGhEZcpU0XuWJ2S3YIwBA4cB7T/OgGWJRLeg/ZspMnGNhcYBLePFySMh7UcA2NoPoK3Ng9QM7VhhKgWWJdSqXxNNMkUVGo0goaYHxRDxGlY3lLUcoTKXK0E6+4NQ0D5MBwFm+hzPHB3KgXPq7WEY7Ut72igsFBy9gpclcZctaDQJ5kGlHwaOhcJZawDTGfNlYVc6Xkg5BAtQaJpj9ZByVGnSUd5hKyzL4qHADjA9cgNd1tAQ7vzIM2BhO51z/jzLwSFsyZn26eqGwUGjdJwOaFHDCGdkAlyWenMwY+xcJCdkZzAqC8pinE4XGxXnmqxmttncR2dQGwcGrcjmKyoylh6LbFnZWLG8KP9gJAJYMUKmzIKHMEbBpF1ABOQzOWSWDNjoSmNrZTL35VPXeIGHXV9umWFYKGboK5PIl+2Q9wFNjUOMcfQk8+PJJJ3PozWNhZT787TQqS1/0/7o5nQeNQKglpA1z7DQvhHAz9E4MEhVF52+sDIKuj5Mu4aAqO7zgrelof9/ZYBODiwbUegXzO86wYBI1MBEjFZI5ce5vDT0FSwgOxGjgZBsO1idfKkm4qF5zzhq9vriSo6FZt7qAwCms/uBxLrJ54VvVHBSC7LrMH68czlw9yz3GcUTMXDvtB3LHszWdFYaT+TnqYx3vetd+NCHPgT5aFKOR8Hu9G5dMnN22GGH4ZZbbsH69evxghe8AB/+8IcRRRE+/elPY/369Uv9uAoVKlSoUKFChb2GH/3oR/jud7+Lb3/72zj88MPRaDQWPf+Vr3zlEd+3O71bl3xz9ud//ufo9ciA74Mf/CBe8YpX4Nhjj8XExAT+8R//cakf97SDYAGxCyxAoQel5SzjMFpbg0/tjWgFCzEwXRijsbJGcTQGDLEgMbY2QKoY7lsAjltVo1gdnZP5YSKxpR+Cgdg5APb9xhMinVxgNCKxutQ5ChNASeZZB2XK9nqy0uDgTOKwSUkr0lhBFhzPXKZx+zy99plt4xmrgSJj04mYmI61LYM7pykyaJBxINSIYgWtGaLQ2H0E/7vQtKJ0FhquLX0us1EusLYXNq4KABQjRsiZxcaBQaHLmJx6aDASaqwZoVXrSKKxYJmskFOTRcDJ3kEb4MgJg/98iGG/EaAdS7RjirDShvbLUcuJfQGIcXHjomgriViQpYQ2wGFjxJasHTH++4h1EmhHxKxliqFhI7I6ucDmPvCcZfSh+44UuG02tE0WwpqREgOiDcN8nmGhqJNQn0VoxwM0G7QajDiN18VmCQb0+gHaIxKNOr1mLgcy1UdDlealkFY0rpWPztFGwUBjKgUKQ/OCrDRCel+RAjwAYyWr5mxHlQGaIbFS0pohh9xgtKaRqwEKa+mwYZnB8ppEoVNEgQAYt++lY7+5Z08qYwXszu4DwKq6wZ0dYoaRZjAL28rtYc78V6Bmmcp9G2SJ0pNkrRBxYknIrsQ2PHABZmjbQm6sgTOx0NRoQUzTIOOYSLRvbHEMYK6BONLYb4QYW2dpMT+gJhpv0wB4Bp22iZoDHlrgGK+TQfO2wQJGUQMLa76gNBYBAgEiTmOQsOag1I2DdgTMpNZmxjKcwtr6QEnM5hFum00oLsxFdQFAmABK2sYhhW5OjNnymgFgMD+gJgUXgxZyINcD1Cy7lNuYuZ60sVbWuNaTLZatcM1CsuBQRoJzZi1oBLKc9t3algFrrYDZOocMDGtGMiDvw0SRb8hIBJ3j/YK+Zy6zMVVRjFzPg4Etsu7QRi1iERMBYgsBtCIFdJSfN53CXmeU9OccY3RO+dKesCeynWOcG0ylwFRqLUns9rqqggSNY37AMQ9gomknwVDM2O4GZWs+gbLmUzxbs91u4zWvec2S37c7vVuXfHP20pe+1P//+vXrcdttt2FmZgZjY2M7VbOtUKFChQoVKuw9PN0TAi6//PKdet/ubIJcsubM4c4778S3vvUtDAYDjI+P78ox/eZjaOUOULu4Y7QoONdZbYSeFWGMoxG0bayT8WxDPQAmE2J5mI1XcawGA0fEjbUzCBCwiFZyQxYCFC1EJxaZ3zLkmqEwDANFZrU01nJlxIeYrQNa9HgrLKOZAFoVHtAy/rFUEds1NSDNiWDAeF1jIiZ2oR0bH63Uk7SqbYa0shzWrWWSeUatHRFr1o5J++aYh+FxOO2JMqT3mctpLJwZbOmTRu5ZYwbLGmTsWWiG5TUJbRie2TbIFMPqhkQ7AjZOFoiFsd9POyEWGqvq2odYN0NiqJqhQbdgNhKHjmMt0Gjbtvl6YDxDZqCtps9YvRjHZI1hwzKDgbUhACjsellS4MZtzFoYlCvrWGi0I4m+5BiLlV3Rc8ykAs8epzEPFDCbCQjGMdsTmMsYGnWJfsE8W/W85Tnu6li9ixyyxZGqPPCWEVFaEiPKjLXV0aWmpkj9HBcsgDYKITPIreXLZAIf6J4pYsRmewJ9NY92TNq7TT0X8VR424WeJCY2VaSTg5ZDZqEGyAsYkFnrgS1it5DmlolyoiynUZJohBqr6gU4E2gENK4bt1F0FrFABgEnKwZpcr/9nKH8N4hpDUKaS6M1jTu3Rp7BcTqziLv4L4PNc4G32RitaavTIm2WgV5so2C3fcUIhWI3Atp3jAkYlQFKQhvSzEGmpJeLtA8Sd3AaT8FAx1cEFCdkt6kRADdtD4ZlbsSImNIQlUyxabumMzq/uDBoR6UGsBEAnbwLoNSQbp0LUahSB9YvSpYTae5fmwjSC0a8hjwnuxIGjlpMTPLyxGBWz/jx1YIGRR3BYG4hQL9gfl869jwR1lIkiOh7UdqcFBrlddfqvFbWAWPZtEY4ZL+C8vo0bBBLZsRkJ7FQcKvRI/aRdI1AvxeW+kkbNaYMXc/iSHu2fbxutaaMAxXZ8bTGkm/OpqencdJJJ+EZz3gGXv7yl2PLli0AgLe85S0455xzdvkAK1SoUKFChQq7D0/34PMnI5Z8c/aHf/iHCMMQmzZtWiSCe93rXoerr756lw7uNxY8oDBy0GqOQ1iWq0bPGRvzBGIeAhZBsACxIJEiYwwBF2hFGrHQvlPSWGNZgHQUrsycq/4itswYjVpA+hENZ2BLK/aAGeo8s49Np9TRRp9JwcghN1g7AvxijmEuY3juCjJ1XF6D77pUBtjcc+HFxAg4xqvXL1fn01nZOVizXZnO9NU1C/YL5p9zK/8s59g6T0vRw8YUolhhMqEVKmleKAalHRN7pzXzTMKzx6kj77AxgwNaBssT400wHXsWcoPJGsUIxaLshNM2xmqh4H6/ARgKkydtzdpW5iOdGEjPFwuDiUQh4AL1QKMeEEMkNZkFu/1cDzRiUceojbqaShkyzbCyRlq5RkBGngCt2rVRGAk1agHHqnqIWmAwkwUQjP7/jnli2roFsVSCBxhrKDQjg/1GiGFwMTzaAA8s2DiaYYPX4c4xq7fpFqVGioEMih0r7MOp4aKcaF858m0sVta4lR4IucGL1kgwkIYPACZig3u7xLohJIbHHfu7Ooy0dLZTb1gfZ0BMjjKWMdGaTGzteYGc9HAGGqvqa7CqTh2BUykFzd85wyEYscFt203pItaMKoZYlHBROefZ4wbrmvT6FeM5On2BTt/FO9F4tLHh3KNk5NwIFbbN07b1eyFCyyY61pIJ5retU5TMcTtq0+sGHYDTMV0zQszPDfdH/vsYuI/dyiSZ/Q5SQWwV4xTNBACMWOVfTQt0cmuwyjmU0d6QlStlw+7pPJYFp4gkQefYgwv0WXM50CtoHsiC9mVSkz66LQ4MZDH0pyfNvEGtMsD2HkfAIjRHCnAIv48XUo5bZhi6RY80dLGiayYo5mnthIRWJdsUcmDzXIBGaE1SeYDlNeO3YbJG3+n3AacuyX4BmleMk+bM7p9h9swxy4VmtqpBDG+3EIs6Ld3Yl48WZaC71nTMXLe3YpAF6QnddYaJENiDOi5nQvtEfirsWixZc/btb38b3/rWt7Dvvvsuevyggw7Cfffdt8sGVqFChQoVKlSo8HTEkpmzXq/3iG2j27dvRxzHj/COChUqVKhQocKTFdR3+/Qtal5xxRXIsmyHx/M8xxVXXLEXRrQTN2fHHXfcosEyxqC1xkc+8hGceOKJu3Rwv5EwWGz+qLVtxaaSDhgASxN7sS4AbhgCYxsJIBDyBCOhQi0gUf3yhIT/HMI3GAhG2Yzu1GGqQE20IFhI5qpQ4LBVK8CK16k815fcWmfYYRqGdkwlo4BHOLidoh2Tqex+DWNLl0T5OzF+KEhg7cqUuab/n2hKL/p3zQLzA+4F/asbwEtWG+S2BFoPDWb6HHMLAQ4bozzIINRYOSptA0BZPh1vFRiLaJvqocHapkGhGEJrolsoho0r6CTct6Fx8KjC8prE85bZkosV5pNlBxmQZoqhHbv9QPYi2lD509ksULmTox5oJAJohQor6xL1gETXC4VCwMrSZcANxmOJkVCjL7k3Q3UZje4YKcMwEdN7DhsfgIHE5c9cLm0OZ4JCp9AGCFjkS9+ZYgh4hPFY4oCWwTNGyeiVjIoN2jHt85owyHKOyB6juUx4I9xFiEJrAUPlHW0UMrX48qGhqKTDGZAteCNa48tBpVWKE1pLw3wphzP6AzGe0LYdNCppXhtFxqNaY5AKBKGGLMiQdgdYkXni515C486HbAnywhq3aoSGGmSULtC21VwpyWh1+4LwjTDKyNJo15ZS3XYt2NJdx4rROwWwbT5EFCu06gojSbk/BynlMCYBCedDZlBvFGSIGilb+rTf41zEOZVm57shOKfGGc6EF6071AP6nnqj8CUzb6VhNNoxzYEoLm1SqOxJDQitEMhzQeeTfV4ZRiXqorAWP1TCKxTDPk2NsajMBm1GBoOMjGgLQ7YRUtJ8dbmhqSKbj0bNjiEQMIakCrNzESJOoviIxWgE8PnNEwk1TrhzG1qDM4OB6vic1H7h5nDZ4NJsSKSSrD00FKYz2nfdnGEuo/IsY+W8hinF+QCwPJHedsTIjIyyFfMlzocGJB+g7NqEjJZd84mm82SQ0T6TBSdzXrtvUwWMJ1TijSOSp3grFR4A4pEm+G7CEy1pPsXLmmeffTbm5+d3eLzb7eLss8/eCyPaibLmRz7yEZxwwgn48Y9/jDzP8f73vx+33norZmZm8J//+Z+7Y4wVKlSoUKFChd2Ep3N8E0BdyY9kBfbAAw9gdHR0L4xoJ5izQw89FLfccguOOuoonHzyyej1enj1q1+Nn/70pzjggAN2xxh/42BgAC2hjQSCiIT5RkFDUes644vMO0Me0+rNkOEoRQEJNEMS4o+EJEI2xkCaHBGvIeQJIl4DZ6ZcraULiECrMWWAXOUIOTUAZIpjILkXaA+ki+WhMQfcYHkiidFjIVqRwr51g/HE2Ogb5Vfr7j1TAxL8b5+NvJB/2DgWANo21mTFiPYGs/cvkDVEoWnlW2h6frJF1g0r62Ry+6J9JH7ngBzakKlkMyLGhFbHJCBe1yTGoBHQij0OaHtX1AovSBcMWNckI163DZniqAVkQJqpsv3eGf/SDzGLUjNsHdBjsSCLgYHkNponsJFEzNsyALSdYzG3QnrrE2pZGjlk06ENcNRkjvj/Z+/Po2+56jJ//LWHqjrTZ7xjbuYQYsQoozIpYwRFoG1saRcag420dDMI6KKbtrtFl4raoDSwHFCkbWlE26Hb4UuAbrA1P4kCEpEpICQkIXf+DOdzpqratffvj/euqvPJDZib3HsznSfrrJt7Tp1zdu3adW7V837ez6MDS6mI2LWCK1dCNBdOm/Fmpo9WhjvGlvWO3IIvpxWHevK5F/ZDwzJ2jFg/fGUsjRJjJ6zOzTs1c3KnH9s6yifaZWzmBYVXUQgtn6loGQWikHy+EaU22K0CjdC6Hk+iA2uZZ+ZGDCKrlhkxodXKNOs/zSqKXNizxCAGqdCwMPU4lhJhaoyPr83vjw8xWsgyrDaxOo0MpIyn33MsJ4HnXuYieymRP/P/APkQ2Zgg60YruGUHllOPUXBwtWwiqUYz3Yjxu52K8dRwfLp7equ54anaqLRmKyPSOGepjnMdheV4T+Vds7aGWxlG1WL8pGkImFbSdOPKKPg3tmk8QkmEUKfrWkZUR2Y4+MY41VPxXReVrGayzo/NZC0f7AUO9gLdTKwopk6Dd+xZcpSVaqxu9mSgjTBszTGLn713rWB7qtmYiB3FVq4iQybzNXbSdNExss6GhYnMn0MHMbx2TpOYEI1sZdfv2NEcmUxxvrU+OTQInBgZMb+OTQVEBq3wNBYtWhk5DsGDm7Ga0jQ24Cre/dlOXMdy3IZFHfMlJsKJ7jDoeI5MFEVh2vkGDvakecImck6fGEv8V2O5Ua/tBc4aHv3oR/OYxzwGpRTPfOYzecxjHtM8HvnIR/Jt3/ZtXH311ffJ2E6bOQM4ePAgP/VTP3Wmx7LAAgsssMACC5xjPFRNaL/7u78bgBtvvJFnP/vZTW44QJqmXHLJJfcoOeBM4B5dnM1mMz75yU9y7Ngx/J3CWZ///OefkYE9aFEVBDoiLSPEwN2quaOqDWPrwGgfKmnZD6Fu+MZqsdYAoj5Io5VvtrcqxYVCjDO9EgZOazHf9K6hb2s2Z+I0XeOZVvJn6WnCzuUzVYyxEdZNYqUCj94742+OdxsdFcAT98sd9XIid+nDEnqDktwpZlPL+nLJ5lgiTfb2PXeMFFm0nwDY05FYHq3gU5uqiRkyCm7bSvi6K4Zcf7RLquGSpYLzest8mglbecZWLnfEOyXsjC39nuNgr+Qb1uRu+EbnyZ1YYWSmjjyCiVN0rWfqNHs7JYcnKVMnLM9yKqzUWhoiCynvq2IgemYCo7JlPqwO7MnkdaslvL4+lkDDwlkdqELZBGrrubisaSWsadd68kqznFQxLqhl8brWY7WYCh+b7jCtNId0KiwpcKhnmbitRkM4dnDRwHNsaki04cqVwBeHrabQlZrlXsWlS1FLFiN/Gsyf51pzYpbE+aBZd812vjX1bOKlQoWONi0+wJ7MsZXbXfNx1eqUI1PR2tWMoljFmEYX5b1iuVdRegnCxruWQYoskg9VZF6NaN9ArCnqfShK0fQg/6gM7F4mbpuOKZnEIO+bdxTfsObIjGeQyFw35rDGYnVgVo1i6LVCK9EaahXYGSUky7Lmu5kn1aLJms4Mzmkevr9kHI10R07Wxmim8V4sFYRRtzWdKuzSHPM3q1oDa8oZ+EBRvx48y6uiqdRGbFzqY2kUfMNa4JPBw2yOqotsZ6rBJIGJAxI5OUov2rF6LeyUJ7hkKWfs5LdgNrVY65lZz7GhItFwXleOMzayUIjmzAe4ddOio2EvZeNPwwxhkqog80U5E4YqyNxXIW+1rDoDdtjKDVXI5bhGY+E0q+LuBnInOjiihY6nigHkCbduOvYOKsZOfk+btW6ssPuuAAuq/idSWyhnlH4g53q0aPnWC+SHazwRy5ftoraSEQFcbduR2YDulxi11Jwnt++IsfDJXMaqTWA4Maz147lU3f0cxnuLh2p800/+5E8CcMkll/Av/+W/pNO5/7CVp31xdt111/GDP/iDnDhx4pTXlFJUVXUX71pggQUWWGCBBRa4/+Haa68FpDvzrkiniy666JyP6bQ1Z694xSv43u/9Xg4fPoz3ftdjcWF29yCas7rTRbRD9aPyJYS5aCeURJgoBa6ga5Ya49HauDTRdfSPaNfqLk+tDFYHSi930iFUMBs146j1NEYF1rI2jqQ2oRUz1FanZJRt9G6pScmM59Kl0Gg7vmld9Gc6duONnTBevSTQSwKdroSlOydh4yfGmtVM7hoBRsOU23aELTvUL/FB9BejmdyBH1wtSVRgY5hwyZLciS+rJa5cTeglgdVMQo6XEuj3XIx+EibEh5ghXQlzlugOXRsadrAxmwSmTjXzalVg4hSb0URXAuCF/bGRDXBe8elNYcoyE1hOJVoriwa0AGOnm20Vmn0d13RUZsaj47wbJV2lSqkYFRWi2a08V3rF5cshvmaZVaM4HmFIq+DY06lIdEbpcyZOzEVr1uGK1QKrU24ZKS4awP5uaNizKggbuQs1e1MzM7plbOsoKxcNjNX8z0mY6waMkLlT0aRYNfNRj39v5wJWUyeGyvjIzMl8Uc7AFTFsW9ZF17TfA0CaNeu+imyvMHlemIy0jUPDiH5vJTmAdhL5VEcN7RSKrZGNAfE6dsVmMg5jRUsUmc7CT5pzaTWTLt31Zem+1DownpomNklrOQdORp1WqkWb1THQzTxaBw4txe63JOrNXNUwgtoEOgZ2RgmpiXZGxQyswXklWj1X4L2SkHU7J/J2hRhAu1b3iY0sgRLd1k6hGM3a+bkzW4pJGZdD+tEQOC80e5YcBwaeIprSjqeGlTTwmU0xdO3GdXdoyZMXWvR8vUpMj137m9MxSFB8kPGFYsxOoRqzbldKt3bhW4PuzMRO3qiD9EH0YKUX1rBm5MtKcaDXofJlw5Sdt1yxlMo+NGvUFYQQ8F7JOvdeKhTNCeIofJw/L12c5/Ui65hVTNyWMMm1+XLucL6QLsyp6Ntq/WSI/1bOYmTdUhrwlZJO2vr8qdr5Oduoy5r35vFAxhe+8AW+7du+jW63y8UXX8yll17KpZdeyiWXXMKll156n4zptJmzY8eO8drXvpYDBw6cjfEssMACCyywwALnEA/VsmaNF7/4xVhr+bM/+zPOO++8u+zcPNc47Yuzf/Ev/gV/8Rd/sejMXGCBBRZYYIEFHvC48cYb+fjHP86VV155Xw+lwWlfnL397W/ne7/3e/mrv/orvvEbv5Ek2W2U96pXveqMDe7BCh8qjE0xeEo/a+wQRPhaQshiacZhVIJCSlbaFXSzdUp/HIWmazWroWKrgLwSM82Ab8TZASmtVcGJ+a33hHIb3VlvRPx5JWWbunxTBtVYAwCN6HsrN+zpuGgNkWCUwygnRprRQHVPxzdlicx4xpOMfs8xKSXjcmNqSUzJobWSE2ONNmI0q7V8x8pKIcJa6znQLenbDsendfNCPR4x2fzGdSelyMkWK8sHGE5OstwTE8+6uaD0cMkSfG4TPn5cc7AXAB9LZfK5g8Qzijl/iQ6MnYnlStWUc3tWrDvsXOODD1L23czFVPRb9knupZ4zms2MF/NSKvq2NfU0yjJIppzMLcupIdEJiZay2sRprArRUHZEXsnnbeSW5VRK2RcPQrTyqKi8WIKcmFhKPyMEOQalz7E6Zac0fH5b8U3r8jlbuUFjODJRXDQI3DpSjKdiTQFS3l3NqrkyZl3yqaCTQtYDk1J6xWoqVi516VGp2ERQL55ohlyv+bLJ0YSOsY0tydhphoUh0z06RjVNArXNiyxmKV3NKtgYJqwvl2yN5kpvdUOAFXuFqdN0rW/HX5S7DFuVEmkAO8cgG4CGQRJwXvGEA56Pn4glVaXoGinZ+uBQJovHNjQWDC421sxcnbEq3zGbWvYsSbmwJLDe8wxLWZf1up46KfPujG1T0tLKgJXfhFDFRiBrGA1TJrE06oMYSEdH1qbEDnXmZRVL+UaOXTEh0XBkEg1afW0MbKXwqTT//FLH+283bBZAVzf7Se6aY1oFRab7dIyDVAxb6zLpStdzdCNlOZ3xZzdn/MiaaxplTuaSb1sFmE4M3U5cY9EyZHsqRqx5bUVRFbiyC1WBVw5tAqmp6JhYKleaUSnHGRXApOSFpjSBySjhgr0FYyfl78KLBKAK8sOgMRweGi5dr/BeDMDRFtyEgKeXhNZ4ltDYuBCbFXbG7brzoc3mnFUjtopuzNYMsVFjynjaidYvobVA8b4558pK1o9zmqIw9FfKxtbjXOGh2q1Z4xGPeMRd6ujvS5z20X/Pe97D+9//fv7wD/+Qt73tbfzyL/9y83jLW95yFob41fHGN76Rb/7mb2ZpaYn9+/fz3d/93dx00027tgkh8IY3vIFDhw7R7XZ52tOexqc//eld2+R5zitf+Ur27t1Lv9/n+c9/PrfffvuubTY3N7nmmmtYWVlhZWWFa665hq2trbO9iwsssMACCyxwVtF6N97zxwMZv/ALv8DrXvc6/uIv/oKTJ08yHA53Pe4LnPbF2X/8j/+Rn/7pn2Z7e5tbbrmFm2++uXl86UtfOhtj/Kr4f//v//Hyl7+cG264gQ9+8IM453jWs57FeDxutvnFX/xFfumXfom3v/3tfPSjH+XgwYN8+7d/Ozs7O802r371q/njP/5j3vve93L99dczGo147nOfu6vB4UUvehE33ngj1113Hddddx033ngj11xzzekP2pVN7IvGNILdeYYBXZuT2qb2rUPtjjpCKbmjtypFRwG53DlXTJ1vPi8ET2ZaZkgExkXTMFB6sZAAmETrCB9qw9UQdeAiTC+DElF0ZEPq8SZaGI5RqVnLKiZO85WxfMYV+xxPPy9IrEs0uNzeTtkpJaJFR4bJle0yXB04bOLp2zW2coWvxCS1Y0Q4u94xdAysZ47UpISqRLuSr9/nSDU87yLXMBeJlkijaYxJ2SzkR6RrI6MVWjasZmhOzmS/RGwsBr/rHcfly8JaXTCojXsVRsk+DxKJvvGhPaHq+Zu4PDZqyGfVpqrJXDRXarpNZNS0qq01LJnxkdkMTJ2sieOzhMwErlwt5taMMF5aGSZOGj5GZY5CMSoNV6wElhKJRbqgX1CGnKcfEkPfx+4NzR28sAASJdWYzvo5yrK2qlAhrgtPz8r8BTxWpe32/fVTIl2GhXxmqmV9buWmeX45FXZHKyNsCMLSrKbC1mJsfA6WBiWzSgyKZYyR2XFygBWKiWtjfupxN0xE/H/nC4kmMrYxk11OK5YTWTuZCThfNbFISsWGAK0bVrUKwg4d6JZ803qQY1ZoiZmyvmGGi9xwYmRIdNuYspQGRqVYLexZcmQ2cGx2J7f1GAOE1tIwsKeYs8jQzXFKdKAbY7ds4hsz5ZqpCeWUSamYVbCatZ9J5Zrj9PCVGUbByVw1862IrJHW+MgKW52yUyjGExtZUJmvnUIxWC7IjJjR1kxnvXz2LwnztdyrGE/sLnPgQUeiuVa60viAF8NhKmEJ6/lK6iYb7/jySLGnswTB40JBlkqs12C5YKcUEf72VDcss6diayRxavuXKvo2cNFaRe4nzRwEgjRFaAvathYxEce3E/q9uO60ZpB4AiLm38rFgqVumqnPC62lGWRX8wGwcaIj6yH+Bu1fdqSp2HugNCSnZlgvcHZw9dVXc8MNN/DMZz6T/fv3s7a2xtraGqurq6ytrd0nYzrtsmZRFPzLf/kv0frcUa5fDdddd92uv7/rXe9i//79fPzjH+cpT3kKIQTe8pa38BM/8RO84AUvAOC3f/u3OXDgAO95z3v4kR/5Eba3t3nnO9/J7/zO7zROwO9+97u58MIL+T//5//w7Gc/m89+9rNcd9113HDDDTz+8Y8H4Dd+4zd44hOfyE033cTXfd3XnTK2PM93BaneV1ffCyywwAILLPC1UMUc33vz/gcyPvzhD9/XQzgFp32Fde211/J7v/d7Z2Ms9xp1cOn6+joAN998M0eOHOFZz3pWs02WZTz1qU/lr//6rwH4+Mc/TlmWu7Y5dOgQV111VbPNRz7yEVZWVpoLM4AnPOEJrKysNNvcGW984xubEujKygoXXnihvOCd3IF7F8PJxXC2CsKoBQJUYhTbmG9Co3nAFVGHpjE6oWNEE1NbQeSVjiaxCZ6KzISGjWGyFVvOK3rWNvFDtWVBHU9Uxhij2k7CB0WmQ8PGGZWgMfQTxXomd+wHeyWZ8RyfKfqRFDo2pWHmUg2JCfQGYs5YeIlymVUSzZQXYikwKcWIs2dX2NcVHcaVq6FhArpmmUmp2N9V9MwKqruCM5qr1oSl+Pq1GUVuWE3h/L7EWfmoQ9sZy52+84oqlDGWZ17fJMzhsDB0ree8fklmZA7O65dk2rOUVBzolc18n9crm6gmHecsM6FhW7o2EX2QgkQnDGyFUsKKJio0ZsISmh5IVGCnFGayazymYamEGR0WOlqc9Eh1F09FFRR7O23bvdXCtGkljFTH1Oa4jrVMPucRa9NmvEVu6CVyZz+rJJBddTu7rRSsiZSPa6xZtOJOc9gRFstaVHdtl2ZGzJRlfc0qYRQ2C2GnvjKW+cY7unaJo5HtSHSga+M5EdkIoyRmSj4zfrjSYtrqWhuC/V1hOu8ykDlqiOaji+YZjdWsYjUjWtSIdrDRcs7NSctcRgYHOcY28TgnGio5j4TNskk0QY7mtGMn39ExwjqVntZuobYiyWyzoysrhUQOVaoxhK7nWCGaUYJom2AuEsqHJqx97IjxRKHdl6hvWkkNs0osLbCSMC7B6RaSDlVwZKaPUQmJCexfFpZ6p1BsDBNcqSlygw+yjwQ5r12pRatVyvk9nBhhxawRLaD3TEolYeiIVg8tvwf1PNjEN1pWpXSzHpaT/aA0O+UJpjNDv1sxm1r5XqdZj1YXpc+pfMmeJTlPtgq4ZACTEjZmo11rtZt5VLaEROxFK5P4+tKglHglL+xyNWd7dNNWp7Up8R4qsUn6xn0VfSvHNhDZQq05dGDGTtnaqhwbWrSJVh6AirrDc4GHelnzqU996td83Bc4beasqip+8Rd/kfe///180zd90ykNAb/0S790xgZ3Oggh8NrXvpZv/dZv5aqrrgLgyJEjAKfYfhw4cIAvf/nLzTZpmp5CXR44cKB5/5EjR9i/f/8p37l///5mmzvj9a9/Pa997Wubvw+Hw/YCbYEFFlhggQXuJxCfxHvOft2b995f8Fd/9Vf8+q//Ol/60pf4n//zf3L++efzO7/zO1x66aV867d+6zkfz2kzZ//wD//Aox/9aLTWfOpTn+ITn/hE87jxxhvPwhDvHl7xilfwyU9+kt/93d895bU7e5Z8tQT6r7XNXW3/tT4nyzKWl5d3PYA2DDoaDKoYc1OzEU14dOXkbjcIo9AwZzHSQ9F2HJY+dpQp6X4LCCNTG9vWWh9OnojjlkiU+o5HQrNFn+a83MFbHegnFTayZ5lptWwAmemTmT6PWJtho96l9Ip9ncD5PTFirQJs5prVDPZ1xfBxKQ2xOxQODw1Fbjg+Vax0PQ9bDiQm8JxLKgJiILlnyXFkojjYC2xMhHH6vssLMtMTpibe0R7ql3zPpSU9m+G94vx+YDUVRuFAN3BelG/MKumIVOiG8dEqsJxUMYYntLq7uL+1UW2tT9vXcfQTme+ulTv68/tl06lZRzEZJXfOVXB0bR0rFAgxwF7mQW5u6g7P+fJAzdxMK43VEtEjgeyewk8xOqEKjp71ja6mY7rN+7tmGa0CW4UcBwATGYdES/zSLSOF1oFZJYzB7WNZF6RzN113ui0u/CSuF92sv3pdhDImens39/aq6cDMK8VKGtAYJk7YnQ9/OWnmeOp2+NyWIjVpw+g2sUlas1NIfNNsatneToXhiVE6oqNquwr7iT+l4y0E3zBGlY9dccWk6ZieOIktOzmjMVfWSrSLtVa0ZqFq1jvR0rk5q8SstmOkozgvJPR8PBW2y5WiG5uMZG69V8155SuJPsqszA1VjKWa0/6NJ1bek0qXdx1pJfvrm8P0nAula7kJ0I5zouN6Ku+CTCSI4WrNdDVzWh/Luc5bkHN5K4+6MxNYGpQUuXRh1mwswXNgIIzh9lSzM0rk/NehYff8tvzuuVKzuZUKyzjHtmPTyDQLY5rN6e2OTRUqH4N3HJtOG9Nf7yUKyVrPtJL31ZqzKnZXFrnhZA4bE81HjvaadeKDBNOztBeAWRXaeVa6YW1lgAm3jSxayXf++W2ar18Npxj4XrYUOLqRtgazca1WQeZxZ5SwlSs6XUcvEf3aAucWf/iHf8izn/1sut0uf/d3f9dIknZ2dvi5n/u5+2RMp82c3R9rs6985Sv5kz/5E/7yL/+SCy64oHn+4MGDgDBf5513XvP8sWPHGjbt4MGDFEXB5ubmLvbs2LFjPOlJT2q2OXr06Cnfe/z48YUZ7wILLLDAAg9o+DBXBr+H738g42d+5mf4tV/7NX7wB3+Q9773vc3zT3rSk/jpn/7p+2RM972q/14ghMArXvEK/uiP/ogPfehDp8QsXHrppRw8eJAPfvCDzXNFUfD//t//ay68HvvYx5Ikya5tDh8+zKc+9almmyc+8Ylsb2/zt3/7t802f/M3f8P29nazzQILLLDAAgs8EFGXNe/N44GMm266iac85SmnPL+8vHyfWWY9oC/OXv7yl/Pud7+b97znPSwtLXHkyBGOHDnCdCqlFaUUr371q/m5n/s5/viP/5hPfepTvPjFL6bX6/GiF70IgJWVFV7ykpfwYz/2Y/zf//t/+cQnPsEP/MAP8I3f+I1N9+bXf/3X8x3f8R289KUv5YYbbuCGG27gpS99Kc997nPvslPza0JpKVvEsk9dmpRSY9aKgb1r8gQBKXNoK9YR0cpCRMCGQSI2AOMyMCyFdteYZg58iKVSJzl0fbtGxwzoJ56OaU+q1bRiVGoSLSW5gRVBc9f6puxmVBIzO1M6ZsC+bqfJ4KyzFlMNXeOF4o+YVVLGObljKT1sTzVpVrF3IFR/4eHyZRHO7osmm7XY+FsPVjxuXyFCXaU50HUotJSiiglWSSluNXMEPP2eY3+HpolgkHgOdgP9nmM2tdw2FiPY2qYCaKwRfMx8zIzHA85Xu0qdEMugaYVCk2rFxUuOQVIxdTraS7QlDaOk7NExls28tV+YLxFVvmyOYaIDS0lFCD6Wm8XSw6jAsJAMxfXMxbgVH9dN4PZx2hjPJhpyrxsbgLGDgz0nzR+x+UQpMdHtWxFbD7cycqd4/22pNDt0xGy1qevV3dk2bRocAI5OVTOHdaMLWhHGJ5tSWL3G63nUSjIfT84U49LMWRNY7pjU9iwd9mSOaRXF+q4A75uMRWujiafS7dhmuTQGeMfnt3XbEFC/HsvJ+ECoSmk0iE02WsUMTFOvB1kLVRCD3cz0m89AyXFOdAer02hWK6W3+s/JOBE7CaScWGdnAvQGJdO8tkyBYyczVrpts4AsHNuK9p34giz1HUt9OY6pyprfE5BybP335dQ3547k+Mp+ulIzzeX8BlAmaRsmgpTKtQk848JKcibLslmj9feE4Cn8RCwvmlK8lFA7XRctSDznr7pmHrUOZKmX0ud8SdVV+B35fds7qOgNSu7YTFjuiYVGFYjNGqopJ9Y2OBCNfF0BSjN20gDQ70q2aZFL08H2TkKRG4y2FFURm1Gk0eiRewpWuvIbp2wWl/ucdYb3zXogeChLnNMMS5pyc+HjOa6DzG9dkvStRZJWgTSbM9CNKL1ICdLYXFTn3xaFaaxMFjg3OO+88/jHf/zHU56//vrrueyyy+6DEd2Dsub9Cb/6q78KwNOe9rRdz7/rXe/ixS9+MQCve93rmE6n/Nt/+2/Z3Nzk8Y9/PB/4wAdYWlpqtv/lX/5lrLW88IUvZDqd8sxnPpP/9t/+G8a0/4D+j//xP3jVq17VdHU+//nP5+1vf/vZ3cEFFlhggQUWOMu4tx2XD/Sy5o/8yI/woz/6o/zWb/0WSinuuOMOPvKRj/DjP/7j/Of//J/vkzE9oC/O7k7YqlKKN7zhDbzhDW/4qtt0Oh3e9ra38ba3ve2rbrO+vs673/3uezLMUxDwKJMS4n+VkoilRnBc3akBIBpfknQg34mfUTNZlj2dJSZum+NTHe0NShISiYKChtmQ9u+UcOSzpAceRsfU4nD53sy0sTf9xDfvzbRvxOsS32TRQaF0l2BEnDws4FAPtvIKrTR7O57VVNirrRyuWAncuili38k4odcvmYwTXFrF1nHPZcs5Dx8Z9nVKFGLt8Y17PI9Ym9IximnepfQzDvQ0HTOgCg5VTlFVQenFTiIExfZ2yoGHjVl2EnuVaGFFlhLY8YojE0XXLgOjuN+B3AuTVAWau/thYRhEFizTcoddRSIpUQEQsfqBbokPKlqPJNGepL1LtipFaUVmJnStb8TnNRtZs2izShi8RAdm1YhBUrGRW4aFoZ94xk5F81ui1YolEOgY2cZqS+lzSg9Tp6lCSaYD53WFPRR2cErHDOJ2cpc/3MpYXZ+xnMCxGaQmFbZmPooJxBx56QCBSbOmPrmhePTeuB+RrUVrmA5hsK95rvSqMZcto5VJxyYcn6k2ssdYVlPHJUsBjcUozWpatdEwwXPecsXJXATkna5rmCzmfRcr17AQYu1hGtZYq2gJ4mYoOhAqQjnFhyQyjCUTJ+xS/Q+O1SnOF8K6RfuNuglCK9OY93aMMEt1U0fphZVMNHQN7DhNN/PkXuwiOl1HXinW1nJ2CsVklLCyUuBC0RqZzv2rN57G2KN5GAvBc2KWcKBbgrESBVRqBh3f/kZG5ss5zdYomtdqCyZt5vajx/q4UrO3ExmzWS5fX7WxR0pppm6HzXEf5zRLg5KyUoxdoCgMZepJdeBkDmjLaiYWEasDxzDGNk3GCVmaizluLuvs2FDY0F6/bBiz8/uBymhCFVjrV5zcsc3vG9ruMq8eFmL6uzO27F92eC+i/zSt0CZgVILVFUUuTG6n69jXcRQ+Y5D4xvC19DN0NPRWc+dmPFHZtzLH/lmDqWjE/9oE1tLWoiTEY1fbCQ0npl3L1kLZrhFXaio7Z8qtLWGuqeZs46Huc/a6172O7e1tnv70pzObzXjKU55ClmX8+I//OK94xSvukzE9oC/OFlhggQUWWGCBBe4tfvZnf5af+Imf4DOf+Qzeex7xiEcwGAzus/HcI83ZF7/4RV75yldy9dVX8+3f/u286lWv4otf/OKZHtuDE941kShW7TYZnDfFbFrpmxd9E4bcMYPmvVanWJUysOuNaWzl5c43EE5hF1V/D0x2sJVvbEAGSUU/SchMn+1CmJuaRYKWPBHT3ESipJRGB4XVWQzpDiQ6IzNio2G05fy+a/Rlt47EAsF7xdKgxHvFylJJN/PyfKVYSoRpszqglOaiQeDx+wu6Vpbp5euevJrgfBGtQOJ8lTOGhWEtW8Moy3OuyFnPHE8+KDqhzAT6VkxpD62VGAU91ZeAb2BP5pqw90Hi2dupGJeGcampgrBk9k4WGVaHaEwq0UmZ8XEb0wRlG21RSpNELWFmfGs5EbVi9bzmlW7uyKeVsF5Wt/FGptFrwb7uqhxLhIEKiM4t071G31UF6JglulbMXuvg9cMTMcWdOMdmLmzPYKnAlZoTIyPzr9LdJqV1/JHWkA0IwZMoYRfGEzEzDiGgwpzGq7/e6CoDcV0GWWt5JdFjnahRtEm0gShndIzikXsKlFIMkvWGXcRYUJrjU2FEaq3QvGUHaSKLNXg+flz0eqEqW4sNm2JCpMTKmVixxPFWoeTCvhjw9qznqQfr+LIYhYZYOIQqj+eMb5nCeB4mGlwoMEp0VrX2bGds2cqVhKCPLZNRwoF10VDWbKKvxP5BKzg+ncn+2jkTaq3YO6gaVpaqaPfdVUycmEejtFjgJJ6tkY0GvvE873hWB04sHeLn5n7SWGVsF4o0q1hOIxvp2vMLrSUcO3iqUNLvVmgdKCvV2JrUVh1rmWg7STqc32t/f7wX64096/muzkCVpfR7rtHoAZBItFFRTVAodgphu4wKElGntDDusdpwfGqb75hWwtAXuVhc+ErOE4Vo0hRiltuzYky9nHrIBs1nea84md8Gxra/n3H9n9yxYlESmc1ZRWMZ0kvEvmd+TYbg+cK2WKB0O9UuTZv3MnezaXw9RtTt35PHc+7cMWf+DDweDOj1ejzucY/jW77lW+7TCzO4B8zZ+9//fp7//OfzqEc9iic/+cmEEPjrv/5rvuEbvoE//dM/5du//dvPxjgXWGCBBRZYYIGzAM+9NKHlgVfWrCMd7w7+6I/+6CyO5K5x2hdn//7f/3te85rX8PM///OnPP/v/t2/W1yc3Q0EPMpLRJMKKirPfIy4EYPK4KYonYDtxU7NGFmiNMxGpJ0BVShJTY+imkRT2BNoFSOLVLzTJzIMtRlnZ1kiU2YjiD6jXSsMk8bwqc3AxUtiKltHEQkrNMfylbOGyajZoZrtKr1qNDg14yZ3otLRVWtHlvqOtZQm7uRHHzVGKUWqoWc9CsWeDB6+kpBXEll16UDYuZt3PAe6kJkewUhA8dRpMt2nqKZ8/VqOUSFqq2ZkJmdWSaDzibHm8edJyPao1JE1bHVCiQ70G32WRBNlJjSdhpkJVPFPqzKUdq22DzEh7doco5MYs6VIdIfcT+iYLirGZxkl2iCjLLNqRBXkrtk14+iwU44b81bRhEgETs+uMnU70nXmZW4OdEu0snTMgOV0m26MHDKR7XOxC/XIJOGCfkkSdUGXLQW+7fyK93++w/JqLgyIctCL8U0+6rlcBYl09wUCZRD9m7ViXuxDtcvwVfXWpOMvMk6ipRPm7MTMxMBwwyVLjo8ciwuxcqCla1ih6ds1NvKTLUNlU1zpcE4zq6Szl2jiXHc01nClxqq7jm8KZYlCAudhiEr7VGHGef22O/FAT/RgcuxFW1b6mbxorJwP3jF1wzlmOTAuSzbHvaYDdSnGlZWVsD9Puajkr+8wnNyxpFnFrApsbmbYxIsGzSluHydckeRtxyyAtdx6tMPq+oxH77mT1laryPzK8wMrGiZrPUU1lWPnRfNVd1g2HZw+J50L6u5bWE0dTIW5L72C2RS6y+TVODLBHXKnOH/VsVUAXcdqJqbRm1spVsv3KJuxnglbvjUSjV1tNmsTYaJUoqGTMd2R9zinSfoOZTPKucpBbeC7mlYNm2qtB5OBsYydMLBZ6sVEFhgsF2KGC2S6z9htkjsxae73pLO703WMSo3XKmoKIc0qDk88e6NRtLBYAfCMhgkXnV82GsdPb8rBrw21k4M5IVYuqGTtHOoF9iw59nWFWU0B1e3gJ6oJai9yw1bs5h4N429tMTll7S5w5rCysnJfD+Fr4rQvzj772c/y+7//+6c8/6/+1b/iLW95y5kY0wILLLDAAgsscI7wUOzWfNe73nVfD+Fr4rQ1Z/v27bvLmKYbb7zxLvMnF1hggQUWWGCB+y/qbs178zgbuOWWW3jJS17CpZdeSrfb5WEPexg/+ZM/SVEUu7a79dZbed7znke/32fv3r286lWvOmWbBxpOmzl76Utfyr/+1/+aL33pSzzpSU9CKcX111/PL/zCL/BjP/ZjZ2OMDy7UGXWmFbRXviSvPEsJZMFCKKQkpD1KWxH/9lZBgUr7hNk2KumQmX5TCjUqoWctgWgmqQxds8zU7Ui5Q0HYGTXUfd2YEKhQKFLdpQouGnH6KPAPWCWlzVR3G7G5lLkKSHuxdGbFQFVlrGcTNnJZVnml6FkocilZbOaS47g6cOzpiMXG8e2ENK142NIaW8Vx0W1rycLrW1hK9kp7uzIMEk+i+3TNGD3exvdXUK4Am/Lkg15KiTphKckZJFKKDQQmTjN2Yo77zy5zkmeoNIf6JVYFlpI+zk/YKSXLcZDUQn/ZXavFrmLiRJBcxRKhVmItELxHNdYmiWRiIqUwq9KmtJfoDiCljbq5ogoO5wvGzrC348krxXIix8R5xaiUkrHzYqExdiIy9qHCB8fJmWVf19O1bbPBuNQc6JZUwVF61dhKaBVLxkoaCw5PFBf2pbTc65eNvYNCo1bPJ/DFaDsRa882pdJi1KkRk1abtI0Nngo138SiNT44PK3Bbl32Dng6Rpo1XKmlYcFYdgo4v78mVgZejH1VJ2Y9KjEuXu5VbI0sVXdOMO2qNodSaa7a7zg8SfiGHq3NRuWolEc5B2mPjuqJkW8xRtuUga2k+SSXtStlZ7GPEWuFpk5PYjvgimjIq+PxjedKVlFWIkQvCil3WevpDUrWs8BK13N8W/I2Nwsxb/WxjD6bWsZlBalGGUNIk2b+9+yZkReaY7PWWkTGIw0qPjbqVAG+bk/FZ49bJvUUBd+UDevsyuDL9h/VIHY5fRttEaI9SaKDmPs6sfgo/QyrUpbSwNGRZrid0us7hlr24TlX5PTtGuAg6WD1CK1lTkbDlN6g5NCeQhoCtg16kII1UuYEVjtSfgXPsFRUwWF1ynJPTKkHicHqLoShzFlnGcYnMTGvd3tbSqb9nuP48Q69vuPxhxw9u8ZXxsMm07M2tZWyZ8Wo3GAJOadX0xjk7R1g24xTH7j8wikX9oPMT5pQVjJXzmnWVgvJLY3WIxix8rFasT3VXLFSUVRTUgBrmmNe5IblXsXGUH4LB8sF0ONcItxL5uxuuFrdI3zuc5/De8+v//qvc/nll/OpT32Kl770pYzHY970pjcBUFUV3/Vd38W+ffu4/vrrOXnyJNdeey0hhK9pj3Vn/MEf/AG///u/z6233nrKhd3f/d3fndH9ujs47Yuz//Sf/hNLS0u8+c1v5vWvfz0Ahw4d4g1veAOvetWrzvgAF1hggQUWWGCBhx6+4zu+g+/4ju9o/n7ZZZdx00038au/+qvNxdkHPvABPvOZz3Dbbbdx6NAhAN785jfz4he/mJ/92Z9leXn5n/yet771rfzET/wE1157Lf/7f/9vfuiHfogvfvGLfPSjH+XlL3/52dm5fwKnXdZUSvGa17yG22+/ne3tbba3t7n99tv50R/90caaYYGvAaWlPdumra0CgczI3TfTYcMS4B3BTQn5jjBVlYOsJ4J879CuxGIbQXrfrpLoDpV3ECDVXawWm4uimsJwJHfbaQLaNg0DVqcYnaCUYnsnoRtF3nWjAIhA3Shhpkg6TUNAjZo92dtpBeJlFCmnmRhB1mLkWQUvvXKH2450xPDRK1LTI680pZfIJKU0h/qOJMbU9OxKtArpMEgqwug4zgtrhnfsyRNM5RtLkZ5dEePQ2IXUt9AxgZ1Ssa/rwDvWM4ldsjqln6gYySN2CqtpRTfaY2SmjdoBSLWai7Nq2+0z45u4Jq0MGoPRCSFEa434mhj5Jo0dSBVaS4Uak2o7smHSlCDmt4GtQjX2HKXPZS5CaMZTR9v0bYfSzyi94tF7C87rCRsoRr2BUanpJzBxbeCxtV6sB6hg+aA8OX87Xc6a/zVKWDATxxfwbTRNmjX2DD5Uzfx052Kt8spzfKo4r1cw6EhUlu/02cgtXbssYygmwrKF1kbGlboRtncMu9agNM3oaI0hFiTKZq0NCPGzXAVbx1tGzRXR7kTW+VKM4lrNqma/jLIt60y0G6mKJq6ptgupz2k9J1pPs4q9ayL6zkxgc9yK35cT2XbPkhOGKZ2z09G6ZQO12FAAzBxyDkJs2vD0rBwPtCavNA9fjmzVXKyT92JHce3X56AVysw1HCDM8u3bRmwRGuYskTUQxel55dnIcwoPK13P8krBUl9Ys8QEnnH+iEGyLh/YWxX23XpmU2mA0DowLGMjkLWofgLWMBklbG1kTMoYZ+dy/vFISunF8mRWSaxXzUaDRD7lYQbaNhYjg+UCrQPb2ynre2W9ziphtIelaWOgOlJx8F5x+1gzcdti/Bo8GzPVmO82prHGgpbnm3WstDBxWtPrl4ynYnZdbwtie/Q3x+U7T+aK0s8I8YRzTmMTsRKqz8F6HuW43slw+CziTGVrDofDXY88z8/4WLe3t1lfX2/+/pGPfISrrrqquTADePazn02e53z84x+/W5/5K7/yK7zjHe/g7W9/O2ma8rrXvY4PfvCDvOpVr2J7e/uM78PdwWlfnD3jGc9ogkCXlpaaGKThcMgznvGMMzq4BRZYYIEFFljg7KIK9/4BcOGFF7KystI83vjGN57RcX7xi1/kbW97Gy972cua544cOcKBAwd2bbe2tkaaphw5cuRufe6tt97Kk570JAC63S47O5LEc8011/C7v/u7Z2j0p4fTvjj7i7/4i7sU2s1mM/7qr/7qjAzqQY1ooSHRTC5qVkxkubLdrf/aNnfGFBPIR22sSzmDfALlDBcKVD6Od++ZmEVGDZTVKZn2EgkD8vmdLtg03vWLXk00ZZqVpTK2q9dRTTVDInYHtf4GkzJvbbOU9KOlRiqmpNEY9QtDhXNi+uicRkeNUccMWN874yefsB3vYi3LaUrfQqIleuqCfgH5iK5ZjiHTIW7XA60p/Uzu/r0nTDahkkDxnrVYlTJx29ECQUKFL1sKcaxVDK/WTcySVSmrqZh8doylaz3TKoZZx4D5zGiM0mSmh9ViByFsohyTnvVRX1YzbUY0TdEqxegkxlIZEt2J5qaeUQyrl8DqaNfhHT7ABYOisfXIoklp6WekptuEtwv7aUhUhlKK83plo0fMK81lS/J9iZbA9kRnGCUMTBXghttEp+O9wnsxiC1DvOOd15BFJsyHiq1C9ll+mMVWozFRNnbX+wKtVcmezDEsYaswXLES6BjFrJI7953yBHmlMVixz0g6rZbOS5yZi0yQ1oHRTAuj1ugofWOYe+tIid6qtyqvOQnTbtivrZ2WpS5nZKbPvq6wUSupwerActIyFzUjpuKfVqeN5qz0ihDkOI7LwHArE0PaGMTtK8XGMGGp75qxF7mJWjtY73kOn8hwZYx3ivYpu4LHjaXfExuRLx9PmVWjJrQdaxqDXxBD0EEibFVeRQYueC5Ykdf31fFMwZ9S7RCj1PicNfJ6NPadVSPGpW5eH7to+poLg1RHvJELy+Z8Eb2M2+/oGNHV1QyWyiy4ijSr6PUdiQkSUVUVDJYLYezjUjqxmbaWJsGzlSsKL99Vepjmuvmu3qBsbDTqMPJRKZrFKpRsb6dNxeHD/9hhu1BgLJ6q2ReCJ698u5a92IUsp1Wc95QqSIzgciLH2yjkN0lrqAJ9Z3jUuqcoDH0b2vU3K5r4qRObKeNpjJqKRr7Nen6A4bbbbmsqatvb24306c54wxveIFZSX+PxsY99bNd77rjjDr7jO76D7/3e7+WHf/iHd712V1W7EMLdruYdPHiQkydPAnDxxRdzww03AHDzzTffrZjIs4G7rTn75Cc/2fz/Zz7zmV1XpFVVcd1113H++eef2dEtsMACCyywwAJnFfOlyXv6foDl5eW7pfF6xStewfd93/d9zW0uueSS5v/vuOMOnv70p/PEJz6Rd7zjHbu2O3jwIH/zN3+z67nNzU3KsjyFUftqeMYznsGf/umf8pjHPIaXvOQlvOY1r+EP/uAP+NjHPnZaZrVnEnf74uxRj3pUc0V7V+XLbrd7Wp0RD1kE37AA83qZuissuByVxk6dqg1ADi6H8UnUvofF1xyhGKM6AxLVgbxAGYUPgbxSTWdZ/Wdejen0uu04bAq+ZQS0l47MaV7SMTYycPXdcGjjkgIS3wTCWOEbVq0KJVoJo1SzRzuFIk0rihhM7GtWgMBwq8N6RzGeGPJqTKq7dK0wNiF4ltOUMNsmGSyR6IwrV2doDJnugZrFsVeQ9kTjpHXDGCqlSVRGFRyHeiOOTCz7YtD0aiaBz4nvkFeTRiO2lFomzqOUpqMHlL6IkUtps01RTenaZarSoWjnWY6hMGz1XNXGvY1uhWhCGTtfM92LnbUSbdS1vomMqmKA9uXLe7hpc4wPitXUMatgVo0kqkm1QeKZkfWi0I02r/QzCq/ITJ9ZNYqh0TTvW0pjzFNX4nasFWaqZsfmIp/jDlqczwl4tFJMKx33W9ZJCF60UHPaNDmWARd07EQNHJko8kpLJ68PXH0okGlP6XNhS4uJsJFW9JJGJbuidSZji68Ug+WWAWr0Y5Hl2d+VAPtSB6yLcUU+7DpeYbIZD0rRrKtZNSLRGYmuos5POod1Fbs1tQUtjHPwZXP+VMFxfCaMYKfr2N5JsNaTO9V0mB47mcGFE7qZx7mK1YGj8LCVK3rRAHd7J0GfV0TNqZeAbAoI0t26mRvW1nIgaulcJRpSWk3kwHqOR0Na8U4Vlv7WTSvd0jG2THSnNL9FVgd2RilWTZs5UkQDVqVxXrqMl9OKnbGEmRfxmGxuZgyWJVYNrel2RDd6YibdqoNlibXaGskYbOIh942mLs0qXKmZzoRhxwuTa5SVigHChvlQcWTiWK9Eozewe6DaZCmROag7Y2stqys1X9qWf7c2ZpbhlkSpzaaGw5NEzHoTYclxs+Z3q2vkNzqtM7zi8dgZJWiVi/436TCbiub3yJZ8f6Jp9YJxjh++kqN1SuGl8lAfrE7XNXOTaGH/ZlNLmXj5PbPJnc/As4Zz7XO2d+9e9u7de7e2/cpXvsLTn/50HvvYx/Kud70LrfWu15/4xCfysz/7sxw+fJjzzjsPkCaBLMt47GMfe7e+4x3veAc+MpUve9nLWF9f5/rrr+d5z3verhLqucTdvjir6b3LLruMv/3bv2Xfvn3Na2masn//fow55ed8gQUWWGCBBRZY4LRxxx138LSnPY2LLrqIN73pTRw/frx57eBBaVp61rOexSMe8QiuueYa/st/+S9sbGzw4z/+47z0pS+9WywegNZ610XfC1/4Ql74whee2Z05Tdzti7OLL74YoLm6XGCBBRZYYIEFHviYF/Xf0/efDXzgAx/gH//xH/nHf/xHLrjggl2v1VowYwx//ud/zr/9t/+WJz/5yXS7XV70ohc1Vht3B5deeik/8AM/wPd///dz5ZVXntF9uKc47YaABc4gTGu70GA2bPMCKyelTWj/dPHPaFUANOamUJdhpL7hqWKZTfI28V5KTkoTbEais7Y0Nx2Smi6TcRIzByVrs2ulvKYQ0TNVIY/go3GlITNiuVHbOACN0emxGY2NhtaBLBVxrFaGNKuwKsWVOjYnWAaJiJRdKMhMD1whn79zgpV0L3hHxy5B8NJAUc9FzB3ViFWFQtE1y2LGaz1LSeCCfsGwMAzselN66xjbzFvHDKIdhjRJdI2XPExEJG9VilLy/7UBbd1U0QhZY3NBbaVhVdqUfRWa0ufN+7p2GYUWI1YvprPrHZnDvNL4aIdSeCl5ZCZw6UDyNK3OCMGjVaBn4zwYKaMupVKW9qEi1QEfKpyXcmpeKSrfCs1TLfYUna6IzbVusySb0kx9Q2bEULf+UZw6TaKJBqhSqsa7tqklSIl44sCqEMX9gTt2pMQ5SCpMfL62YsmMb2wiQpBSeyBmZCYdfKXo9R17D0zZv+xiHqedawYIUM64ecMwq8D52NgwXwqptx1vtNICN6Nv18QqBtjXdWS1YWk1hPGGjCOOzQcplYoFhzR8fGpTtWJuRPj/qL0+NrzAnnXJfN0ZS2lvUkrm7GQk3+mcWDKUHhmXm7NS8J7tqW5sIjSmaX6oj48PgLZkxnOg68SeQyEZnZXjWZeWdDttuZ3g27zQeMxGw0RKfFbMYZuSfPCkuouOEgeASSkmxLOppdcvG/uQylp2RnUDEaytym/Wzihp7Frqfa7tQkbDFOdEsF/biehYng/T7UY8X5fqCZ4iN6jxZjwOoVm/WeqbfMqVlYJ9XRnX2En5VCvD3gNTPnZczpvJyDIsTDMHx4/H39PKSXndi0EyTpo7xnEs2FSkAKFoGjxKH/dpbiEkWpqgUt3KSEgTKcEmkn2cO8VwK6PTdQy3st0WMecAZ8pK40zjxS9+MSGEu3zM46KLLuLP/uzPmEwmnDx5kre97W1kWfZVPvVUvPKVr+S6667jEY94BI997GN5y1vewuHDh8/07pwWFhdnCyywwAILLLDAQxavfe1r+ehHP8rnPvc5nvvc5/Krv/qrXHTRRTzrWc/iv//3/36fjGlxcXaOEUIUewLkk8aUVJgmE81m52wvanF1OWubCJQm5Dsok4ArMEGDsY09QxWgDHnDZAkzU0BRyucHEfKnuteK1osx5BPSrCLTvYZJMipEE1TXMhgQjRZbU1WrUipf4nwhpqShtm2QzWsj2p1RwsP3l1S+xFoxbU2zig4SR1WPVaFJtTBnerQJwdOzKxA8xglrmIy2ZTz5qGHylK/ITB+tLEy3ABgkGatZRWYCD1/J6YaUMNuR2CrTJQRhyzSGpUSaKDwVezpOWvl10gj9rUqbOWuaKeKfRiU4n6OUWI/UDFRtl1K37ofgZR0EYvMADXt0Xk8mbKsQw1Kbz6KJprBo4yYZxjbHNjNyvDwVie7QNcvk1ZjM9Nnb8dFaRQT3Y2eaddE1YuTqnGYybsXHDbMyDy/GySF4qiBxUaVX5E7E/bLJnIFqJUytUUm02YAsRgwVhbC7pVdMnI6RToqOGVAFhUPGFxDmzdeMrNKsrBRRKA4PW567e54VLcOndMPiqFpYD7ssEfAedka71jJuRqZ7ZKZP31akWomhMxDKqTCg8fNm1Q5URbN/IGL+Whi9NCjxXsyPtYKjGymbW6mYperQWGx8flveOxmLOH24lXFsxm4D2vjnZJzQ6TqJ2FJamFJrwQdW58xrjdLs6waObyfC8sToofP7js3NjI4ZxHlwFH7azM3xmSLNPMNCmHuVJMJQxIYKpTTOS9Sb94rZ1EYzXcVoJ2U2FZudk7PbWBqU0vRiAuOp4cRRYeNHOylpVonlxZxEZm21aKxcarsUX1v4NKxeytSJ/U0dmVS/tpHLeGZTS15oeoOSfs9RBUjiNNbNLz5IlNQnNxTaBDrdSo5h0iHgWd87a45jffzrOapZQLRGpX0ZcxALjAv25WwVNAw2lfzWl16xslKwWSj5bTNyzA+sF/LbZ8BXiuXVnOFWJs0StRH5OULdEHBvHg8GXHHFFfzUT/0UN910E3/1V3/F8ePH+aEf+qH7ZCynHd+0wAILLLDAAgs8eODvZXj52Spr3hf427/9W97znvfwe7/3e2xvb/Mv/sW/uE/GcY8uzbe2tvjN3/xNXv/617OxsQFIMOhXvvKVMzq4ByViW3vDLlQOSrGIaF5zc8wZtNtp27JulRN7DdXePaaIyalRbTg20MQPyedLYLnokbqtXs0JQ5dmEmtSR6TI+32MIKoDke0ckyZaKqU024Xoe2omAWA8lVb60TClyA1Lg5L9HTFj9F4JwwUw3sCOh6xnrmGcanYoVDmhnLbxQJMteX58kuBL2a86zib4aFibQiWh4gCrmRjGHuhpws7xVkODaawlahNfMZe1TfyVjqYSHTMQTVJkM2ttm1UpIYRmvPX2RiUyN2I9Gw1pfbvPcZu80k3QvFGi+RkWEoxOOeO8nue8XolSmltHqmXgENsUq9LmWBd+glH18RG2sTa9DUhMVOlLtAosJWI3kaZVY+VgrW+ZvRrWEvJ8TkOmyXRAKzFTHZdi3+GDa1iD4GQtKBS513SN6M20CnzjeWJOmpnANO77ViFM7S07GXk1xlM1gfHNuRBDvX2lyAvNvg4No7zLsBVhA2cVrTbLmhjEXttqeGGSYywUroCkI3rAGDpf+EAVWVX57vgdWmwlahPpWgz92POLRmq0vZ2idWCrkHNgZaWgE4PaL9/TasnWUppYo5WVApt4dkqF0jHwvIjf6UO00BAGLYSog0oS0Iq1zDURYFXwdMyAXr9kMzdyzhYlq1lFp+sofS62M8WYYdFSHp/eVBLQbtvnAr6xIQnBs1VI9JjWgUccFKPX5bl9k98fS9/S6ClnU9vYnuzbO2M0TCXce04HWHrRPtbaLYxlKY0mojbFe7EbaYTnwbdRV96xVcBgqWjWcW1060rNY/fIPnQMDLfk/LaJZzw10ZKl4MikPWdHw5TcC3N1xySun0qsenKnGEXNWaiEHa1CyWC54GAv8A/HzW4rmcqxUxp2RgknZ7Rm4MDxbYmsmlWwtZGxcaLDYFn0a7vsYc4BHurM2ec//3l+8id/koc//OE8+clP5jOf+Qw///M/z9GjR/m93/u9+2RMp82cffKTn+Tqq69mZWWFW265hZe+9KWsr6/zx3/8x3z5y1++z+qzCyywwAILLLDAAqeLK6+8ksc97nG8/OUv5/u+7/sam477Eqd9af7a176WF7/4xXzhC1+g02m7BL/zO7+Tv/zLvzyjg3tQIkapCHPWsmRNF48PwgbVjFjNolWu7eCstQiVGHbinYSj5yOszprON4VqIoaaz46MhlVp04Gpld3VGarupHWwWvRMnqrRdvlQie7GzVBKdBfHZ5aAZzOPwd9qd/jzd15WcviOHletix5lMhamb++gasa13mnvYK1O5S60cpCPUPkYkDvWBq4AY1GdlRgppVu2y4hBZB1jFIhsYiUmn6npNR2rICa69b7XHZcS+B71fJXo8XBFw4apaDyb6Kx5bxP1g0I56c6sWZf5aKe627X0YjBbz9dWblnvxJivtEfPes7vr1FUU77ropKvjDVVEFZwpzRoZckrz9htSreozkh1F+eLJpjdKEvpFV3rOT5LmjLEkSkUhWG4lXFwpdZ6BRlv3Q0IwuBoGztZRSPnvJKOM10bnlZ3ebdfegmKX4rLMI0dnmXsUN3XdRKQrVOOTiwn8xOyBupGwWgsjIKtjU6jTdrXjedEHWlWh5u7KS6a+dZQS4N4jJ2YJ9fdXnUHc2QKaya1CtKVl5oY8+Od/GmkK7j0wiTKvMr7xk5hlQSOr6xIoPvhiULrQF5oRjvC0q2m0rE5mwo7NJtaYXIm0vW4msaxOUcUqQFw8mSHojANO4RvjaytNhKpFcdeM6mjUsn5gxireq+4dVQ0bNAgaRnSjWHC2qoYL2PSOSNV3WjOjk/lHC9yw1YuLF7dje1KjQtiRHvr0Q6qmDJIvGioEMZzZ2w5b29OLwlzwfMVR77Sxyaefs8Jq0Zrz6C0BJRvbUjsWA3vFaHKm/2rdZOTcUKvX9Lvivn1vq6DYsLxGfT6Jc7npFklmjkTmIwTbh6pJo6r03VYFSDrCfPoWt3ZxvFOE6eGdzEOypHZQN/CgUE0GJ8VECsWN23JeLZ35jpUOxLXNVgq2RkldLoVgyVhItOskjV5Dm2r7q/dmucKn/vc5/jbv/1bXv3qV98vLszgHjBnH/3oR/n1X//1U54///zz73bI6AILLLDAAgsscP/A/dXn7FzhiiuuuK+HcApO++Ks0+kwHA5Pef6mm27alRqwwAILLLDAAgsscH/E+vo6n//859m7dy9ra2tfMyS91tafS5z2xdk/+2f/jJ/+6Z/m93//9wExG7311lv59//+3/M93/M9Z3yADzr4aKXhCkKVo0IHPNgk210SqgXZ8yXGur36zpYaSWuamOiMVCuUEjPUNApQSz9rzRRjabIpAxHHVEnGYi0oJxpU1jYZRkcrgXKG7vRkGy05oD5UjEoRSm8VbZ5knaPnnOZQ3/HUrx9zxYqIrA/um6FUj/P7scShND2zwthtSakxAN6h0j5hNhSqf25fm0zNaKyL0rBzjLC0jipmYFKqIDcSXTNXIjCtFYZRiZQzY5nSKLEDMCpprEky02/KRB2zBLNNUtuNNg+VWHHomI1KwOqsFf66AmP7ksWImJXOW1UYZZtsyq7x0XYjkOkgprVpEvNNLf1klYevbPDJk91oaVE2NhbjUpPqLfrJKlUopawZipip2TY9rGeOEzPLyGlWUzjQ9XzmhOQaHtsxdDsVpZ9JKbxWt3sPOkHZrDEiBcl5XF7No9WKGAcr2yUwknVGW5JMdGCQ7CFwgmLO0WLidGMDEUKg8GJuuyczTflcyqVSnu10XSMcnzolYYa1qN+2TTUH1gux6CCKxlPxtGgaDKLIXaQDUkYqEinfawyJDgxLwz40ShbirnWnCwMhJ9Edzu9vN/toVGA0FLuIzWjOWpurWiufsZzAZGxJUy9WGzpgrWdrI6Pfa21DmMwkN9PKsXOlIs1EPK6UFgsZ3ZbJh4WGGAV523jGcGuVT6U57A3gxNJB68ChHk3JrGuXQU1BixHxNBerCmUSQl3+jdtqZdjXzTFqgE3aBpIiN42hqvMV07BDmq1COSMznl6/bEq3na7jy1/p0ulWkNGUbfefN6HIRThfl223Rhaa6rNiebVg5DSZlmNsEw87JyB4bh1JhmlRyDiK3JB0K5YGsYnAS46pTcQ0tjZeLnLDaCfBHJDvrELJoCOmtlL2TWSOY7PT+r4ZG7mCLqClNF35KaW3XDTwnMxNs/bjDyCHp4qtjQ6DpUIaSayBPedjEykz+0osPdKsauxSCBrKnHMFEfXfm27NMziYc4Rf/uVfZmlpqfn/r3Vxdl/gtC/O3vSmN/Gc5zyH/fv3M51OeepTn8qRI0ea8NEFFlhggQUWWOCBg3MdfH5/wLXXXtv8/4tf/OL7biBfBad9cba8vMz111/Phz70If7u7/4O7z2PecxjuPrqq8/G+B6E8IRijMpqMWwBWU+sKwJgDUonBAoROkexK0UJ3fie2sjWpm3bduXAdhv2zIeqMUOFqcTgVAFVzd2ZR5FvY65pLOAaQbvVGROnWUn7wkB4qJdMbTVRC/I9FT4ojk4Tjs1ifFRoDSXTrOJhyzN86NAxA5bTfTxu7x1YlfLpDY26xEJVkJl1dsqTpMGIvYerWqYwQploJRCNOIOrbR72ElwuTEs+gt4qVMLi7emI0WTPCkOplMEEjVca72uTWNfEBZV+1kQwBdWyLSqEGB3Vi4azmkBAE7clzDV3tELieRNaEyL7qQ1QYSPjsq+7xMyNGCTC3AQkHiiJMTaWjHG51cRxde0yVTiJD44yKHbKgFLbJDonS/tUoWTqxqRGzHMzI8e6b0vGTqJmBklg0PHMpiHaAhDtIRw9H9qmAC02KirUMUuatazCe2kI6MQoslbkXYDtUoWS5aTCxLiqaTXk/J6Y6n7z/pwbT6Rc0C+YOo1SilTDtJI5ZbyB7UZBvpKGjqW+4/iJDq6MUUnN94nVAWkC3nF0Y8DDLskbS5iwM0bt2SufOx97pDTMxJJGKU3wJUonrGZibHrq6etwSkTx9bmZmYDRCVu52IYUhRikDpYK9vY9d2y28WxTp2XOl+JaUNAblIyGKZ1uxdEjXfZk05bRS1sGszdwzZ8KFee4ZWFv2jY86wJptNjKhanamLVmr73IcnXtUvNcqrsNSz8ZJdjEs5UbavfoqmbYvTQ/XDQYYlRCkXv2dAqOZRXO6cZKo/QKbTw+2ukkWhoefGTt6hgm71Vrsqslukjr0FpJJB3ZNp5D1nqecZFjXBrWszljWK3BOTbHBms9o520MXOdTS1XP3wmMVxeTJO3Njr4UFDE+QHodCthyiITPinFGBnvmIZowzKZgrVsHO/w6XQKfYtKxFh3Vk2ZTdfo2ZLCm1bIb+ScefKBks8cSehmYmWD96i0j7Ux9slpUlM1jQyu1M1v2gLnBrfeeuvXfP2iiy46RyNpcY9NaJ/xjGfwjGc840yOZYEFFlhggQUWOMd4qDcEXHLJJV+zrFlV1Vd97WzhtC/O3vrWt97l80opOp0Ol19+OU95ylMwxtzldgsgbJfJdsXKBDxqvuY/H/MELW9cB55ru9tqo97euxi7ZJs7L9EnOXF6LCaQDUABrqCiRGndBIePhtLuXZvAikFqn7wai84lIDEnQdgc/A4hhGhXoRiVhi8cSwhfL4ye1tKqPlguSHTCI9Zi8PJ0yIUDh6pKLlwKhHIaGamUwgeYjURf5oVpFKPRKapIG9uNhjWJNiBVcOhmnyuUK1hO9zEsjwNglASAK70serUgIeuJ7jTaJKuzJtKm1icFAtYT9UwTQpWT6DWMso22TKEwOqHyZQxfT2RObdqYqWokyomRWEWwvJ/KO3pRi9QzKxTVlL6tGDmN1SXh2BfoJxId5XzBsZlmOa2Drit61ouSLUhUztQF0lShfMW43OL2ccplyzSMnkKxVQgzN6skYH00E6anNyjZONEBpm0UU63NsjHiKM55ojtkxuErxaFeiaqNdWuGc47pzIzYtYTg0RguHDgy4+maZWBGogNZJuawWsGojFq+cgpdMUwWWxRH6cXIdGds6Vq/y4RZzgvRHtrEc7Bbh7F70W8pTWZ6+HmLAu8aHWhSVpBIoHzXLLOZ5/hQxrijoeivIruiEFZHKTHglXmVj0xT0VgOOp5jOwatxazXe9XYisymlsnYUhwc4SuFc4r1vTneZ3z+jg58XdnaaPgA1pCmYv/QQGs5R2YjjEr49GZrUOyjWa+vIkNlLStpJtFJIbKHWrc2O9DqntydooOcAx9ivNkaCsVgSXY2jcyZ9yp+tmKQrEXGPJBqYWRlKUnEUm8gukFZS7LOXKlYXS+aEHVlMvkMVxBcjnNdBomYLg8SsWxJTHtFoGPweZpVjR2FKzUPX3HsiUzbRf3A57tiQdMbBIZbMh/aB5YTmnN1NEzxTMB7Np3MHYWYXS+vFkIqBg+dAa6cUAXFZGypAmzVMjHvUYnYlWTGs2+lZHuquWOScEn8Ldc6NKxpkRvRpJVajnE12q1dO8uouJcXZ2dsJPcNPvGJT+z6e1mWfOITn+CXfumX7jO51mkf/V/+5V/m+PHjTCYT1tbWCCGwtbVFr9djMBhw7NgxLrvsMj784Q9z4YUXno0xL7DAAgsssMACC5wRPPKRjzzlucc97nEcOnSI//Jf/gsveMELzvmYTtuE9ud+7uf45m/+Zr7whS9w8uRJNjY2+PznP8/jH/94/ut//a/ceuutHDx4kNe85jVnY7wPDsS7UmWSGBDt2mgibcWEtjabre+eOqlsO99pqWIXUTZoAs0BjI4GrlWB8xKA/uWRIswcTHaAaBiqNNNqpzFERVuWV1tTXK0MLrJ5jWZqLpBXhbBL83JiptEq4CsVY4pCc1dd5IZRWbGWHWoC3vuJGIBu5cxFVTkJTndTYRhrdqxmO0Jk/+afq8cTmS6jk6Zrr44tksByw6wKsLRf5tUV2KBJjWhHUtPFh0oMeqOWrGa8mI1k/qM5pPYBG3Qb1aQlON1oMdbVyggrY6TTtd4mBDEZDjtHqYIYmxqlsdqQkrCvcwnTSnP7KOWWnQymQ5xXDUMqDJlEVE3dEKtDw5Z0bcLhSSpsiHfMKukCFSbPNvt1Xk+2L/zuqK0iN3S6FTulmP3WgdmNNsjYJg7LKMtq6uhmnr2dlRhTpVt2be6YSBejdLKKaW+ga4S1rILCKM0gWYeqoGtFlxOQ49wweIDzOa4UrZzWMexb38X9pRIN1EVLRdudWRuJTudsgBrNUxxvPmrMhDPTZ+o0E+eko5HYgWxs03WLl0izfiIdpef3QasgnZhZxcYwYbSTNKyS1oGJEwPeTtexvnfGhX05R6wVNq3TdU1o+y64iq2NrGG3mnUf2cJM93YFwVdBIqyKog1PT01XNE6+aDR3DcOuLa7UZDbIeovseBVUY9jrQtEwzCeOdfnErR1Gw7RZO7OppWeFVe31xbC38O362rdSok1gNjUSRVV3A2vNeedNGe0Ig/RN6wGMjV2LHtwMaz0Tp1jNKrq2L0bAVWuwm6Ve2MiRMJKdrnRzrmdOGFatSbSsG9GICUNXG2QvJYCWODatpVtauoVVO04nurBUA5Uj157BskSRaQ3j0jCatb9XofQxTi4wjsvv5mHtxNyTkPdSU+Raul4LE49ZHRd17qpP4V5GN4V7wbrdn3HFFVfw0Y9+9D757tNmzv7jf/yP/OEf/iEPe9jDmucuv/xy3vSmN/E93/M9fOlLX+IXf/EXF7YaCyywwAILLPAAwENdc3Zn79YQAocPH+YNb3gDD3/4w++TMZ32xdnhw4dxc3EWNZxzTULAoUOH2NnZufejW2CBBRZYYIEFzioe6hdnq6urpzQEhBC48MILee9733ufjOm0L86e/vSn8yM/8iP85m/+Jo9+9KMBEdP9m3/zb5ruzX/4h3/g0ksvPbMjfbDAO/Bmtz1EzF60Him3Va4tZ2oRxeJFjByqss3l1Ei5ps7XdDl37jepS3PDQkvWm52zO1CaicsZJCXWpmAsWxsZVXBzAnYpYVUqlkNqM05MU1YR01LLJ056Lhyopq0+i0LoWjzctZ6ERE4C61lNpXT7vZcV7X67QkxOfSzfWiOlq7vIGFW9hFDnOWqxcgiIVUWIzRSeiqVkL6WfUTlH6YMYjSoNwUmZq7vclPzKaLwbYu4lwcucBg8eyfLzDiZbUtJNk8bA1iPmtQTfWqMgWaUhBBRSHlYmI7iiKRFmJoreJ1sopRmXhnGppQdkNGF1bUXyPLMOB7qltONHDGIzgVUBqzJGZSVlzqoug7bNAPL3iuV0ia1YGq4CMasSOl3HcCuTSqZO49yraD0itgBizisGuV3rObmRkWhpjNDKSKOFtk3JPmBipmc75kO9ktLLnE2dZKEu6dVmvHmlmtJ3g8rhg4jPJ+OENIv2B9PY4FIbygKUM04cXYErcylBVpWIupUmTDZlWxdLg/MSgfh+MSWW/RuWhkt0RgA5XoklEO1rvBQ480psOJaSQKICaSZWEt4ren0pUw63Mqz1HJvBng5NqT8zIgJ3TgEiZO/1S1BRiO7j+LTCJmJFcfJ4B6tTwpykwOqMi/rTxmzYecXyai7i8ii8T3QHyOPcVuBda6MDFLlmeydhuyjwWXdXwxJx7ebVBG0NaTZryq+zqZTDXanp2AEhSENE/blaS/bmbUc69PqOXt/JP+ZGNyXDnbEVgXy/ZFbJb9PD9rrWSiPaXpzfV/TtGnCMySiBsgRrKCv53Sm0YbBcNLYgg6QSW4zugNJPcE5zfJbEcUv5s99zXLZcApKTu7JSsJLK722ig/z++ABFidaBIxMZ87A8xmQkJqa9fkleKb5xXwVeSQMBQNKhmo2aRo7/76aE79eKYKTk3es7llcLkX9EiYG1YXcz2AJnHR/+8Id3/V1rzb59+7j88sux9tw1ZszjtL/1ne98J9dccw2PfexjSRJZ5M45nvnMZ/LOd74TgMFgwJvf/OYzO9IFFlhggQUWWOCM46HOnD31qU+9r4dwCk774uzgwYN88IMf5HOf+xyf//znCSFw5ZVX8nVf93XNNk9/+tPP6CAfVAi+vSMFMb0EbGhtAHZHLKVA0Rpm1uxAY74ZDVeDb9gna1Kq4DDeUzJrrBbCzMHKQZQyqCKHtEdeqdbQVenYDl+hlQU3E0FwNFmVhgDEsNPlUfxt8aHAh4pUKxFRj+WiPYl3zMPtFK2RGCQVCCGQp5Z9ZgAeLl0qUX6JgFhYDMvILM4xAw3T0ViJaGHNAKUMQdvWkLeeD61RKDp0KJmhlCKvdNy/VkzNZAsz2INSCoeOdhqTxi6hOVZFFMq7gmCFpdRZp2EnA8K4gRd7khCPt6JpNEh0Bp1Bc2etaW0y8A6SDnklthijaNi5lMYopOA5r3cFhyefj/ut6SeqsUOYuBFadZhVI6jauavNdFFQBUcIlTA8Wn5UJT4osHGiI3ftQKKyyNyEdr15h1KK1XQfVmdotYVNfGQGJWqpDDlJ2o8sbx6/HxHao/ChYim1jMsSrQxftzoDLGH7MGrtQkqv2NOJVhXRGNZ5aXapo6Ce83Uz/uJ2w7TS7diI61Kp5pgtJ1XLEtWi7mO3t++Jx755LRozOy+NBGtZxbAQc2JthFnFC2MtkVJKYs1UIARP6WHkDLOp4fwLZmxvp42tQ69fMtpJSLScF67UDRtUGzXLNimPungGYc6kNf5euFKR55aV1fh7YHbHgPVsaBpUJq5mwyLz7HOJ9HIlpW9jgZTLCfFcWN83Yza1DEsYlsdZ9p7M1HMsTOeozFlNxS6khrWh2U+xR4Eil3Ozbz3DrZTBcrlruxNHu3CBbtaXn2P6hqX8Hn39SpPdxHArY+WSMRpDRkqIv1UyN2aXfUaNIjcMkowjE4frCWuZplXDPNtExpYemPKItQ7syO/HeGLp2AGYnLJUwvDVDCY0LNhNW2KhIeRyaJZR8GVk2sQCJq+kIWQyEsaXQjOrdlhdl+MwGSXNHGgThEUNHlzJucJDMSFgHn/yJ39yt7d9/vOffxZH0uIe83VXXnklV1555ZkcywILLLDAAgsssMA5xXd/93ejVNuZXOPOzymlzpkh7WlbaVRVxTvf+U5e9KIXcfXVVzdJAYvEgLuJqMMIfu6uyLvGBBZodVXzJoTWtKwRtJosVxHyneaunxijU1sIuFAQiJEsgNKxlTsfNYya1ZmwTchdsA8VmRID2LwSdiDE/2q2DG1lfNGU0+qUXgJf2tFoHZg6sdKodTcgUTGlz5uxdcwAvJOImHpfjcV5hcqWZB6KEqZbzTSEaEja7K/3re5sstVGXkU2UKFhvEGm+yg0y6lEE8k8FxL/NDouY/K+Md9Vdz416qBp3+pg8A4bxNgUaFiLlt1s5yfg2zk0acME1tYEWklkjWjnoJ9UYnbZ68hYjBXmppw1wemNZQcwdpoqCNujaFmrzAirU+vhRH8oxplLCaRamBubeKYTidkZlhIArpLWoLSd/0DfrkWdnDARjU4PCWOv7S2UMoRoJVDPZz3ezAjbeMEg6u2q1gomqa0kvGgfa6sQENbi4iXHbGqFATEWpUzLLGthl9NM9EYSc+QiNeBaLZCOFgnDUXPMQjndta/9RFiWEMdVr9vGNiTGlvWjEfDYKTZmYjq7E1mSXr/Ee4VNPNYGOtGd5MB6ga+URIr1S9GmmcDyas5yEvc/TVqGT2s63Yq1Pbmw2yq0THpzDorFhw8KoyQgPc3i+eJFdzibGhKdEeo6lCuEYbYSd+RKsZy4aUtsbKxKZR1Yiaw6Ot29JtKsaqxCJqP296rIZWzLaUWvL2bFg+UC7xWjYdKwhfU5XOvyZlPL527vQPAc6LXnaa1jrU2fd2tyq2ZtpFnFxvGOWFLkmlR3uWVHzpfPb8vx24xB7cK2eYyCpWRvs/60DmJ/Y1PRv3k3x5rJ+/CBw2PRjBklRtuH+iWf3Yq2NzWNNhuxMbMNa1Yb8o7dlug7K8VsKufE5kYmAfI27DYBPgeoy5r35vFAxgc+8AEe9ahH8b73vY+trS22t7d53/vex2Me8xje//73473He39OkwJOmzn70R/9Uf7bf/tvfNd3fRdXXXXV/S7JfYEFFlhggQUWuPvw9/IC64Fe1nz1q1/Nr/3ar/Gt3/qtzXPPfvaz6fV6/Ot//a/57Gc/e87HdNoXZ+9973v5/d//fZ7znOecjfE8+BHvdlUdju0K0EnLntWsUMOQxYBzV7S6h2q3+SrToTAISReUbkK80Rpdyf8XtUQk7UnHGkLRlrVJZDS9tYnHBxc7qXQMpNYoop7KWNFseYfXCh1Es9YxSywnJ7llR8LOp05YKlcq7JIYPVotXWamKLBZj4nbBuBkbjm/K0wLxYS9HdFeUUzi/spds0q6LbsRzSlVtiTMWTERRZKJZr01kwKEcorR6xLyXK/4er5rnZqXTlGSyDBGfRT43VFZNVtROUgSYet6q2g1px0LkUWrTYEjEyeGs7YJUveh1bMBDePUtR5dx9SQilEo0i1Ym8lqZWJQt5jQagWpFk1dooVN6lnLqAxRZxZASefmUtLh8KTuwKOJFjrvgnGjpyl9LsbHNXwb9M3OMeivoxVxvYjBbqI7skZiGLWsMd0wuTUrWXdDGpWQ6V6cM9eYfmpVt7nqyO5WTUez9yn7OiXbW6n8YxIic+oiQ6TbDkFTGwmnCYwmpwZJWyuh551sFwsFwmgenSTklZJu5LgvJB1UNd11/mXGE4JnNQ2MSmFjitwwGooB7YUXjtncShvWpGsDD1sO3HZESyg3NOHgvlJ8pVsIs17HG3VS0JbtrZSV1aJhWpRJmq5kpeR8k/mSAPI09aLBqlnmAL2+E+bVh9boOurXfCXdkn0LnziR8s1aRzNl3+jfSi8ax6JomZ1aQmuTwInZ7eztXCB6qmSV1HXRJmCtdLAWuTCAzRsjkyn7L09/zzdOwaVx/ct5MdxKyauSvl0jaGGZJ+MYCl+UjIYJy6sFk3HSfp8XM+P/fYvluRda+ha+fDQDSlwZOyMT2N5O0bMxIZqBF7lmVk3BZCwlu686BsulsHhJwuFojaWV6MXO7xcMt5bAzXlmGUsVcrQRdm15NYcduHVUMVgqGO1I4H1vIAzrzjChP3BtF/EC5wRf/OIXWVlZOeX5lZUVbrnllnM/IO5BWTNNUy6//PKzMZYFFlhggQUWWOAc496kA9zbZoL7A775m7+ZV7/61Rw+fLh57siRI/zYj/0Y3/It33KfjOm0L85+7Md+jP/6X//rKcK5BRZYYIEFFljggYeHuubst37rtzh27BgXX3wxl19+OZdffjkXXXQRhw8fbizCzjVOu6x5/fXX8+EPf5j3ve99fMM3fEPjdVbjj/7oj87Y4B6UCB6i9UGTC6ii0WxqW6F/XbIsZ1LWDF4MFyu326Q2TVp7jvn33QkXL5WS9ZZ0pBxSlVDOKLxqypUg7fyBhKKakirDqNRNvmEtXne+INVJ/LPbfEffwskdMZOsyzWdbsVoJ20MKxVK9il4TJIABUcnCXS8jClUmCRIaVK1JpUNorlqLbYPxVi2K2fSAFCXOevpxqNthsHSsyvoar6cbNt5jDYJIYjZqtWZCN3ny121vYmXTFDSflMqU/EYKqNBgfJtSYYgQvgQvIjylSJYEy09TBxniGU5S9d4Ei2ZlJRS/qNyVKqC0JYJa/PfoppiYilwKanomGUgZ5Csc2R6MjYj+KZUq1CcnJmmfOicotMVIfVguSSJ1hB0MtkH76OthkOFIA0U/XVSrbjm4QU+JLIvxogtg/agpGRW7zO0ea1VtOQQM2Ara8iEWDIX+4X6mDRNFlpT+pxeX6MVrO3J2ZM5mHmUTggulqmtlOGc0xRehN22FtX7ORsbF20YorkoNoVCS3lce0qfMywMq5kTEbrWJCqj9Lk0S8TSdD0+pTRjp/BB7GPSrGKwJOM4fLhLb+BITbWLZRgslWTGMxknjdWGrxSfvaUHl220440mmGt78uacCoTdaxKYuvZcrZsq0qza1SgBYqeisrmffi3lWm0mbG1kdC6ZsFWI7MEoyYNV3qMxTRbr9lbG+ReOxBA49UxGlsFySV7ppgxP5Zrmm/OWKw72Ah8ZV816my9r1jYYWof4W1VRxVxfrJT+Si+5nS4UWJM2TQIAvYGLYnovJcSRJc08Cs1sqqCYcMVK4LYjAaNCWwLVkvUZpiKxKP0M7/sitUi6lN6BoWkgcaVmmGdNs4BYaRjJSs32xPMlNqAYDSZlOR02ZdfhVgaJ5rObGSeOdel0KzpdaXApcs3SctmUvxc4d7j88sv55Cc/2diEhRB4xCMewdVXX32f6epP++JsdXWVf/7P//nZGMsCCyywwAILLHCO8VA3oQW5GXnWs57Fs571rPt6KMA9uDh717vedTbG8dBBFJeHUKEaJsaJTUPSaTZTNhNWKERBup9jx0LLLFCU0JPW89rQFu8xaLCdpmX+QLeU97tC4m52jsbopTkDzuDZONHBebkzRWmcFyF3UU3krtxH01FlcNWY1IlJrYvGlrWoVYxU4Zsvyvn//WOXZ14xIwRL6XMy76Bw2GwdKDg5M3NCe88dZcr5A00odmLUTi5MR9KB2fbuhglXtGJ9m8ZoqyimtmljZoqbYcsZOo02Iw2bEE1/I5tXM1kgQn6x5iha9qxuq49/D7NtVH9dGBRrUaECQmN7UttnSJOGFzF2rXePFghVkGgisU+R/eoaT+mFBaqZiBAbEbwS5iSEgDUpeTVhVBqUEvuI1PQAMR0dFoaLBhkBaQxwvhAjXKBnPcPCCKlUKdLMMxlbqqCaGKBdzGVtJxL/XyvDoV6JVh1Kn7eNKGmvPS5IPNWuedWWECI7pyA1XVQSwHsyE9jTiYxIZ4BRVtaoF5Nbaz1d65lNjQytOS6RebTt9+SVirFoUdAevDDNdYTZvMmrmYucUoHSz9jTEcZPoVHK0LdrzPwI54td++Mjw1N66CeeIpfGmo0TnSaep266GDsYFoZZFY1Xo5nrcCsV+4/1nK2NbPdvRmxm0DowGVvW98YmlqQDxTga5+aSYBVkfvpJ1ZjcNuxwMcEmnrway3Ft7CgspD0mo4I082TGY+ropaZxSRi52sB1z94Zo52E6cSytCzslys1eSXsrNbCfnsqZlPDrCp5/P6Cv/lyhisl7mn+GNTNAr2BY2+nBJfgvGqbcIBhCbNqh5X0APT3oPUIJjNIhQFzpZY53rKs7cmZjCxKyVoheFZTsQqqBfxaB2w8XnWTTxUczin+/kSHb7p4wMRtQR09Zk3DtKEts0oYwMz0hbWrDcPjtvWcm/h9k7GVRokdz8kcVtfzZl0I2+rZGSZiMlw5OIeMTRVUy1Tew/c/EPGc5zyH3/3d322aAX72Z3+Wl7/85ayurgJw8uRJvu3bvo3PfOYz53xsi3aQBRZYYIEFFngI46HaEPD+97+fPG8TM37hF36BjY2N5u/OOW666ab7Ymj37OLsD/7gD3jhC1/IE57wBB7zmMfseizwT2GO8bmznglQvbXI6thGR9Vo02rGprbbMLaNNYJd5qsUEzwVEycLb97YE9gd/aKThqFbXimiNYPBaxXpbjGhnTrf6IiqUEbzUPm8QKBvhQFYWi4ZOQm8vngQ6PUdj9xTiHWCEnYwTDaFOfFezFZ1e3d/fGpblso5sTuYs8agmjOChdYOoEZjS5K22q9yRphui+aqZt7mbTFqA8poUWF1jOuZj9tqdH693d+jdDQ73c2ooO0urVeiO02MUsMYULVmskmnCVvWKtA1vg3/NlZ0RjHGqPJlc5xGZcWo1GSmT8dECxCTxmMmui2r0sjSeYkjUsLgZCbgSrmrX1vLSVOPUaEx5ZVB+sYao2FyK2HgtAoxcN7vMj8GCYlXSpPoTow+ku/umuVozCtrstZJMd5gX9eR6I6whXGNjktZ6127xNZGRqJlTWkVhC3tLkcmKG3sZryHsYtMng8Nk8rycnt8ul3qYPdmfdURUIilSRVodZXBU/myHa+WsPsy6jaXk4DzYiUzmxqWVwu0kcgimwiD88WhYqdU9ONS6hofQ+flMxvWbD6mLTLmtRZpNExlntNeG2VGiOxHSaIDa1lFkZvGGqXWSZ483uHWkWnPm7i2XChYXhWT2Nqfl9pKA1mvSmlGpW6Osa8UB86bCGvlNEWh+eJQWNqiMFA5Ap7V9Zx9XdjXEaPdei7kmMj4RjsJvYHDlRoTGVE795vlveLTm4rCT4XhSlPR00XmbLiVxhgyz74DYnWSZqKTW13PReMaGSwfRCtmE7EaSTMvNkRRC2lt4OIlR0i7jOufmTkTWq2FpZ05WF4VU+3J2JJXY7a30mjSrVGd1k6n062iNi8B7zmvSzToLptjlGYVK/EY7KoOLHDWcOfGxvtTo+NpH/23vvWt/NAP/RD79+/nE5/4BN/yLd/Cnj17+NKXvsR3fud3no0xLrDAAgsssMACZwkP9W7N+yNO++LsV37lV3jHO97B29/+dtI05XWvex0f/OAHedWrXsX29vbZGOODD7WpLOzu2KyK9u/GNnE+Kol37ta0RqA1o+P9Lq0axM4/H/UTXsnda7aESkyjWVOdJQC2ctNqmgicONZtmYEIYVxKRqWhDHmMhApNN6NWwsysZXKX7Jzi+FS0QoPEMxomdK2X7XeOEVwuXaPxrv+ph2L3aezQrDsPm7mo2cHZsN33O99Zxm1COW0Zx2LSaL9qpjHRca7mdWSuaELjoe3A05i7Zuiinir4smUxi0k0Ua3aKK4YH1V3alqdtqaeWU/C0kNoGKR6vFoFtgrL/q4SVggiE+ajXlE+ywfRQ1ktDJlRFqtTZtVOc6efV6phtUo/o/SKiXMkOnB4Kq97r8hzw+ZmhnOaYRn1M3cywWwMgKMxcKI7JDo060VXwkp6FfVfvo49ihFI5ayJ+qqivi80DJElzLapgmj9tLIom6GUpowdtD27SprJ9rOpxHzJcU3bYxrH/LQrpuSVkk5L59o1lPViHJKS87DXgSWJEauD7asgZqSZkXizRn+nNLkXRnrqSuqQ9NwLYzWtxEBX68BgqcSVmk7X4ZxooVbXc7SCzw8ViYbRMMGogNZQFGJ+WkedoW0bNRXncfNkJp/rotG0pmFmnC8YFtJlnJqUKkgs0GwafzO0RHppHdiYmVaj16yturta4ojMvIRobv6GpfxOzKaiG9vayJiMJTYJ4FC/xHnRUoEw0cOtjAt6gZ5FuihT3+rmYsfs3v1TtA4UuWarkPdO3W7m+sjxDkVVgHcYZcWENr5Wz9tkbJuu1zQTtlriljxjJ+HxWtUatzmW26ZQOTSGi/ZLtaHwU/bVP62uAh9iVFWr+52ME/JqQq/vKPyUA+dNWrZzDrNpDGZ3oo+sdZN15FStO+sNSpnLc2xA6+/lhdkDtayplDqlG/P+knp02g0Bt956K0960pMA6Ha77OzsAHDNNdfwhCc8gbe//e1ndoQLLLDAAgsssMACZxghBF784heTZSInmM1mvOxlL6Pf7wPs0qOda5z2xdnBgwc5efIkF198MRdffDE33HADj3zkI7n55pvvV/XaBRZYYIEFFljgn8a8BeA9ff8DEddee+2uv//AD/zAKdv84A/+4Lkazi6c9sXZM57xDP70T/+UxzzmMbzkJS/hNa95DX/wB3/Axz72MV7wghecjTE+uFDT1bW4vy6BxdJkcNNYdrG7zWZNNEwNHmp7iLrklvbajMjghZaNZ4uIahWrUyiTORE8gBbbBAK7ygOzaspytICQMlPCTnWCsZMyVC1wL/wU7DpVKOkaKb/VlgDDQoS9eaXQJpBXsbxXjGW/0h6VLzFKsze9oBXmKynT7R6ntNyLSe3cr8DcPgOtGS2g0j5huomysSRcTFA6IdXdaKWRt/Mb5zhUcpcUkNKh0UlrCVGXQOfKDWJ+movA3zvQUh7yVOi6wSMEVAiNsLq2IxHhuWT/1c+H0XHYc8mukpJaPb9215CbH5M2pdBhYVjLjJhqphVWpRRM8aHCd5cgOPZ0KnzQTfNA6RUbuWWQePrWcGwmYmWb+MbUM6+05F3WNhr1Ps9nlsaypIjHDc5XMB2iB6vk1ZhuLEnLazmp6RGGx6CvY86oagxqXYgl/sqRV0m0JJAyqlVLYlURRNz9+EukNGutj+VOFcv4YVcJbDWd24+65mJTWR+1sWvlxGi3PrblrCmla2Wacq1CEVyOUjAqJwySHqmWBpCAZ+o0VZByoA9KSly5QZvAxnE5r703dLqwvaO5dKngyFTRGzjKWH5cXc8ZDZPWbqE2W5bFAUmHpeWSIpfyGNE2o173Y7fJrBqQqEzmNIroq2gaSyq2IFlWsRpLkPMNST5UHP5KnwPnTchMoPRy3GsDYYoSoxJKDy4UaD1X4gO2t1K6XcfejiMQuOJQDqYrazLXPDKWMfPc4JxYjZAQGzjULtuRGkcnFnrtNGgdGusfHyp8JbIApUXcP9wSs9o0q5hNLZsbGUYnki+a9ejbGTaR7NF6u/r3av7q4lv2BX71YwMe951lW67TClzVmGnjxQ7j+NEu/7Axodcv0RgpldYNQ1GIpRWs750xrPNVrRc5QJQUnDzeIUlEErLLRuXOWbBnEQ9Vn7P7szXYaV+cveMd78DHhfyyl72M9fV1rr/+ep73vOfxspe97IwPcIEFFlhggQUWWOChhNNWHWqtsba9pnvhC1/IW9/6Vl71qldx/PjxMzq4ByPUvDWGdyibtaLypNMK/mF3tJCNouc51kuYt2gMatMYGxJftykh+GhMKZE7VGHOtFPYoIsGBWXIW2GxUxyfJcKKYEi1WAlszMR6oQolpc9xPmcrB6yY1ipfkVeastT0+iXHZsLaZSZgbSCvFFZnrQXIdIvt8qgwUzvHGhPYNp5pbmmmCfT64GbtfBgr7/Vud3zVnSOs5p4Ls22x1qi/o5yJmFzLZynVNgI0IvB6vmsLk3kbj9pAuD4etkMInqkb7v5+L+J5hY4C9dag1YeqachQSRflK7q2fY3OIJq16qYhoGZ06u2qIPYARslxc6Egr8YoFKupa8xuVTQVvmOcoJVYn/zdUSOmqTYwGSfC+KjAV8azVjxfw/u2aUVpUt0l0R0Gdk+zr2FufECMq5LoI4nHElNd55UI71UbOUQxEQE+Gh/kuHoqMi37Lezf3HBio0Aj+q+icL1yfOg20xiiiulsbB4o5oTowct5Uz/qZhlE4D9xGq2CMMQAQUTq83YhdeNAwLOcwMQpikLjnGY0TPBeYROhFYrc4ErNJQP4uy92GQ0Tpk6aABoGB8RuIYr453e4yOVYuLI1N65ResVS0q7XYaFbWwnvIBVGxiYiRm9MUuPvTRVK+n1h5jITmFWAVrKvc2tAxN8Vg+WS2dTE/fOsrbfaHK0Mq1loDKtt4jnUs1TB0x84rI22INH2BB/odCuKQjPcSskrYfQ+ckwYS7Q0SzgnYn68R/vA3rVCqgRGRPV7D0zxXjGbWrynMcfVJhBsFs1nYTM3zXdpI8a+deNQ6XO+ac8E52QNVKE+h4WdHSy3gv1ECxN540nLbGpRSjMZ24atD2V9vtI0H9R2KF0b0EYaK+pYrhrWhlg52d2YdTZRcS+7Nc/ZSB86OCMtIUeOHOGVr3wll19++Zn4uAUWWGCBBRZY4BzhoWpCe3/G3b4429ra4vu///vZt28fhw4d4q1vfSvee/7zf/7PXHbZZdxwww381m/91tkc64MDta1DdSeLhiBt+Y2OCk4xqD1FdVkHg9f2Dk14t2hUqlDStXp3a3DN3EVdW2aixUXNnMUIlvq/OsB8WJoYOzNqTGlLr0CJ9QDaMnGQRO3HbSMJ7l5OpU18WBhhT2zLVNX7GEK1y7JikPjdDJU1kRmcY7FqZqHe92jvMB+vpLKlhlkLvoTZCCZbsn0xaT/LR9ZFS4hxPRfzmp5QRVuDmuUEGXd9LO8ULN1oAuM+1ExcY9w7t61RSWQoLEy20MqQ6BC1byFq01qmxCiLQtExYl47dZqJ0zGQWzN1ZRM4vZaJYa1EbBVUQfEnX0zwQWEUjc2DPGQX62NO0tm95spZq/uL4090hsrH7bGs2Zy43/VYa9azjbKiMTLWyggjV7nGLLmZQyD3OuojHR+5uUOqRaeVVwqVLYl1iA+7TFVnU8vUaUpftuOvGZB509maSavtOIyNzHDFsJjTCUasZsIM7ZRAKma5mZaA7c1C5nQ6sdia/fSqYSZrs9/Sy7zX+iWbeDFEjYHg2sz9S+dDw3INlktOnujgnGrMjeeZ4tLLvPsgLLaLUUuUs8YqwlrPuDTtcdUaZRJKP2uYHK1Ea7or3kprCj/hsqWoOfWKstTxJTGWHY8TUi1rck9Gw5RKZJJh4jQ7wwRtAkuDMgbOR7ZaC8PunBjdEjyd2unCiFZrsFTSMfG3yzu+ePNA/j/tsXG8I4wjYpeRpp40q9AYDq6WBDyll2Pz6U3VxJXtDMXMNuRiPzOrAgd7q/T6Yqcic+obbdxwKxWmTdvmguQp5xXMpgbno4FsZBpDWTURec6J2W3NumXGN+bEtYFuza45F49rcqcYr7OIhc/Z/Q93W3P2H/7Df+Av//Ivufbaa7nuuut4zWtew3XXXcdsNuN973sfT33qU8/mOBdYYIEFFlhggQUeErjbzNmf//mf8653vYs3velN/Mmf/AkhBK644go+9KEPLS7MTgc6Biwr3TIvteYFWpasNvGc10/Vhqr1Z9SoWaVaM6NaLY5V0fg0G7QdbcE3hptGtQxRwDe6F40BN5vTPyl2SsirCS5IxNOejoMgTEKFY7OA5VUJTx470eOAaGU+uzUXvRQD241KhNFyMejXSTfgeuZaPdicvrHpbp3vzpw3ia2fU5rgctHZgbA9xQSmUTtUh3ebVmtS69BCEGZFodqYp3ntn/eQR9at1o7VHbfezcXdpLvMciWuKAarR+1abXYLkJk+oZIxd8ygiUWSY5TsYko6ZiCRTDol0R02cosPCueL+FD07Ao+VHTtUqNBc172ce+gwmrRFRW5iZ13wipoExiXGhfUbhZXx05VN98VLMawYbZNohNCNCsGhHULPprwxvkrZ21UFTQB4iF4wnQbvGgUO2YQ10oROwRVDLEX5kkr6fjrWg+9VVln3sfAdWG5fuQxY8rI2DbaJqV3BaNT5KKrcxLQXR/L49OS0iumTjMuxby3XgOZ6VP4qRjgJh2MSiQoHsUtOzSRQ5OxpSxF97UzTNneSlnfN+PCC8dsFTS6Kx+UBHZXEhs0GiZsnqwZ5sh4D3rCTI8tWVbxqEtmTZB9fWzySkLV6y5akI7EyThp13olzM6onNNTqpaVnE4seWRvEk177vkAWjojB0nU/unA2h6J+6oZH2trc+RK4qmUsLmyny37WIePNya7CMPonBj15pWKjFM87WzWdFaWvhRtp83I6q5TbUkzz/ZWiitjxNVOwmgoncCfv6VPIHBkKsz+527vNMdImM3aqNcyKg1LZl3inXTKtGJXzU7rwHiUgE3pGKgqqRAMliVObbBU7u7qjgybRHQ5Ljw4A2vox9/VnWFKVSmWVwuc09JZCi0bf46wYM7uf7jbzNkdd9zBIx7xCAAuu+wyOp0OP/zDP3zWBrbAAgsssMACC5x9+Ht5gbXQnJ153O1Lc+89SdKyNcaYxkV3gQUWWGCBBRZYYIEzg7vNnP1TMQc1/uiP/ujMjvDBiHna27vGWqMKBUZplO3ibYKqyw61iF7bVpBeNwrMG2zWZbf4uc4XFH4qxqtp1pZJYs4h0JbPvJSgZlMjFgVeyow+QOlnVAHGDiYO+kkl1gy0pdMQPLfsKLEHmIopZOEDo1KzvZVx886EsdukN1emtSpFqWqX8B6txRKgQkpotWi4ts6o52H+PTV2RrC2LmVfmxFmQ0Isr0kTQEmYbUu51DtUf71tzNCt0F9E+iIMN3NC/+a75o9dLSQHMCmKgFGWopqS6qzZTuwwxNC0PlZamcbQd6CXCX4IsxGZuRDnJ3TNEh4xl62bMLCpiOYVTQmpNuasQkmiM7p21pS8pBGgQiuxW/DIHXLXiImm5Pk5Th7vsGdfvSZo1wm0ZcHKgZ9I3qe2GGIDRTmj31+H8ZbYqqCacrBSSkxly1lbPvQeo8AjNiLyXGsDY6v4veWMRGdSQgSMThgsTVBKSRbj3DEJpUcnXUL8jEuWck7ODNMqHqtOJsd4lrfnSFGiLriUcPQmAtJ4IZm0tdEpuxFtQupyLGkPo5MmC/ZgT8r/WcxQXFou2RkmLC1LOfnw7X2c01zx2G1W13OG2ylVkNzFXt8xmxrG40RsKSonZcVZjjLSEDOdWPbsm3F+L+baziHRgd/7yCoveZissX7i+HdP3uJXP93dJY/Y3kqZummzXmsLn9JvMxnvYW1dPnenVKB8mwUbS5ylF0uc40c1/YGUJdPUc/J4h/7AxWaP1vJEIaVdHyoSHeh2XTSTpT0uiAi+yMXEtfRynh/shaZhqC73VUFR4dgujpLny22zQrQZGY8TutFMeTq1zKodnnBlSQgdbt5RTKeWxz9syOfvyHY1Zdw5Q7fIxUpo4oCOksUw6NLpSpmWylH4lCyrODkzjIaxGcG1VkmqI80LNjY7HP5Kn/O+fghac35fSqt79s44eaLD0cM9VlaL9vOLHNScA+9Zxr3tuFwwZ2ced/vi7O7EHCywwAILLLDAAg8sPFQTAu7PuNsXZ/fnmIMHFOaZL1cQtEVFYXmoTSS7y2JOGjwq6bYGtcVERM9Vy7ZhTRTP28ZGogoOU9Ut9SJYxaZyJ1d/t9JUOHyYi79B4lVKH8XgsQ18uzxKXonp4lZhgIokC9wxMezrtmzTl7/SxTlNkngmI8tXxilGwb4DU771QBAj1qSSZoT+Ej27AmzstsBQc9YfNavlo3VG5aIJqoZqznS2houi7nxEqMXsrmgbDuY/s5iAtoTtwy0LaYTFMbQRPuBa5qiMDQBpb9c8Nk0FRDZIizVBarvNHXltheHrJpAoqG9QW3oYSwgeraRBo/IlWhthdqL5qUfYG6tSpm6IVq39hFG2YdSgbfYwKiEPDucVO4WiZz1VgKLQTCeWfQemTMaWwVLJchqNX2vGxLm24STPhTlTWiKxjCWMNkjWD+0SowNi6usKTL1vRd40iWgVmize+jm0mL6STwiZR+25FGYjSq9QymCU5cC6NAmcONYl0aNo6TKjW89hZDWXkj49G1lFV8mamnu9MXhNOlBGYfoc8+yDYrOAhy1XKJWiFGIlEiOnQKxafKjIvVidLMdooPE4Icsqjh/tsrZnxvZWxtp6jvcKYyrGTnH0sLAiSYxB2tzI8F7R7Tq2t2qmcY7N0SJeP3q4x9Z523GNtI0qWkG/X4LuE3xgT6fiQLfk2OE9cFFc7yZlabmUOZ5rDvKdPtORp9cvY7yREoPpzqmql1EpzTIrqwXbW/J521vCIHW6LjZ4RGYsNsJsbwm7nEcWsyg0Gyc60AfVFQZpPEroD8QEdxRF/Qe7CMOt+3S6FbNptJgJnqkb8w2Xt+ObTm3D5LlSk+eGldWCEAJdI2tkOBHT3Mfu8Xz0MxI3NY72G7UAv/CKMuT0+g4f7VHigoWlFba3UvoD+b06ubHEeJxwfGpxTrfrODZzqcyAtvRsoMg1a+s5S6l8VqI7lKVmcyNjabnA2sBOZN+Kwsixn+v5WkBCyB//+Mfz93//93ziE5/gUY96VPParbfeystf/nI+9KEP0e12edGLXsSb3vQm0jT96h94P8dpxzctsMACCyywwAIPHtReh/fm/Wcbr3vd6zh06BB///d/v+v5qqr4ru/6Lvbt28f111/PyZMnufbaawkh8La3ve2sj+ts4dz16p4F/OVf/iXPe97zOHToEEop/tf/+l+7Xg8h8IY3vIFDhw7R7XZ52tOexqc//eld2+R5zitf+Ur27t1Lv9/n+c9/PrfffvuubTY3N7nmmmtYWVlhZWWFa665hq2trXs+8Dkj0/l4oY7qNe38TeBwZyAsixVthrJdeX9tDaCVsBn15yktbElkCPIqxuO4AtWzbft8tO4QBsM3d+lLy4W0skfmzAdFURX0bGBPBidnVgxPQ8WRiYxRKTHFdE5TVYrxKGnMJDdzg/diLGt00tpSZAMxVw0SmB1qc1aQEO15RszOacwi41Xvq+zE3D1G5WB7C8bb0Flu57eQGJgmgslFw9/ZsP0sL+HazIZi/lrH9ATfsEC7jmHNCNXPx82NSsj9pDHAbVi1UDWGvUBkP0R3JrYhYr8xcdtYJVYJWhmUUq1FReXIdL+JfQqIfqtmFGqIlk0Mbk2Mfkq0BNCPhlHrVCkO7J8J0zm2Dam0mjrWsrCbZQJhlWZt1EzYvA3GG+CFFSV4emalXbs1szgdNtYtXbMUGTLRyOVVa2Ar61Hm9o7xtqx9V1B6COUUKsdFA9H0dboVuVd4KmbVSN6orUR9ec/EjbA6cHJmwZpokWJ3m+rW9iBaQtjrtVlvUXpYTnfrIY1OyExPbDxipFQdE1WXdvr9krIUTZbW8vftrVTC2svWIsIYMXIuS02WVXS7jl7fiUatXlNx7pVJolGrZ1gqXCgk4qqxaiEGeAtjnmlh+Hp9JyzZbArBU+SaA73IyMXv2C6OslVYjBH2pgrww1dOIBrKYkV3VoWSGzdEKzmbGrJMWLEk8RJoXtYWNIqtAkg6MpasYuIcw9Kws5PiSs3OMNr/rC6B9ySJZzyS8f7Jp7som7GSRpsaK1YkO0P5zVJKk5qUfiK/8cp26XYdmyeFhdsZpsymVsx/dcrBLpReQsVXVnOW04ok8c0FRaM7U5oqKJJo6+FD1RrhaqleeK9ke5PS60vkVRUgzSqqIHYetWWLyixkA7rWs7MjRrq37MTljkfrwGwq591sapqqw9JScc5FXL5S9/pxNvG+972PD3zgA7zpTW865bUPfOADfOYzn+Hd7343j370o7n66qt585vfzG/8xm8wHA7P6rjOJh7QF2fj8ZhHPvKRvP3tb7/L13/xF3+RX/qlX+Ltb387H/3oRzl48CDf/u3fzs7OTrPNq1/9av74j/+Y9773vVx//fWMRiOe+9znUs3lmr3oRS/ixhtv5LrrruO6667jxhtv5Jprrjnr+7fAAgsssMACDxQMh8NdjzzP/+k3/RM4evQoL33pS/md3/kder1TmyQ+8pGPcNVVV3Ho0KHmuWc/+9nkec7HP/7xe/399xUe0Bdn3/md38nP/MzP8IIXvOCU10IIvOUtb+EnfuIneMELXsBVV13Fb//2bzOZTHjPe94DwPb2Nu985zt585vfzNVXX82jH/1o3v3ud/MP//AP/J//838A+OxnP8t1113Hb/7mb/LEJz6RJz7xifzGb/wGf/Znf8ZNN910zwYemZRGTwZRkzNpNEwqhN0Gp/EOsmGeylnLGM3yXUxTIDRdhKVXzGJckOrPxfF43zAtSunGvHNnmApzFpkhG9kWrQKDpOLY1DB2mtLPJGapmW9PFe+eOrFbygfks5BIIFOJjkklXbmLrya7OwFBzFnrm7CaGaz/P/i2wwwa09omjqcOt/ZeOvGSbjt/zs3F0UQN1WwY9WhFw4woWvNVhT7VBHie0asR42RCEPYqUVkTVi6v2xjF5Al4vAqN5qwOK2/MXV3VaNGMss3/h+CxSpg1VbXmnT27Kt1gug3oPjGtmhglrYywmjGYvgrCFGzkls8dTdjeSUgzz3RimU0Nh7/SZznt0bGD2NV6p/2dN8asGTEb2T9XwHRLxqtFb4Mr2hgo70lNj6KaYlSI3kpuV5D4wFZg02isK12c49I0LKVWclyKXELcQ/Ctqap30JFO3MwIi3JsqoV59V6Mm+NaUcbEc6COxEqatSSh7DAsFXsyR+XFWDTYjI4ZkGiJkMIVhOCbblmIweBROyYGtNK9LHqxPt2u42FLoWFg8kr+LEvNeJwwGVsxRfWhGXcdUVQUhm7P0beBWTWi9HmjU9QqMkBxvaxmFVanHD8auzWdsGx5buIcm4Y9L33OHeOkiZxyXrEvasEUumUYga08dmAmwvz0+yVp5plNLZsbWQytb1nEiQNtAkenCVu5YWlJTKpXVgvZv1RY1ulUfsu2t1K+7eFTSDptjJgT89yl5YKpq8+HQN9Gd1ebMp1a1vbMGI8S1vbMGCwV5LmhYwYc7DkmblvipioJT68q1TBxs6ndXc3QljQyprP6Hl2LZnFtPWdPDHl/5P6KNPN8ftge/36/ZMasOVfKkFN6Jc9PDQ9bFr1fCCFGOskXlKVmz17RJ+7spLsY6nOBNsLtnj8ALrzwwqbCtLKywhvf+MZ7Na7aJeJlL3sZj3vc4+5ymyNHjnDgwIFdz62trZGmKUeOHLlX339f4gF9cfa1cPPNN3PkyBGe9axnNc9lWcZTn/pU/vqv/xqAj3/845RluWubQ4cOcdVVVzXbfOQjH2FlZYXHP/7xzTZPeMITWFlZaba5K+R5fspdxAILLLDAAgvc33CmLs5uu+02tre3m8frX//6u/y+N7zhDSilvubjYx/7GG9729sYDodf9XNq7MqPjpBc4rOvhTtbeNA2BNRXzHe+oj5w4ABf/vKXm23SNGVtbe2Uber3HzlyhP3795/y+fv37/+aV+VvfOMb+amf+ql7tQ8LLLDAAgsscLZxphoClpeXWV5e/ie3f8UrXsH3fd/3fc1tLrnkEn7mZ36GG264ofFXrfG4xz2O7//+7+e3f/u3OXjwIH/zN3+z6/XNzU3Ksjzl3/8HEh60F2c17nzlfHeupu+8zT25Kn/961/Pa1/72ubvw+GQCy+8UP5SlyNNijKplEfcFNVdawXmSUcetfGs0yJwVxqVLRHynbbcYGM2XNRh+1BBNEAtvBITz7QnJQRdWyAkVEGsNOqyUsDjSi2lg84yVAXLqZQoMhPoJ56/3zAc7GmOzyyZkVKdDxWJ6dAfjClyTa/vsImURMuY2QjALGZaxhLltNqhM96Ic9GWFRpBeV3C9b4tKTbP7TaNlP2as96wpin5UPh2rmKjAz60ZbvaJkJ/lbbr+VLmfJmz/v9yBkkHpRTeV+Cj2ercthoTS4xip2Fctauc1zQoWEPfrpHowwySPbEUKs0Bie5ANYOE1pQWKQUOjebwJOGiQc600k05s/JSAq2CEhPaxmBVMRlJJuHJ4x3W9szQGnp9R6KzNgtxzoBUMhZ121BSlDI3SadphqCcUSaSsWhiuVfMg6OgXlmKMKUKCqOkkaAKpRwLPWM5le+VcvqYji+ZONUcq46RUm2em2g3Epp9Cr6M32PjPhQU81XZ+YaAWKYLeJRNpanFWDAppVcYBTsFDBIjxxKZ80z3yf2Y1HQJ4x1CT84zoyypLtkqJNPy+NEuna5r7CF2himr0eB1Vom9zMP2yvlnTKCqFEtLxW5j1GbcMt+ulHOpCvCVceCSJTH0xVh8kKYOXEHAs/7/b+/N4ywryvPxp+psd+vb62wMMzBsAwgiiyBi1CiiUfMRV0Q/RqPBuHxdkuAvRjSgICaicUuMccWoX7cYo6ICylcBxYhssg3bMMMs9PTeffdzTlW9vz/eOufeHgYBZ+hueuqZT3+m+/a559Zbp+p0nafe93miA9HWNS4ukDJPfTBGdDMFCv28TS4FdjQlVq1uY2KiAE3z/XazLWApPDw4FvZ0H2FuNkKxqFAoKngeb6372TzyQ7SaLELNhUks1SM9xVu3ZeSJ775vUK6kKBQ1TlmZAOEIKsFc3gVRxOKssRZWIDqFJyIeg56PVWtq2L61DwByEdoo0pCGMBBpPNjyMLyig4mxovW6FAgjjb5qygK21p/YEwQtDM56UgcCfej0WveqBDu3V9CoxxDHtFANDGamI9wnieU7tIT0CLVkAiN2rmhK0VYSacqixCsLAKRAORiElF0h4WJJodX0EUYahxxa4zQTsWw3tjAyMoKRkZFHPO7Tn/40LrroovznBx98EM9//vPx7W9/O9/NOvXUU/HhD38Yo6OjWLNmDQAuEoiiCCeeeOLjE8ACYNkuzlavXg2Ama/sggHA+Ph4vppevXo1kiTBzMzMPPZsfHwcT3/60/NjxsbGHnL+iYmJP7gqj6LoIat9BwcHBweHpQYye1dxSY+TlMb69evn/VypVAAAhx56KA488EAAwBlnnIGjjz4ar3vd63DJJZdgenoa5557Ls4555xHxeItVSzbpfmGDRuwevVq/OxnP8tfS5IEV199db7wOvHEExEEwbxjRkdHcfvtt+fHnHrqqZibm8P111+fH/Pb3/4Wc3Nz+TF/FDL2IWNlssT07MneMmQQeGgBgfRZ2iHtdBO0e6Q0MlbFQEOTYNFJP2Q2SUhQbRQIClAmhhSZbQ3bN4WRRi0FICWMH2AgZNsVXxACSdjZFGgrZtekAHyDnGU54gBOaE0StmwJbJOiSPMDsk7mxesJn0v8e22R/DB/8hbFwbxQgZOadVf0NUMmpglYsVQrHRAGLDBriyHge3lSb56gXqjksiSkbQIuGVDaZsYgo4Oy9mVWUL3XMEv891j4NSvGSHTC3/fIfAiRSQ1IoNHi5ltWBqJbFJHF78HPr2MmjQE/BNo1SOHbp/IafEkIJNBIPUx10lzs0xNBfm1qCRdDpAaYmeaHhjj20Gr66KsmaDY4IdwY0Y0jbsyX0egtDvB86/nC/Zkl1mfFDxLW9iftgNI2hBcBQQAJL2fzpMiEfrtg0dgERY8ZQ6gEmlhKgmPi97zg+FpebJKJqoqIZTpABm1VhxTECd29RSW9EgXSysxY9hdCIkUKY+dM4DFzlI0LAIhNE8rYsWtla2ZjjmF1kQ9tNX0UigpPPryBmakCpBWaTRKPxVQ1MDFWZAsr4uT0opW38H3DyfFZ8YqUQMifVSgqdNo+drUE/ncs4gIRyxTGmpP9AUAbBV+G8EWYv5bNnXI5ZRmQbDxrhXqicNdsl1ELpC0Syvon6y7h5cNhZjqyZCihVGbWLE0ldrW4gCI1gBJWHkVy8Ucj9ZAkHpqNgIuHcoabWbNmI8DObRWsKHDxQl/QldSRkhDHHhcJpB00Ug+/vq/IzJn0MbqzjP6BGIWi4oKMEttEgQxWFzXKvkGjFrBsjLXWUkqiXgu4j6ylm7Y7CRsHOnb+9Ix1rTA41MkLnwC2X5qZjjA00kFDsUTIjmZ3vmQ2W5lMiSf4msrpnUhij4sRgLwvh0c6GMgIfLFw3Mm+yjlbDHiehx//+McoFAo47bTT8KpXvQpnnnnmHmU3nkh4QjNnjUYD9913X/7zli1bcMstt2BoaAjr16/Hu9/9blx88cU4/PDDcfjhh+Piiy9GqVTCa17zGgBAf38/3vSmN+Hv/u7vMDw8jKGhIZx77rk49thjcfrppwMAjjrqKLzgBS/AOeecg//4j/8AALz5zW/Gi1/8YmzcuHHhg3ZwcHBwcNgPcfDBB3cfBHuwfv16XHbZZYvQoscPT2jm7IYbbsDxxx+P448/HgDwt3/7tzj++OPxj//4jwBYUfjd73433va2t+Gkk07Czp07ceWVV6Kvry8/xyc+8QmceeaZeNWrXoXTTjsNpVIJP/rRj+B53Sf6b3zjGzj22GNxxhln4IwzzsCTn/xkfO1rX/vjGt3LtmQipr1ipvZ7Az1fyiDLt8qYm17zb6XzsngICWUSaEqhTAJlBDMpWb4NGWarjMmlFwS6+VpBwIbYqYnZ+FuwlIYnyJpnA20lUfQNih5LW2R5VLdvKaF/IEazEXSfCDMnJup5srLG35VgOG+7EF5XRgSCc+qymHrZm0xUNusXywbyE7TsMmyez7Y8GcvWmy+VnauHbQQwz1pLQD40z603Z6n3vb22QNyhaKRsAJ2znpZlIZAVuo1ZcsCk888n/a6ptWK7IAkPQkjMJeOAH4LSNhuGk0Zi2rkILZvUC9sE/pflpRkAkWegDBtzz2QsixaYm40QBAbSI2ZndINzjnpkVx46hu3FtX22O8soIACdgFSPJIAVVDZgNlZAdsV1M2ZKS1B7zo43ltBYXVIsUuz5CG03DUfARNvPDbXz62MHXMnvhzKCBV97jeqNmTeeCASkaS4OzMbd/OuyT13mSEgIIdFIp9HWNc6LtOPTkLA5gSyl4fsGSeKhHAC+lZsplVMMj3SQJBIHlAhBwPZZkx0PQWAwM8UCp0pJdNo+W1cBllliiQwpieeXAu6Z68mJtQLVmTl4lmuYCZ1anQ0AwMBQzDIgWQ4mGWxrhNj8QBmegDUet2x41j82r5WIICXl51Up2ziNjZZydrCp2D5uRQFQlGA2YXaoHBjsagNhqNFqBsy0GMNWYFJCpRLGCPQPxPDt9czyD5k1ZDHbwagEKM6FrdfCfE4rK0WSJGzRlMSclwjpI/SKGIiAUoXtmsbbLMUSWjFaKSmX91FGQBkW5w29Io+FbP7bMaqUBOkUO1sCU5MsOTI2WsKYFeXe0Qjz+1AtmUZqeJ55Ht9DISVQG0e5ksIYgamJAjptbvfcbIjAs9cdu827xxFPZOZsueIJzZw9+9nP3uMqOoMQAhdccAEuuOCChz2mUCjgM5/5zB+0eRgaGsLXv/71vWmqg4ODg4PDksTuWQt/zPsd9i2e0MzZExJ+wE/hftTNRypW2exZxZx3lLRYYBLoWuBYo3SuKuo1RGZjZ66Yk1bclPOGMhHY2cTrWj4BOQN112yW+8NGu4r4ibFuzX59GSKyFjMAuJKJgFoKBNZsOzFtKzqZQkrKK81OOYjbP5sAc7O2MCIosA2PbWcmSsvVfH7XQinLpyMDFKIu/ZYZm2eCtb3CkRk8y540W93XyADFsrX36VGYzvpR+hDSipAKzu3LRYBtfxFpy8zI+axZ1m77jMBis4TYWNZKABCZGCwzMVmVb5ZPZiwrhKCQszGBJDTQ4jw1o1Hy+7u5eIU+EAhTnTqUSSAFIfIMIo8zpGZi/ixPBNCU2nEg8+HykuPYMqnT9tkupsqCnRNjRZRLCrXEMkaqm29EWnPspZ68O5kxsmredemarmubR6m6fZ3bNHnQZBDrZtd2Skpmweyxmfirt4eH8lAC99clEtPiiuNAAlH32nrCRyPtyWeTksde71+RvAq1K8gs4dkYRM7SZeK/PKc0BKSdM5xX6Evi8W/nRLvto38gzoetHxi0mgFmpiPUayEGI400lRhvA78eE4hjriRsNlmwdsWqFtJSuTvu7ViLIo2pySJWl4CByM5bIYGogtQIDK/o2HYiZySTfO7zubbc18/vM1bgWvrYWvehNQvvpqm0TGBX6DjLfzPQOHAFM+pZDtjcbIhCUaHd9tFp+6gGfO1LPnX7MdIoegZln8fcilUtNik3BPjMPBWKOq+yDCTnlYU98U9NFtBsBIi8MluYeWVEEYvpGkGQHqHVDNBnxWfTVCJJPGib9xZ5ZYyNlqCUxNXbfbStWbmULAaLqAIYZjMz4WcQcPtd/fPuMZmhOgDccG8JRZvj1j/AArmZsDCkBMUqH4NBwNZda8uKq+aTFGGk4fsGhaJCmvJ7G/UQKwvZzcStePZnPKGZMwcHBwcHB4e9w976Yz7e3pr7I9zizMHBwcHBYT/GvhKhddh3cNuaCw3P+mNGlfznjrBbP1Ja37XdBEqz7c+wlG9jwPN5G8lQVyLC/i7WLRA4kT/WLH0xT1QUAPpG8GAzyEVoKU3RSKegteBtSwTwBAvNBjIrBrDinCnQ1pL9D9Ftq1IswmiMwK6WwGzsYV2Zk8yVEUBxgP1DjQKCAowVt5xXGEEs6ZEn/meSAvQwSRFZQj4AStPuezpxN+lfJRCD67jYoG/VHosqKG3zVmr2HuuvyTIZveKlPT58WSFAz1YdwNs/Esi3wbJts+z3RAQU2H+TiOz2p8wLIgJZQOTxOb2snF6zPAK0AtIODGncOVOAJr4+fubTCKtwYbeapzsspxJrgR1NFlg9rD/NFSXqtTD3fgSAsV1FzCY+b3H3bGvmxRa9hSxh0B13QF6wwrIUyNsN6tkWJsPJ9+Ct1nyL0F7fLO7II7R1HRASM7HHBSPZJYdA0TdIDfLtf9KEtqrlW99CSLQUsLkm5hfV9EKKfIsvkzQx0LnsSGL4mha8CstsmA40pd2CDbsFzYUHMQxxAYIxAjNTBdw17iOKOHG9UFQolzkBvJz5UvpAu8OftX1rH5LYs36cYVdiJBOZBp+3VE4RSi5WyLc1wxIUCRZh9UPEWiKQBaQmRqM2v6jmoENqXfFsj/16N9cEOm0fqWEB11gLFjye11cS2qQ4cYTQ0XUUiwqNOp+7Nhuhr5pgeKSNos/Xf6wt4IkAAxFLWgSSWEDYI8xM8RYlVNerduf2CtJU5gUUEBJJNkg9n5kdI3hb0yj0BSNIUwmEAZRJUC6nqPQlmJoswvfZ65MlPPj+FIgoL6hIYg9SEkvINAPeHu2Zx2S3hkEGR22c6xYCBYU8gV94AZrNADPTBXTaPsZGS7abKJcqoZTP4wlO7ShXUi528D0gSdFu8dZqbY7b5geESl/SvV5uW3O/hmPOHBwcHBwc9mM45mzpwTFnC4xcmDSwT6aen5duMxNmIGTALIlRzEBkNkSWsdHCzBdEzRKbhURi2phopzCkoAk5a5KaeL6wpUryBGYhJOD7GG+3oZTEth0lTuQGEHohAskJ7oEkDEdALRVopB5X+EOi6FfhCRZzbLd8qFTif28ZxNYGi3l22j58ycnvzBD6EGEZU/F2bk8n7kpnWKkFmJ7E/0xotmALC3oS9fNEdGnlNIzJqKNuwnr2nszmSat5yeD57+UepkMPQyY8a3/lhVzQQYbFVZE1U4OIxWsNYJPEvby9AoKfyqGBgb557+uFRxK+ZLsnqXUus0JW1oNIw5DK88VTw4yZFMBwQWEg4t8DwGXbilBGoBIYeIJZnkxE2A8MlJIoFlX+lWG6A+5PO16E53HsKYt+Qtkxq5Iu62eLVURWIKFVl+HN+hLMTGTMTGLadvyxLELkFSBKg0iNQKzZauuuuW4BRsHjOSQFW5MZ0nnBSkc38utJZDDafujl5DZnLDJZyRDKxWhT04EyAi0l0dFZYUw07zrtaIbQlOZsXtE3IBh0NHDt3SX4PhdZHLFC5UUyrSbPj3I5hWfnRGpYjJaFXFP0D8S5BE3W771ldHHMcgvNlGPPihdgVN4HLHzKrFWi22wZ1TO2k9iz9m6SGdyggJkEGBzu4KgBwkmHtSGFlULJ+scK2AohcfxIGwRCvR6iZJnAdQfXUa+FUEpitBXmciRSeDwu7f0jQx6nIWbSJYtWKyUxNVHEtkYIhCVMdvx83iolUSqn8AzbdLEgLkEEARQl+VgulVPU5iKEkUajFub2ckLI3EaLu0ngyAM78H1O1OeJlLKUBiWIDY/p5x+ou9fCxuIHXExRLvP8qPQlCCMeh0HG/PldpjeTZpmZKsATgAgCwPAYKJXTXF5kaqKAJGEpE/jegjJnWou9/nLYt3DMmYODg4ODw34MQ3vJnJFbnO1rOOZsgUEwMIK6OQWFKuf3ZLZE9olLwmPBUbJPl6LLAplc1sGWyJdLOcOTmg6mYt/mOwkYAlpKIvJK/MSmE35P2kGsBRpKwoMPEQSYTTwUiwoz05ksB8sI+JKgjMCqYorAAzZU+FFwqpMJzXrwJAswRpFGXzXhp2oCfjvuIYy0FUlldkKF/PSa6ITzloC8pB7GMJOYSVYYA7R6LJ606jIx2c/cCH7CN9S1agK67FlU6VokZdICSYuP97rPKCTEfNmR3Y3OvZAZNC/sskVhCWT/CStgq4w1lNdsRZNJMACw8fnwZMDSGzDQEvPyuohsTpHuihOLTCpFBhCC2S/OK5QwAFYU2GR5fSWBJmawtjVYIqHomVzck6UW+FplZfwz011Jg2qguxY/9prkbQtsnllipUqy3EDBx5GKmW1JWjzWPCsUmrT4OMu4ecJHNQxzIV4RMZPoyxAoDaCWerhzpghIiVam6iAkIo9y2YuiRzYHTHTZr2w8Afj5TQNYUeR+FUHAn600X/uMYQN1x4odB74kNJVEqjk/UEDwNQHnQ26thUhNnOeGGgJ+O1ZARwNTk0W2KGoGKHiEibFSnv8EILdTMkZgri3hWQmI0OamJbEHlUp0VB3zQAaRlV64e1sRrZRFXrtCuGCWzCg0VVeMVqke+RzJOaHz4PmoN33MTBWwogAc2W9ZXiE5J6y3CWTmjYtMwPWB+6to1NgqasIyf6lhKZTEskm1xMNgxCyUUmwTl0OKXDjWGIErdkTQUBiK1Dyx6CDgXEchAxAZ1OYiwGex553b+qBSZsfWrG2iYfP8slxCX4Toq7Kx/J9sYCmQ4QL3fasZ5J+RGma3Yy2gobC+kvSM/ULeRhSrOOrgFkpltoFKYg8txTIqmWyNiLxcfLtQVOgfiDmn0t5b/MCgWFS5pEfWB+vK6F4zh/0WjjlzcHBwcHDYj0F7mXP2eBmf789wizMHBwcHB4f9GK4gYOnBbWsuMFjiQLGcgJBo61pXIT7fcrOq61px2Xsm55BLTYjuVlyxyMUBhs+nSbHnYCYNQAKN1G7jFCKWNLBbIVMx+2Rm8hOx5u2twaEOb0f1IDUCvvQwEBJWl7SVMeCkdwH2jWzUQtTrLM0QBAZtLfCL/x1BEntoK8lbSF6YFwL40uPEfN/nLbBeX0agqyrfscnnWQFAhixZmQyfI9sGCAPrSWjypO0Ydgso699ChbfafA+i0FUBp8zPbp5sRLe8H0GB32/9QTnZ2ocQvI2pTAKC6SZo97SXtzCJk/ULFet+yddMm5RdCiQXdXQ0e0/2+kL2BSP8vfTzLdKp2Mft00WO0UjUUs9KO7Dcw/gUJ7PPJh6KHm/X+JJYqqLNxRutZoBqf4xmM8DUZAGpESj60m4T9/QHMN+VoXerOdstszIfSDtdlwetgLi7DaooYW9KsMWaoiR3blAmQWpi3nJPsyRsgDTLpMSanRey4pSH2Ldl23zgLcAnD9oUgtCffy163+f78EUI4Rfzfg0koRQAOpP+8Hw7d9mJIesTAkGTQEsJ7GrzH7hWI4Cxivt+YBBGml9vBlwgINhrEwCaDd7S7LT9/NhyJcXtM3PdfrdjvNkMcrmaxKBbSGSh7Fye6vjdcbwbVvSnLEdh+16TwvatfShXUvSHLMvSzBLkE8Vb6zbVgsDpDZEsIYk9aC2gUt6i9O0WJ8BpDiUfaKoZTLR9lMoqz0mqzUZot30rXyFySSEpCcMr2ugfiHHlr0cg4aE/LOfjLYx012kEXEji+9w3Eh5WrWHXC+kRmg0fpYp1P7G+tATC3GyESl8CKcBuAgH7oBoj8hSRRsqFD4Hk7fMDypFNryDAD+cVbKwucVL/mrVNhJFGW3OqgCEAhiD6yzDge7BS7B0aSuLtYt9Dq8lyHINDnXxrFAAqge56nzrst3DMmYODg4ODw34M5xCw9OCW5ouAXMhSSrTUnBXt7PVrtD6aBfZ7y1ga8gIYKeDLkJ+avR42wHo8KkoQa4FEt3OpjKYCM1O9gq6FKlYXbXsEP4EGkkUQJ8aslIbgxGBPZIK2BsMRSwcoywxlwpyGNFasasH32Udw/YEtpAY5a6ApK2SQCGURZDKZBsHtSjv5E2pWXMBeiNQVl83i7GERc6kBZeU0pMjFfGEMS3RkArBW8kGEZU7ij+tdNsxKfEgS3XP3fgHdz+39H+ACD+sJqiiBMgkaqYQU3WefXq9CKXyIwXUsvQHTFZq1RQvcn6LLftjCCE+pXIaFYFAJ+Jp96vIRxFqikUrMxh7LllgB3MNWx1BGYNNMiGqoWWBYAvfXWXi0bBmGRp1Zgb4qszHKaKBg2dNe9sz09ElejGGLWayPphASpKyOhU66orWW3VUmgaLExh7wuLCMpBQeAhlBWcFjIQOkGl0pCMPjKLAsTUfbXpIiF7cFwFISsYejB9vMPheirvxHBmP4uhjDhQjlobzPfUlW6BVQJs6LcVIjMFSwjJJidjLWAtdPdP84ZaxN2WdGSKUSK1a2usn5YIZldjrCQYfUALC8hO8z+zQxVmJxaM+bJwnj22T8ibESpjv8eZmUS2r4ekIrK+1BPAV6/2hqxUKw8KwwMo+Tw4+agdYC1dBYX017vLKyKFbWQVOKHc2uFEVflZPhC1aCJYk9SMGFLIMhUE+buHvOw8x0hLYSPNV9g1aDPUQBQBT7WUojMBgbLWNqoohSJYUwOi+AgZQ5swgAlDTR0Q0UigqkNTwZYG42yrfWWk2+f/gBz0n2tTV5G+vp/G04Ka0IdFTCWJsLAoqegQ+f52ZWmKQVS3ak3K6Ch5wtDAKWUklTyf2nWKS5lrDkkEol2m0fniD2qQX3xeRYKf++VGF/4mpo72e7j9fHEdm25t58OexbuMWZg4ODg4ODg8MSglucLTCk8LjEXHcVMnNWJWMgMounoMCMkpVjiE0TmhSIiJ/0s5yrHiS6jUrAT85Rb9m8MV1RUZv3Uwm0FTD15p1jYKiTS2lIcDl4LWErqLVlZeNgRk6TQmo6MOCckIwd0AQUPMrL1/mJPLVyCGUIGXDeUZJ2WcO0A0grQSH9roVSlvvkz28nx2UFZ5PU5pkR0Gh1pTUsfGFFfalHwNfmQemo0M0fy9g4zwqtWnZICA8oVLssmpDMWkg/lwjJRGgNdFdKQ0iW5wDn7Ah0GTE+vivBgagElAaQmhipFVjNBV4Bbq9lzgzp3FILYHHZyCPMxB6aNm8mNR2UAmCiE6CWApHHT/VtJdAXcHl/HLPUSRhplMoppARKvsFEJ+jmvPTmvmQWNypG7gFlWdusv5Sx/ZZ0uu/LLHCEZE1hMpwPBNEdy56PSJYA4rhSI4CgwEyEvQ6DEfdv5BECCcwmloEJuuKqSFJoSlGupMwiEQGFYjeHMW+TzO21pPCs7ZYHTxACQbnIckrxvLd5mUirVrnNUj0RSAwLkmYMVyCZvUkSDxPjJWbR7PyYmixiYryE6ckCGrUQYcSyFxkTlRrL9hmDzJ6tUQ/zvKSBiLo2TLshyxmrJR6SxOuy8b3xS2lzJGOWoEg8jLXYrq0SsN0YxQnfG6yUhDIa1VCjoabh+wY7t1fyfLkw0mzdRsw8RR7bif1+nKVBxtseUiNQKKpcIDYXl7bMGMBMe7GogHYtz6kjn9nBTPQVRiHWTbaPMjyOMuamWFQwlkVsNYP8+kh4WLGqhTDSea4ZgNxuTkPlVlb5vZMMCxvLrrROxm6iXcMBJYMjjpzFxFgRc7MRbt7FNmhTMfI+a6YSmkQuRDwVd8Wv/cBgYKiDqckijBF5/psU1BXJXiAwKb43zNmCNne/gMs5c3BwcHBw2I/hqjWXHhxztsBITQIDzdWU0uf8HCJmHTKroagE8oJufo/Nx/JEAGViZl6y46XIDYyFH+GBho+BiHOZin6AWDNLgqDQZc5sjs1kx0Oc5aQUQsRaoDYXoVEPWRRVAIGM0FYScwmzXyMFlZupl32grZpITBvKJOi0/dy8uegxwwAAxzx5Kq9+EtU1zGKhx9Q7LPVYMlk2JssDy9iyjCHL2LTcjknMF5ztfYTLGDchIdpzXashz2fR0yTOq/Dyfs7YNWD+99nTsxd2Kzltv/ciy/WSwgqcej5aapYlai2rZkgD7RoMNDx7zQVEbuIthZdb8ORVs5bVy0zSlUmwaZYrM0vlNL+Oygg82AqsqbpB0SM0UomtdYFYc16MLwkTHRa8nJ0uQKUSRgvUZiMMD3csaweueu1lzVS30jfP78uQMXxZFbGxOYBxi3PprD1TZjUUyEJeUVz0qvn7NSlAdWzuUsZeIM9dGy4oy8wYBBK52TvAYzXPDwI4fyljIGRWfco5XBnrlNkUZdeOc5SAcsD5lQRr5O6HEGDB35YSmOrUeRyB7dGeucZgNgamJ4t5ZZ4hZnukJPg+V2K2mgEiafKqzqnJIvzA4IH7q6j15E3VEhtVdg2E5EpDa95d8LjilHQMeCFbc6VdIVVmJHuY8zAAtEJTcZVmdm8xpDE9yeKqieH3zsS2sjpJ+dgkBSQzQNVAo634PqJSiXI5RRJ7zFQ1gjxfLbU5g1HIJuSjba4Mz1gtlfL4oU4dkAJr1jbz86xc0wIlzTzfK6vMnJku5CLUEx02Q+9lx5PYw8RYCaVymufBEQie4FzGLfcOIAgMZhPOFQt79aUhAC/EZMMybXbs3Tplx3uBdzMadbapos4cBiKNk1cwI+b7BmOjJbSaAQ6qZKLNlAt4z04XUCgqTHe649ForuDNjNhbzQCdts8V9I6K2u/hmDMHBwcHB4f9GK5ac+nBLc4cHBwcHBz2YzhvzaUHt625wIg1iyVqk1oPRcNbBz1bZB3d4IMzYVQrSyCFh8S0ectBK4igmIs0Cis/cc8sSyYok9hkfqAv6NkOBPg9xuTbjgQDhLwF6vsmF8jkz/QhBWGXrV8YjFhQsqUESj7vYczGXBRQHWDPur5qgkACAyF7CRa87FweTBhx8ruQ6A9XIfcYtf6RkLzllW/xZl6IGbLtzJ7+6coNZOK1Zv4WZ49npfbs9lsmUyJkLrNBJp2/naBVN4nabtcJL8iTmLNEeE0q33I04KKAbqJ+khcCAF3xU9IxtEl7tnh5yxpaQUAgkIRIljhR2fYRpfYiWF/LGx8MkGbipnZ3bqfVeq3b671pVmBbQ+LWOwYQa4F6yu0Yb/O2VLZVliS8tTIQArER7A/Y2xe7e41mfSysb6aw/eWH8wsZjB2nxvokSh+11OtuadvYM69SX4b52DQkuuPUShkcUuWtqtQIdDQf41kpk8gr83Y4OAFceoRKMGTnV8jbcyFvT5PuGVdWhkMKzxZS8OuBzAoTOl1/R0mY7nAM2fzoaGBDNUVqWFy2NhuhUQtR9oGx0XK+lZclvU90eBvs0I2zALiIICvIMFrkBTQAukUBAA45pA4/MJiaKEITb08K4QG2MERKsrIxPNeaystfy7YxVxZtcYzkQhUDjepAApVKrCxqtJXEeMcK3Kr5PraeIPSF1k9XUl5QolL2hkxi3mYXQqKeApXAQ9nnoojNNb5eSslcbBcAjw0AUxN83VQq8YpDWDrHE13Py6xoJft5rBXwYsLKofQPxHmxQW02ytMrDGkUvD748DEw1MHYaJm37Y3AcMHkW84AIMIyarNhV8LGC/GDB2w6g+9BCA8q5jQCqAQHlhMcUlVo1FiGZt3BdbQaAY4e7HB/t9pQRmAuEagOxJidYoHnbC5Jj1Aqp7ncUKfts5RR2+/OrQWCk9JYenCLMwcHBwcHBweHJQS3OFtgZIKtQkgWfwU/5SIsMfslWJhWGM1sg0ps8j9fqizhHEmLRVSDwjwmqan4oqZGWIYBVoogAcIgtzMygsvFc7kN37P6rZSX66cmzkvRd7U4wVkT/9/RfN6iX0bksZjl7HQhF9H0BBcENGoh+npy5qWxLBIZyMZMt+jBD/P/I6/MDBXQLWKwbZz3NJmJzWawwrMwxAnQ+ev2SdgP88/unsNnuQAhu0yZtWTK2R7btyB0GT0rhkvS62HFrLAn2MJFmRgd3bBJ5pn9Twoik7NfmlQur5GJqPoy4rCSFjNMWlnpCsVP9TqBFB5efgRLDaxa04QhINYsleEJ4N45TrjfvrUPUzGzMZFHGAhZ7mByJkQY6Vy+odKXoNP0MFwgrCwYtNRuT8IZy5S0utIMQM4oEln20mcGRER9/PveIgLbt9zOLiMjiGzxR8h9I6VlrAAEBawoIpfaKHpVSOHhwWbAkgUAj2Hfy+UtEAYgMCshIEDtTs4Wz5MoiEosFBwG6Kg6twVc7OJZAefJji0YAew1AkbbyAWeAZaUqQTMWHXaPqoDMfzAoBKwTIPRIv8fAKY6Xm7502oEmBwv5eLNSkmoVHYLdbLxLCWqASe9h5HGVGzZLY+ZytQAlWqSS5XAGDzYDJjl6bleB1esbIsUeUFGp+1DeoThgsJ4B3jqCoWWUtYSTc2bdwJ8fukRpOT4pMdCu35gUEszkWAu+FlR5PvJ5rsHYAhoNYK8cCEfP16XVSxVUgxEbGcXeWUbj0JtNkJtNsqZ80YqUR3oSpxkhQAq5fHcafu2KIOLPJC0cnHawLZ7dSlFqxmgUQvz4p2Z6ULX2ksAW7dWetoaolDWmJ4sAtLHUDSAgUhhYLiDJPawtswMX8vKpZgaS+JMxcxMlSopy7NEIeB7mB4r5HHXpkNU+lh26IZJ0S06WiCQzTn7Y7/I5Zztc7icMwcHBwcHh/0YxggIJ6WxpOCYswUGAcyMQSDRzJ4Y0my+bW2aEt3O83UytNTcPLFYSppdaQghcyZnIASaSlqjcYN2VmkeVZhNsmKrTTXDSaDEDFuG+ijncngkczkGAPj1b1cAYKkGTSy4maHkRyy8GnPJeDZRc+Nn2cM0qIRZE+kz8wdYmQU/j9mDz0yRzUHLWZoeEd3ceNz3usf41ki9ENrX57M7eX5ZL/ywK+bZK51hj89zPzLGLPtc6efG9FJ4uSxKxrL0JsimpsNWRTKwVjIExC1rJJ1AQHZNrG3elS+py9xlOW6ZlIbFxoEOYi0wMVZCI5VoK4HApt6xdAmhr5rmVke5ZqwgbLmvP2cYGrNBLo5a8IByMNDtg14zeQBotLqsZg8jySf2IbwAukeoNz8ms6IhNtfO2EYpvHlspSIWsM2N46XEyoK11/FCeILlK6ZjzmFKM9FOaxiPtAMoDU8wc6IosXmLGePZI70SFBBKzttMKc7zNCc6XXFfKVgCggSzMMoI3DVrc/KkD0MK4x2WmGi2Pc67SiWzOIaNwTttH4Wiyu2HKjbnamy0hFKFZR8yOYYsl6uW2g+3IrSaFJ62ktm1waEO7r5jKJdeycZco8ZjMzXMDjdTyUKtABCyzMjqkkKB+DWypu71Gss5lH2DrXWBg/tiFvcNgy7b6PnQVkg6s2GanYwwPVFEoajQabIQrGfz3UIJdHQbBQ9QTZZp0QR4sRU7zhh7zdc+s36TklANNERxMM9L1KRyAdlsTGR9C5/Fh1XT5l56XdmSTttHFCfwNNuHZXlomji/ayDUCEPd7UNjrAWVNXonzsXMWG4UKvm1FOVhRF4ZUSZtUlIIJPDUp06wcTk3PB9uYaRz03sYAgoRqkMJSpUUvm9QGUjtlLKMsTW7d9h/4ZgzBwcHBweH/RmZjuTevN9hn8IxZwsNMhhrB7YqLO6KkmbwfHR0z1MlABgFX4TMTlFic2sSaxbdrYpDWEIlMKglHtpaItEJWvYUc3rKikn6QKuDmXgGUzGzKJzDlqKWePCqbOsDneQsTVtLayuSiUtmTIyAMgmbnxuFQlnDDwyMFij4zMIYw5WHvQWXysTdKr7Z+nzxUoANpXXXOimvtsyYs4xl6+kzSAERRZkPCRAWgErJMmrWDktn+Xs9n2UZsNzMPDtv9n32s5RAFkNm/xQU2OJKsDG0hJeLlu5qM6PmS2YpBCTbzGTX2rKiyR5uaoY0Sr7Jbbty2OrezBw98tgmZ+OTprmJgnMBAaAastDxlnv7memMPQSSrH2TRBJ7eb5IdSjB7FQBhx41h2oA204xL9+JWUmvZ7z1sJeweWNBAaSZWcntsLLr0bLVwn4IX5A15tYQsCxk2oEIy10mref6DEUZ69pBbFrQpNDRQCiB1HCuHQDElomGz+xkoxbmY1v4UVfQ2Pd5LHlht1Ia4Fwso7ClzmN9KgZmrZl3bLjKOiWB228dRqxFXmk4GBKqYWiHCXG1YMKV0lkFc6vBbGOn5WNFUaFa0lh3UB2dFn92oajy/KNWM8B4p0dYGVzdHXkGhaLC1CR/7pa6sIbkXEHdsVV+gSRA+qhmzFBmDSYkAgmgNcuxmA4MaZQte9NUEgWPmXCuKhRdVtRWwXoiQCAJ4ztLGFrVgfS4n6tDCVTcFfatpcBYO+DxxM1FUwHkMcOV5d9RYwIQEhNjpXnG8BQW87zExLTRtP0HIYGwhMgjZgUVG59XVyYs4murXTNhV2rP5cK1UrFFlico//xGnXMvs12MTtu3OXzMunbafp7zS17QvU6eD1+GSI3AnK0OLXpk83BtHNqg5BukBrngbD7dSwOozTLzKCWhMRugUQ/h+yyuDKXn3xMfZ0hDe/3lsG/hFmcODg4ODg4ODksIblvTwcHBwcFhP4bQBKH/ePZrb97rsGc45myBIaWPoYjp+o5uQEBC9F4G6efbNLm8hFYw0BDgpOQ8KVz6yD0fAbTRQdE3uS+hFEDNio7uajVYUgAAlMLPdpRhCFhRsFtIScqinkagfyABjAHBIDFt9sTTArN2uzSTOegmmHv59ilgbRXtrkxn1sNUR3SlAew2DCVNoFAF1Zvztw+TlP0YPRt79iF78prrlXQAuttWGYKg20fZObKtwkxEFQBUAuFFuQwEhOyK4vZsK+ZbktYnkqQHdGq8/ZK07JZm5ufXI3sC69EInfseZluThpBLGviSz6vJbt96Pm+lkrFio/Ona6xZckGl0vpVEna1BGqJhC8JsW6yuKXmwoxYS9RTgUYqUSgqJHWJQklBKYkw0ti8qR8ri7pbNJGk3aT03j7ubYdRXQkSyYK0htAdu4bsdrLKt5QVCTuurABzJhlTqOT9FXlWfJYMb7HaLdJYN2FIY2tdYCAEpjt+noCtrdwGPJ8LXoxgOYYw6M6THnFi4Ud5cUoOMrnnYi0V1mdUINFt3vYE8q3IbKvvvhqP7SwhHYbQafkIJEskGCO6sg8Jz83xqQjSo1xOo9P2IRUnpJs2MN3BPNkPRQlGW+w92W+3St/1jXWAkLZPgKDNsbC3LmF9xW7LZYUlfoixVlZ4Q0hMG4Y0ttzdDwAIbeGIgODjMoFo21+eINw8ybH6UVdyx4s1GjWWmQCQ99M9sxH6Ai4eyHaqjRS5h2YeX6ECpWS+JQzwVmZ2PQzp7laolBBehMjj4gEoDV+EuYhyJkWiYoGk3XNfERKFAW5fVuyRCfcmsYfYtADJciCaUvYqNTEL1JKx8iymu/VqDDzho6kkBof4eoy3WWYonz9eV9pmdroA07b3RXsfKhQVhla082scRtyPAPjABZTSEHu5pSnctuY+h1ucOTg4ODg4ODgsIbjF2QJDoJtQr4lFMkOvOO8JFQAL1Fp5jDwRHD1sjDE9icws5dDWdS4xt0/7AhJTHU7cbyo5T5bhl1tDDITMUAAApMRswomr61fG/IQKluPInjQn2j4/oUtCLRWYSYC5RIOIMBX76DTZ3iQsGoSSMNHhJ+Wm6u0AK3lAphtzYpmyHquYeUwaB959kge6rJbvdaUmeu2aeosMMsmR3vcBNlld5a8JP5r/+bTb+bL3y6zEn9smhZezKAAnb5d9fvrP5Ap65TIMNBCWrGUQH68phYQHIYP8WiMssfZKJkjpsVwHyEBAYqLjI5CE225agVgLTHV8XHPtaqRGIJIEAWbIQslsjxSEpu3OTtOD8TlxujProdP04EcsSpyamJPKW51uMUBWzWWvQW5jpVWXZVQJYBQCGfQIz/awbmmaC4gSGbRVt09JxyAv4D5rz9n+BeCFqKewIrIqt7v69W9XoD8kbLFOZ8w4ilyUeWeTJSkKxu/2n8qYTy9nAHkuKXjCz/t9XYWgbOGLFGQFnZnBibXE2vV1ZvWiCqTw0Y752s7NhiiVU/gRwSig6Bt4KSfxN+ohGrMBEPJc2nz3AA6oEBfQWAbHL3MfGylQCtBlLQ1BU8pipm0WXG2O+RgaaQOGrdOkAKgqrXgrQQiBom+Znp6x/PXfVfKxnN1LCmWNdLYrfyOExIMt21+Z7Zt9z5a6xwLLqcylKQCeRkld5hI7ZZ/PVU/5dWk4WR5SQCrDsiIhjyFR6M8toIZWtKFJdC2UMmkZ20/ZfU+Ttavy2XIriT0gIWanlOlS9xk7LiU6s1wEU/YJXtMKRTdFV6LDC6FSme9MGGIrqIx1VIaLHnzf3nvbNbSVRLPhQ9eAmzZVsaJoBZmNATy+D2e7F5WR7F7G974k9jA9UURtPIS0bGsYaawtUx77QkHSXhYEkGPO9jVczpmDg4ODg8N+DLGXW5NuW3PfwzFniwQikwuS9ppAZ8iM0TP2LBM4zeeAUcyYGZszY5mbyKPcYkkT5+3UU86vEEFgJTcCHLsmQclnK5/MMmdnU0C0DQYi5DlRADNl0iOb4yTRUhKtFJhNgNEWMxmzsQfpA6WqsnlOLIgatRVSfoiELyMgLDFb4YXdPCWV5LIEKJW7Ugq9DBfA4rIZI9ZjaQU/BKKoy4hkMAYiLOfWPwC6LM/uYrOWocyPzZifDF7YPdY+lDfVzDw7p16RYE2cJ0Tg3K9MdDXWgp+sCxUQGSjLSiamnUty8HESRoqu8bn0IWSQ2zkJwQxpI5UwChjvAHfMCptbxkypFB6SukQt6XZpLbXXImJmybQBv0yoDKQYGmlDCm5LNdSgtMc6S4p5/UuZubnqObkVFC36ffPlTrLcwITHdBaztuwuH8I5PaEsWiaL2wkwC5PlDmbCq2GkYUhgTRHY0eRrk50XhQoiaZgFmXpgvoixlJzr5PvzxhfLoJA13ObrF0puQ1tLa1vEDMv6A1t5XFl+UUt1ZTS8WTZVr1jRWYwbqJglSyrVBJEknP7MMQyGhPaEBz9gFsUPDArNtCtLkKRdts+OqSDW2PikaZAn8NSjreWUYNFp08Y8Vqzk+6AG5dcFRuHEI5o8ti0j3Ug1C6EqA2M/w5BGNUCX1ZaSpSgEz3mA2amkLaGngWCArNJqV0ojkMBEx461Miebl322Z0IoWHajR1/HDwz0NFDfFkCRyK3O4PloqxriqfmSMm0lIUdtPicZrFrThNAEWQSMlbLwI+JcUskCxmGfgWgbFDzLMoLbltQtq+3ZvD/NeWCKEmb47Piup5OQho/P7N52tdh6ioosN7SmyCxn124PKPuEoK3mSYVASG5LUQGhyNtmjEDBg2XrF1BKQwNS0158LVhT9xu4xZmDg4ODg4ODwxKCW5wtMAx1jXE9EeS5LFkFIMAsV16t5DErJna/VJkIatzKn5ZDWYQmZmc0CUx0AkzVfTQVsKUWsigrAPgeOlpYEVPDeUy+h4m2gA4khiPKmSIizrkJJ1Jsb7JpszICUgJb6wL3zvnQWf5QQtBjQDiR4v4ZiQNKBD3gwRPcJl+ELOyoFURYBnXqEH1loG1jVSysSybFQ9Br45TljfXmklVXWrsZ6uaIkWHbKjJciZnE8xmzXtN1ACgPdStHM0ZS9JwLABX67FO9QkvNAWT4qdsyapnhfIbUdLC51pPLBq7cFGHZGssTV69m/+y5ta36jHWz2x4/7Iq/AhiylbZBrFFPBa78/hAAFvtsKYlYd1AY0PAEM5gZUaEJEDVmKgDOu+m0fUxtLWBNKYEvQ/QFeh5rw9egJ/cuYyAB7qeM3TQGoSx1qzhtXlF+DcFjQQgJlVlceSHgh9DUzSnjMcy/jjxr3+SH6GgWr21Nc/7jcIFFlyFFnhspCv0o+gadpseVoqVCNydRcZ+JwarNq+T3GOicKU4Ns3CBhM3BE5bl5jgKns2Hs7mg05MFnrOxB6kM9ACzYIYAHUh0ygGkIbRHPTTHfESewRH9hLUl/r03q+HFGq2azSHVXO2LxFZZKp2zsnE5yMVqnzJkQCZFrJuopwJeaublbRa8CnRk2Vybi3dElfuSUq7obCiJuR0hjOQ7TMHn8VkJOB80y/+DH+b3oLF2gMKA5jyygPO9omYK0c6s2tgCa20JKPmAmDagIhu3d2Y9iLbpFshaIWPTBnTZ436yrK8A55htrkX8WbXuUNzVBpIVASCZ0YxjDzrgvDUv1oBhM/Y8L9IPQZPc3kBybq0mAdUUKA0xEw0/hCwCHU05g+hPd4WgN80aGClYNoIMoBNcsZXzxIK6gtECB5az8SghJH/GbCwgBgT0GN+eiPgeJQ1XlxojkNQlREVgYKiDQ6s94tsLBCdCu/Tgcs4cHBwcHBz2Y+ztAsstzvY9HHPm4ODg4ODg4LCE4BZnCwxNKeopJx9nycRSeN2EcwtFCUsuWP5fgLeCcoFaL5wnQAvPh0CWJM7/T7R9jO4sQxNQ8qmbLB8W8MCsxGTHgy89pIYlE+6+g7fFUgOADHvvQaOZSrSqITbNCsRaYioGUg3MzYWYioGJToCJjmDK32513PH7EY4jFij71lcPfM62sgnicQM4/GhAaZCOeRstk2bIsHtJPNAVi5VdP0zhF23ivADKpW5ivy0EMNC8pZVtEXo2KVz6LCYrJBRUdxtTJdazU85Lbp9NRnPPP2O3trLzZ1ILyiScVG4UUhOjmUoIW2DR7rl+BGP9Lq2MBgSE8HJvTQmPt7d7ZT1skQgRYThiT0UjWR6gUw6g4u52IAAksYfZhLc+DQHVgLfk0shDWvThlwmFRgoVC5At/feEj8Oqh3ZPEgbd73sLK4D5ciP2K9sqhNJd0dqec0jB80BmkjLCbqGRgSf5uFjLfGvXl5THXQ4CGNKQRSAxQDPNkvpZ9oL9PeN8i7PbNp9FmA3xOMi8Pi1Y7oSFP6digbb9fE28xRlag8hmKnFoNRNGZnHoMDKIjUBzpw+hCaXRGNQgNFKZb995qcnZhUAS1lUUBiKNIOatY2mIv18poQOJakBdoWRjQODtVRhCpZogbCsEkiCEh9QKDUsr+OtZ79LQY9/GbLxlxQ4sS0LIyjGKzRRGCigSmI3BsiCJ5L6qz/CwC4ogGC7AaIRo1fxcFV60DZSfpWqwj2xHWyUQAsSIyKVFBsdaEBWBQknxL3vue0YBcZElX7RJ56UH6LKHING59M2mWZEXXmQ+qtIQ5KSGqIh8TPRK5+gBvv8VPNtmEgjbCq1pvkjKJCiMJSj5mVSOQriOctHqLbUg38qFSkA6xWHDmsVvfd6eXFFUPMftNn8mVZS0ucAn876FMYjaCuEEb6UbKUANwsz9EQ4sp7lEyEIhq9bcmy+HfQu3reng4ODg4LAfw21rLj045myBQUSoJR7I2pJoo5g5s+XqAKBIoJZwmXxXaFZCwoMUxInJRrFIqX0PeQE0KdQSDzMJJ1TPxh5mpwoo+8CqUgr4PkinLGdhBL5w1TAATlpHsQw9xgxLIMHCoCD4IuQEV7A9TWqAmUQg8ICpyQI6WmAoUrjs1jKitkJS9JFGHlataeKBhsiZg9E2P6f7MuqyGo05FjPNGDPAWs2obvJ5xsj02gb1sIX5B0Slbifb5GdoxSKaNhb4Pki1OQk5KMw/p7Dik0Jyv2YMWv7FLE5Hs+rpPCunHsRGIDGE1ACTHU5WHm97UCbORWgJBHg+GikzoZnYb6/VkxSAMJqvjeezdEUG2RUHvupBiaitUEsFyzD4LHdgiFnODYfNYWKigMYQJ603FbCtyTIGUTNFOJqiUwngR4SwrVANbfL55P3z2DBIyXZYQLdgY3c5EukDXohAFiyzu5uUhtJ50YSAlX8gjUS3AD+0FmX8nnoqcrY1E21G0kIky3zKmkFTATMZyWoMBiMumBB9q9DWEmGxKxjcHUuWzrGyHpmob1bkATKoJVxQ0dHcjy0l4MsQnggQa4HVRZoXvzFAW0kEKwi+MqgNFUCeQOQRgrpCoZlCB8ycBIlGLfFQ8gnjbQ9RW8FLDSeqxxp6GqhO97B6xtgiiyLWlphdazUC+KlhdktyYcRsgpy98iUXTUSyDCSZxxofm/eXFAhkAYoEGgMRis0UszEX79QSTuiHFF2G0Ur1BD1/MaSxEhn1BEUbY2J4bhQ84PiRFqRgweNSLYEUQLscgBrE0hjZ/DOK7zsxFxkUfQNFXWZ2tBmgMN3D1GqFetOHkQLwfRhSSGeZBYvaCqJmEMQax508wfc7e/39ab4WoQR8xUVMfmoQthW0UdCk0C4H8GWItpaoJQlq02EeeyXgeKO2AtXHANXB2hJh7foGis0UzTEfa0opHmwGdr5IRB6hFDBzaqRAu2cat0YixEUfQVuhf7INXxlU5mIMRpZ5k4472Z/hrr6Dg4ODg8N+jEyvbG/e77Bv4ZizBUavHRLBYC5hwcWcofFDGAJunSqCwE/A0MraAKWQgnMj5tkYkUFTzaCl5qAJuGeOzz+TAEFddXOQspwzwQa/hWKPXVJU4bwJyQK2UAkMsdl6LWUphiT2sKvNOWnVgNC4z8dUByj6AdYf2ILyJULLBEhr8XToxlls2lxBK0UuRVBPPWa0jGFGSIrcXDhj0PIcMsCaY1MeqxAeM1ZZvor0ba6a7vZJlhtljc4NaSAIIITH/dcjSSHAMh2BmC950WvITkRIdAtb61F+LXqvaWaFY6wAcFsDiWXRRttscm+g0VY98g3UzQ9TJoEQEtRrbN9m7YBEUpdZtPZRqYlhSODmywYhDaGeANqXqFQT/H5HhNRwvsv9t1QxNVFE0FaItcTkTIirf1/F8M4GglhDBRKV2RiiZiA1Wz55Mugyir43nwHTqscGzJ8v6CskUKhAxE2WsAC67y0UObeQiHOlwMxuYtrMWPXYX0H6GClo3DgpLFucjd+QTakls7MAsL0hEGs+IPJKgE5gpMB0hy11EBQgvB4jd4Bzziqcl+hpzklKdLubKwdmwlhImXKbKb7uomt55oWQ8LDl3gHMxh5aNW7X8GgThUbKMhy2nUITSvUEJAVmEx8zsYeRAvd/XOT8rYw9SyIPbd2VjiHi/LHD+rn9O7dX0C4HmIoBVDi3864ZiaL15jJWokQQW0GhZ8spl2kwBEUJdjSYDVUBi0sn1qt+RQFdptEiyyXLbKnEgEDUZrYpjTz0T7bRVDxf11dMnlMIKeArZkCz7TPyrIl5UASkD+XLPH6JHps6MtjZYskRqSm3XFtZVSjVEwjBOWdeFczah9zfOpAoRplFHDOiYazhpwblwOS5fu1yAJJduyhfmVwcupYy45eN48FII0g051epBNAKZZ9z2NpWLiXyZN7dwuPc37LPMUdthRUFttaC5yOcS/NcQ7L5unMjRfhyNwHsBYCzb1p6cIszBwcHBwcHB4clBLc4WwRUw8x2hGxVmJpXeahJ4HeTnq3g614iAj/FJ6ZtjcK7DJAhjQdbHgIJ3P6jAczEHuop56G0FDMBGbMkgiI6bR/FouLKN+FB+BGCAQIVuVoNRuWm3bva/PTcbPi4Z07ggVnJljpgFo2IsKGPUJlja50g1hgYiqEJGB6K0WlzrosAi0vuavmgtM1P5mlWQZcws2GZrtwUPWNuMhNoIGcYRVDsmp6rHqaml8mx0JTmTFhm05MfrxNAJWyVBLBlDdBjit5l/Vg0loU/NQmQ5OpKRQk0KRjinKrZhHN3Akm4d1aioxs5W+QLrpyTglkkL2fC+Pr02nR5IsB0vNNW2FkWQEg0Uq5I9A/mSq9Acr/jPoPtvy5DGRZlHZhsQylmVdqaK3LntoaYWlOGkYJzZfrC/NoV/AqPuUxYtrdSM6t8y/IB/bCbFzNP3Nfm+knRkxNYyX9d9A0MNGZiD5pSZqyIGQsCf0asJVYW+FyGwLmJng9FCWZjhZXb67m5NgDA93geeSGk8HDXrM9MUm/7supHpVmY1liBUikxl1jxYHt8IAmBBBqpRGoEUhPbamnu10BSPl6k5ErKtQc3uOoxkPAVX98sD6rYTEGSmSY2qZdYX+ExKw0hSDjnKi76kJpQ9HpyxYwBWrOoBAbFZgrfNzjylBkMhkBsWggkodP20Rhg5jfWAoERQNpB1FZc+SdZDHgwsiy9FNAmxZ2zEmsP5jzKkm9Qb7Kp+GBkuvNNsaCwJ31srgm0lUS5noBmKc+TitoKjf4or0ZcXUqxuRahngKDu5oIYr7eKpCoTndYMFcKzu8EUK4nqMzG8FKDxAo5Z+z0ljqzSnGxm4UjBTPFZBmbgaEOSrUErYEoZ8WGC7DjkO3eGgOc47W6xNWpALD+mDoKzRSGAEMKwhAMuOp6KFLwlcnvB7ta/PkkmfkCGUQeYSDinQVPGcTa7oxY0exYCxbmte2PvC7DJG3+WsbGRW2VW2DBX+CMo72t1HQFAfscbnHm4ODg4OCwH2OpOwT8+Mc/ximnnIJisYiRkRG87GUvm/f7bdu24c///M9RLpcxMjKCd77znUiS5GHO9sSAKwhwcHBwcHDYj7GUCwK+973v4ZxzzsHFF1+M5zznOSAi3HbbbfnvtdZ40YtehBUrVuBXv/oVpqam8PrXvx5EhM985jOPW7sebzjmbIEhINFIpfVPTO2WSafrlen58ARh65TPHoyCaW4pWI6hqVjkNJd7sHISBIOyz6Km0hB+OSqRGJuwqwUGIg104jyRW0rCg3eXc5kMSB9r1zdQmE7QUQC0sv6HCXY2bUFA4mHnjjIa9RCJAfzUYEWRt+FmEoFWX4jQlsOPVHhrIZTA4HAHO3eW8liU3XKBMfkWy0MSyLPtSoC3NjPvUc8HqZi3dbP4s21QpbrbZ9n2m4UySf5zbzK/EF6+ldVRdT5f0uqe1/4u874MJP+fmDaUEejoOjq6AbLberXEQ1tzMvlMzAKhW+7th7Tisi3FfQohc99GAPDsNRQy6Mp0kIEUHrY3fd6WAnoKHAR2NAOUyimMJ5AaTmZO1gWozMXwJWG0FSIu+jCjnBheSyQGdzUhDWHFzgaCREP7vEXV6OctsUBE7OdpuMAiT6bPrlVWkJH1cYaswEL3eJICuXdiryxAJlS6uqSgTDdWAuXb+L4kvlweb7Pxdr9CJMtoKg+d4yI07S500TeA72Oi3YAIy4AxKHhAsiaAKPR12561MysckTKXpEmNyLe+QwmUA4MDS3x9Io/la7JEcUMCZSsSTGC5DAAII43KbAySgotrSKBvNoafWskNu5VW9A1KPjBUAMq1BGnk8R9Hw6kBvjIsWSFFt4gn7bAEiSGsWtPCyqpCweOtOADotD0Mjre6hRWtWYAMSvWkez2IJVogfQiP/UJTI1AoakRtZb9X8Ox2ez5/7Da2JwLMJLy1n0ReXoDgp5xgHyQsoZGaGFMdH7taPhLDyfJx0Ycm5HFGbdXtfyHRWctJ8GnksehwNmeFxN33VuGnvH0KMiCdYrpjix6EAJHB5PYib1lumUOxmaJvuoPQSgLxwC4giDUqczGKnkHUUXlo2udiCAIhjFneCOBUEGEon3PX7BL51jQAiKGDUPQNdsxJGE/k839DNeExZgxiLVFLWUqjXE/m7f5lEiQkBepDBURthcJ0kkvuzJtf+ymUUnjXu96FSy65BG95y1twxBFHYOPGjXjFK16RH3PllVfizjvvxNe//nUcf/zxOP300/Hxj38cX/jCF1Cr1Rax9XsHd/UdHBwcHBz2Y+wrh4BarTbvK47jvWrXTTfdhJ07d0JKieOPPx5r1qzBn/3Zn+GOO+7Ij/nNb36DY445BgcccED+2vOf/3zEcYwbb7xxrz5/MeEWZwsMAj9NpYaTUGPNUhokvZyVCCVhdb/qSmlYsUwpfFadQDdJtVc2ouh3k7InZ0J4glCd6WBXyxYEtDq2iEBhaqKAcj1BbAVBs3PoQCLwkNvweMLHtgcqMFKgvi3AunVNJLFkqYa2QqpZbPX+iQADk21UZruTcTDkZNlqf4Jdm0oAAdqkeOYBbW5/lryfPZ1KmUtkkEmtUKzP7IGyDEBQ4H6K+qzQY6ErHCslRGVFblXTK8/AFlV+93tj5Ru8EEYQFxhkBQMq7rItuz29jhRULh48FXOCeqLbUJRAmRi1xIOxNjgtxTIPh26chScCWzDAyeXMnDG70lYpPBHkifgEg0bKjIkhlt/oFkkoa60lcMeMj8ZtPobGWggk32BpkqB9CU8AE20fpXqCci1BqZ6gmXqICz6ituKk9ZRtd0r2CT4u+ghkAUW/yp/je4DvM+PZw2hSD7OXFwfopMuO2WsEw3ZKkJIT+qWAEAJS8Liuhhpj7YD73VpyZcUpniCkmuNXhpkzj1h8txpolMppbkXlCQC+h22NMBcxrqWAnNSgpNm9eLmgrgA6SZcJLA+jqSRizWNSE8uQFDygEnASfWo60KRYl1UJDBeYPdGUQvkS1dCgXgvRqoYIYg1fGaSGizQ8ZRAkGsUmH7uioFAJNIoW5AAAADfNSURBVDwRYHakiMHxFrMqUjBDNBtzwU3GmllUA2a4BgcS9IXAmnIKTcx4lcoK2pe2IAI5Y5SGXvcaCYlt9TC/bp4IMBASpiYKnLCuBWqzzKBm8iE51aMThLKIW24ayRnBLLYk8hAXuQCjGgC1pIXZ2ENT8bVZtb2GUj1BwYbTLge2WEOCmlOA5+OoY6dQaKYYHG9BAghlEfW0AwiJFavaSCMPrb4wH2uNWsjnsInzlZEUUVvl7KSfGhYLtgUHmdBtq4/7p9UXoqUEpCT0T7ZhiBk45UuMd2QeerGZMgsWlnDD/67iOJopYAxmRA2BJOzczmx94SAuZij7Oh9rmoB6IjC8qwFh2NIrux5GCiSRhyDWGBzj+3lniIu74Hvzi2weZ0hj9voLANatW4f+/v786yMf+chetev+++8HAFxwwQV4//vfj8suuwyDg4N41rOehenpaQDArl27sGrVqnnvGxwcRBiG2LVr1159/mLCLc4cHBwcHBwc9hrbt2/H3Nxc/vUP//APezzuggsugBDiD37dcMMNMHbRd9555+HlL385TjzxRHzlK1+BEALf/e538/NlKTO9IKI9vv5EgVucLTDq1k6F2TMBz2pEakqBtAMiDQNgpbWIyWQfTK99D8BMRSbCqtkCKtYsalpopqhU2XwbAKZrAS69JwQKfDzpFMYI1IYKVjRVA0EBYaThrdrNokV4wK80l78PAWUfGBstY1eLT/7za1ahnnqYGCuyubbH8gxSIH9SPrDfYPUDcwBYjHU4WteVNegVV/U9iOoaiPJwNxcsjICCFYeVshtzJjLby9aUCl3GTCtm12zuWGpi/j4owBNW7DYs5TIkEJLzxjKGyvNtvhTnvijDoryeYPFOIYSVq4iRGGaCGmo6F0RtKqCjkRudE4w1vbcdK1hWJBM5pZ7cGCLCWDuwMhI6P74r7SFzs+tWNYQwlBtfr9xeg6cMm5sbgWIzgQok0sjDbTMSUUehf7KF6nQbnjLwFdvKFGz+kBCSZRgyGQVrkdPNP/L52mQ5edlx9n/hR7nMAMug2Jw90vk5DAnMxHx80euO7Uz0GH0rEef9RqinzJyREPk4B3ic/v6uKrMRGcsUFIC0g3oqUJ3uQHhRd76YHjkNa98EY2CKfZbRTG0uaFcgeDbmHKhEtyGEQD1lNkgKLxcfXn14C7EW6LR9tikybITdTD22cpICpVqCQjPBqu01SEG5tuuKBxvMYFqJibjoI0gU+gIwYyO7TEslYLmNsXFmGQfCrvBxEnso1RMYQazXbPvUU6YrGkwGE51MqsGDEIJtlo6ZhZECkx2JndsriI1kFt4Y7ic77wQE1q5vINYi38YKYo3Q5psFsWb7p9RDYoCtdT5/GvogKVD0DQ59DrNo+ZixUhevPiLJ7ZsUsbVUrDn2u28fwsjOBlZur8+zSxOGgALbfjVqLAeTyZG0ywHWVzTfA/wQaE7DSB4TkWdQaKaItcTMdIQ08lhKAxo64OsGsOSRl3KOogiKKFVSaF/mUh0PNGLeybiJTcyHV3Q4PzJDIcQDDRbxbgzwOOhosDyNjYPzDDvon2whjTyMrGqho6nLdi4Q9lW1ZrVanfcVRdEeP+///J//g02bNv3Br2OOOQZr1qwBABx99NH5e6MowiGHHIJt27YBAFavXv0QhmxmZgZpmj6EUXsiwVVrOjg4ODg47MdY6GrNkZERjIyMPOJxJ554IqIowt13341nPOMZAIA0TbF161YcdNBBAIBTTz0VH/7whzE6Opov5q688kpEUYQTTzzxMUaydOCYswVGXTFbMpt4OXsWa1vB54cQMkA14KqnzCVGBEVoSq0hNvXkJnVzeiT4fI2UGbGCx8yC9iVqsyHq/wpmoOzTmJSEA+6fY4HPrIoylTjg2ulcADOrntO+hAokTjt5EvUUMEZgx0TE1VnTCe6vBZidLiC1uScAs0arigRPAIf1EeIiVxveV2vANwDKA1xdCTA7Y0VNk1I5Z7ggfaBQ6VZr2hyyzPIFxuaekeG8sWKV8/OCIp+vNJBXwM4lOs9Zk5b5EV4E+CHnoNl4+RsD7XE/KZPkgpiGdF5dm7E9mlJ4gqBJYTbmHKhIGqiUrW7aSmLTbcPQhisTd7+HZQxXLroZFNDRCrOxl3++ISAzrgYADQVFLG7ZN90BSYGZpgc/NdC+h6idwhAzFUHMFZkDE638M/3UIA19tnuyuUNBrNG3JoUnfGYzANvvPXlPlk1kFszvVtDaPhM+j6+Wmuvm+9l2C+EBYQAiNrZuKhZbHoiYLcvyKw1paCjUU2autEmtUbtEbJq5nZNSnPcoJeHQagwRBJybZnOMhiPiKslidZ4tWJ7DKAW33wotp1a0N9aco3bHdARPAPfX59sX7WwJbGl07YU0pSgUNWZjD8YIHLBlFn3TbVTmYkzHAp5lJkkKSEOYWlNBrCVWFBVi3YHUhL7pNvzUoF0JsGJnHWnoo6WQC9AKzwMpFh3WgcSRB3Zw92iI4YICwaClJLbc15//gYy15LHt+ZwDml0jY7BxIGUWMeQcx9QA0y0JkgLfv7kCPcZ5sMycEfedFSIOZAG+b1BLYasnO5CG0C7z70kKJAYIBKHgAVvGIhw33IEKJArNBCXfwA8MpLG2UjKrNmemzlc8VrmvBdpaQsgAGw6fQxp5LP5qx5qfWTBVSkhNjNJkjEZ/xCxlPeGqTN/w/QPg8XigRKkeI/II5VoCZQRaTbaeamu+h/ZPtjHV4TG/orCO35ukeYV7ZmIPKXHHdIRGyvfGFTvrqA7EaCvJbLniHNqCB/z+hwMIYo1SPUEtBfe9DFCZ68BPDaZWV/KK3WKRbday9+/vqFareMtb3oLzzz8fV155Je6++2689a1vBQC88pWvBACcccYZOProo/G6170ON998M6666iqce+65OOecc1CtVhez+XsFx5w5ODg4ODjsxxDUrbj8Y9//eOGSSy6B7/t43eteh3a7jVNOOQX/7//9PwwODgIAPM/Dj3/8Y7ztbW/DaaedhmKxiNe85jX42Mc+9ri1aSHgFmcODg4ODg77MfZW5f/xdAgIggAf+9jH/uBia/369bjssssetzYsBhxvusBItEQt8bClFqGtJWqJRC31oE0KFHhbrq0kJ+ULya/bpPVMnDA1KRBVYKBzkU8CYcx6WIaxRmrY9xIA5mYjzI6UuknQAAaHY7QrARqpx+f1C1BKYPsRQ5ys7IX5to2nDOKij+ECQRNvf+7cXkGxkSBINL52XT/6t7bgKZMnPq+vsJBl2Sem8sEJtxNtH+QFLJ0QBjZx3D4jeCE8GVhx2RCi2M/bEZWhPEFW+BELzWZbajZ+ZRI+3g+Bygjg+TB+wJ8lfd7y8kOQF9g+LUCVq4BKMB3vsn3IyeIiKPL2lhdCE3uMJqaNxLRRS72uvAV4qyvWErFuYqLjIzUsadJqBphN2EtzcKiTbz81ld0qFSyhoawIbbZtqqDywg5IH5r4fbmXpR0TtcTDPXMsvZBGHooFDSMFmtUQjYECJ8kDmBspodhMMbG2D7WEt6OmV5UhDKE63UaQKJAUmBspomC9VrMtZBEE3Mehj9wnMxOhzQom7LZ6b9m/MrZYpbd4QPpAGMBAI5IsBdJMWZDZQMNAIzFtGGh0VJ23z22StidYEoHHI29BqpT7cnqyiHJggELEgspWViUxQG2IpVLg29ezbdpSsesZKiQMacRaYLQVoqlmEErg099aiY7m1ADe+ufxMRuzNEIt8SCFh8S0sX1rHxIDtGo+ZlaWMb6uijTirbFMgLZZDTE7UoIwLGxbDTT6gkG0KwGm1lSQRB4qsx2MravCeJxEnkmZwPcAw3G3+kI8aZDysWdIo6kkSqMx+3IKj+d9aYA9WAe6qQyQEgNh5q0p4csQq4qEJPHgKYPRHRWU6gmkgBWhFcBAHxB0/VWnJgt5odHU6gpafSFLhcQaKpCop1wQEHkGSgmsKLKn5MzKMo+NVOapD0KIXKB4VTHF1GruB0NAbJos0OyHedJ+uxJ0C1EAJEXfzpE09ydtDERo9YVII499LLMCAunj0CNmMXFAHwwBjYEIc4mAHmNx4CyRP428fO6Esoj6UIH7wSg0x7iwIQ09wAtx46TI/U53HDaIwCPMxpxeAt8HlMbmmoBa6+femvVU5Pe9mZVleNabtNUXodBMcciB7W4ag8N+DcecOTg4ODg47MdYyszZ/gq3OFtg3DDhY4dhu51n6gh3zQqMtSXK/hSGogZKxX78dnMRv94e4BWHjKKRtjAcjWBHYwqxEbhzugBNwCsPGcRM5wGsXHEY5tJxbG80ceWOInZMhlC+xP2bq5gb6cBIgWgT2/OIAw+Hqa6AJoWpiRRBrHHtrgCRF+OQ6lY0/t8QClGK3497mDuijtungIGohZmVg0gjD3eMtTA2WoJUBq2aj9GD+xHGGtM7IwybJhr9XCRQGyzglgdnUUtTbJ3yEUYaU6vLmOxsw01TBRw/shUrBg+GKA0yC1baxaxhVMJ0ZyskPHgyAEmDUt8gCAYFjxN7O7qBWNehlUIYFCFAKAyvw67mFqyqrEWsm0iSaQyOHISJ9hZ40sfQ8Dr8fvM4DtkwgNnO/WimhL5wDs00xUhhGD97oIKXHDyOmbiFjm6gVOrHltoU1pRqqKcdBJKwpR6hmUqMtwtYWWQbJpYlSDHRLiLyDO6e83DblMRgVMS9dwxAqTkkpoNd95Zw61QRtcTDjQ8GeNJgCE8+gJ/tKKPsc1HAyqLG+soM+sNpXD9ewh0zAi9YF+LmnSXcNOXhWWu0NZAyaMS78OuxPtz+k0G01kYY3tnA/ZuriNoJAJYR+N9xiXIAqEAiLvjoDIW49n9XwO9TkIbgK43ZFSXMjRQRthWkJoyPlrGjuRnVsIS+wdXwD2E5EjIpRHEQiFhIODYtLqoA4AlmBTrogMhACImtc+M4sJxgaM1RiIVCR88hLBZRXLURE+2t2Fwr4IGGRC0VWFP0cdKKGoYL07h7toD1lV2YTTz89sEypicL2H7ULtw2OoCZIyexq9VGSgJfuquIRj3EzVMC3qzGrVNFrN9wNH51u8ZzDxyFgMDNu3wEicZEvBUr1m9Epxgi2nAQxMihQFSBqK7CrJlGWChiprMDN0z2IZSEllK4aweLsv5mXCDVAqkJASSItcSmzRV4HuHWIcJwYSdumfQgJzVunWaZhrCtMLGuD1ISfnSbQlz0kUYevNTkQr+bZgoo+gZPHp5F86BByEkWl231seyAkQL/b1MJbzv9EIhOAyhUQP2rcePmMQSxxua6wMxPfNzxlBCRl+LOmTCXkJjsbMMtUz6OG34QgYwwt3IlxJonITFthMWNuH3rJA6sTKP/iA3Y1RrFLdMVtBo+Gv0RwrkUrb4Qt04x23TyxsO4v6RERyrsau1A+OsR3Hw4Fx15yuTMGUl+7fKbBPpOmcPOlsDojgrunq3DTw3qQwXcOOnj3k2D6Kz2sWJ7HdhwCDByCGbTMdxfi3IB35snIwB13DwZ4cgBhdpsH0p+DGEINaqjMnIwxkZj6Igg1hyFTRMsoxC1FSYOqKDYTNEuB7h1KsQhfduZjZfAzu1VxEUf985x268ZZQFmPzX4zViIij8N7a/Bj+6OcMpBwOH92xC1ByDWb0TaNwhfGdQHIi5aWHUE7rqwhpve0oSXGvipwZZvl/HL1zRxaDXESRs3AEmKO27og1ISMytLGBxv4epb+nHeq8tIwgC1EbZsml5ZAnkC/ZNt7JgAbl9BOGrNEWgle6eu/1ggNUHKpemtub/CLc4cHBwcHBz2ZxjsVUEAFs7MYL+BIHocyywcctRqNfT39+PE930fg2220TGeyMvDhTUDTkMrgDjTwczKErzUoDXQFfLrH29BGkKplqBTDqACiVZfCCMFKnMx4oNCdNo+Bnc1kYYeorbCzLoyvCZbrazYWcfcSAlx0YfyJXzFdjFxkRmQxsoCYIVyB8daaAxE+VP5ip0NtCsBtM95I9lTZ72nfVITWgMR+sdbLEarCQ8e0o9CM0XfbAxPGcyOFFG2Yp0AszvZOavTHTT7Qjbztn0xMNnmPhwqwEgWuc1yetLIQ2U25twaAEITyBMsWAlgfF0fjC9RnWwjiDWa1TAX/dS+zK2MorZCZTbG6CH9EJpQridsGl8OcqNmvkYpZlaWoQKJci1BuxwgSFiIs9BMEBcDdKy0wOB4M7eTGV9Xzfsxizvt8+E1dS5qWa4nmF5Zyg2lMwagVQ0xONZCuxwgWRFAxQKV2RjV6Q5qQwW0qiEqszFqI0WEkUY4mmJ4VwMzKzm3zE8NmtUQJAXicoCVD9QwN1LMPzeNPAhDGB5tYtdBXHruKwM94IEa3J9CsxVYbbCAofEW4qKPJPKgfYnhXU20+sJchDjDzOoyIhtLqZ6geVABqsnXJpOXUIFEuxwgjDWafSF0IFGqJfl5stfJYyHXLOZiM8XUmjJWb61xbpkdR+Vagqk15dycutBMkR4SIJ6SKK7QwFaDzqoQ/jTbHa27Zxr3H7cSK7bXIQyhMtvB5Nq+fJzN2n7ybd4lALZrmumgXeZrXWim8FP+fWYAXh8qoH+yjZnVZQzuamJupIi+6Q7qq4sY3N7MZWcqszGa1RDlGudvZnM5i1Ot9UGTXEnXNxvDSIHGQMRsjTI44P5ZbHnSCIuqHhTC36lsDhOfJ5vTRgHDo01Mra2gf7yF9roIxe1xbuTd7GO2TAcsspqN/bjoozIXoz5UwMrtdQSxgp8ajK2rsqQEkM+/krWgSkMPxhMYHm1ifF0fWzwVffRPtvM53RiIIH1gcDu3yQ8MSqMxmn0hgkSjbzZGuxzAUwZp6MFXJr9PZufvm42RZPeB0EPUUSjVEuw8YhBerHHAllmMHTcAlUr07WpDGsLMyhL6J9s8flaXIQYEyg/wDkOjP0K5nnAs1pDeSJHfW6X97FI9gfY5n29kZwMzK0uoznTyOdCshigcxHIf+vcsNSI1oVMJYHyJoK3y8VmZizG1upzPmcpcjKitUBssQNTruOZfz8Lc3NzjJgmR/V161Ys/jzAo/tHnSdI2vnPZmx/Xtu5vcMzZAiFbA+u4BRV7UMKH8TBvcebFGorszSbpQMUESgm6o/LzqJhvMmmSQPkBlJFQQcp/6OIEqp1Cd3youAVFHrxYQXcA6miQNkiTFlQMKOlBKwlow++TvGjQHZ0vzlTchooVRGyghGffG0BrCSU9qDgFlIGKu+2TGtAdBRW3kSa8OOP2pFBJAqMMVGyg4hTS9okysnvOJIaKFYwHaGO1vmLW3VIdbeNUULaWRZMHFSd5H2WLs9R6j+qOhPElVNyBiDW3OSUoI6CV5D43Al6skSYxdMeH0AQVp/ASBeXz4sxLFGAIMkmhYnYHUHEK5QcQiYZMNNIkQeoFUH5gr2ErX5yp2Mv7MYtbBz6ooyES/sOjkgS6Q3l/qoTPrzspXws/gOr40DFfax4jxv4+ge4YKNKQsbLXyiq5p9zfJAW0F9jfGQir0q8g+Y9e0oK2Gk/Qhr/vdBdnKo6hOxoqaUNJHwoSWkl7PgWx2+JMd8D9Df5fdTR0R3T7RQoev74PGRvoIOVxEKewlz5/nTzu7yxmlaTQHeSx8DjiY/hzbR/GCqrtQ3ckVFsDMUF1UiBW3Pa0Bd1pQiUtwBDStAMV8x9llaRQHcPXRxkoyY3SSkLFMZTvQ3tBd0wJDyIxEInmfoo7ti0tvjZxbP9vQcGzcyjhvolTINU89qXoxtn2QDEvzlSSwAge/5QSoAzStAUVN22cKWDHcXaebE4blbVD8FjqKKg4AUnB49z2lzYCIjbwYh77WmTzS/OcShQoNVCxD22ysZ3w58cp9xt5MJ69Nh0J0gZa+FBxJ7+/6Y4C+d02ZfchHaQQqYay9zdSht/TszjLzq+SBAr2HmHvdWmSQHdC2w8tqE4AnfL8574gqLiDNEmhOoDoCKiYF71830rz/xUkjBD5vVXaz06TBEZLqHyeZfdrld9jVJuvj46Jx7cGtO/D+BKio+BlD0ZJDNXp/p1QcQKZKJ6f9h62EPyJTlpQe8GcadXeh61xABxztmC4//77ceihhy52MxwcHBwcnkDYvHkzDjnkkMfl3J1OBxs2bNgnBuGrV6/Gli1bUCgU9kHLHNzibIEwOzuLwcFBbNu2Df39/YvdnD8atVoN69atw/bt25+w9PVyiAFYHnEshxgAF8dSwnKIAQDm5uawfv16zMzMYGBg4HH7nE6ngyRJ9vo8YRi6hdk+hNvWXCBIq1vT39//hL5hZMiMbZ/IWA4xAMsjjuUQA+DiWEpYDjEA3b8djxcKhYJbVC1BOKU7BwcHBwcHB4clBLc4c3BwcHBwcHBYQnCLswVCFEU4//zzEUXRIx+8hLEc4lgOMQDLI47lEAPg4lhKWA4xAMsnDoc/Dq4gwMHBwcHBwcFhCcExZw4ODg4ODg4OSwhucebg4ODg4ODgsITgFmcODg4ODg4ODksIbnHm4ODg4ODg4LCE4BZnDvOwHOpDlkMMDksLy2FMLYcYHBz2F7jF2V4iTVPs3Lkz//mJegPsdDp43/veh89//vOL3ZS9gtYa9Xp9sZuxV4jjGNdddx0eeOCBxW7KXmE5zA03L5YWlsPcWA7zwuHxh1uc7QU+/vGP4/DDD8eLXvQivPjFL8ZvfvMbCCEWu1mPGV/60pewevVqXH/99QiCAO12e7Gb9EfhE5/4BE477TSceeaZePe7343NmzcDAIwxi9yyR49PfvKTOPjgg/HXf/3XOO644/C5z30OWuvFbtZjxnKYG25eLC0sh7mxHOaFwwKBHP4ofPzjH6eDDz6Y/uu//ou+/OUv00te8hIaGRmhX/ziF4vdtMeE++67j/7kT/6EPve5zy12U/5o3HPPPfSc5zyHDj/8cLr00kvpve99Lz3taU+j5z3veYvdtMeE97///bRx40b68Y9/TPfeey994AMfoIGBAWq1WovdtMeE5TA33LxYWlgOc2M5zAuHhYNbnD1GaK0pTVP6sz/7M3rrW98673fPeMYz6AUveAHdfPPNi9O4PwIf//jH6fjjjyciogceeIA+8IEP0Be/+EW69tprF7lljw5aa/r4xz9OL3zhC2nnzp3569/97nfpuOOOo02bNi1i6x49Jicn6ZRTTqGPfexj+Wv33HMPHX300TQxMUFERMaYxWreo8JymhtuXiwdPNHnxnKaFw4LB7et+RghpYQxBrfddhtOOOEEAJyXAjDtfs899+Dyyy9HHMeL2cxHBNk8h/vuuw/Pe97z8NOf/hQnnXQSfve73+Fzn/scnvvc5+Lf//3fl/xWDhHh8MMPx9vf/nYccMAB+VZNpVLBrl27MDw8vMgtfHQol8u49dZb51m1nHfeeVizZg2++93v4sEHH1zE1j06LIe54ebF0sMTfW4sh3nhsPBwi7NHwH/+53/ib/7mb/Cf//mfGB8fBwCEYYinPe1p+PrXvw4AKBQKMMbgxBNPxBlnnIHvfe97mJycXMxmPwS7x5HlOQwMDOA73/kOfvKTn+Ciiy7CZZddht/97nd4xzvega9+9av45S9/ubgN3w2XX355/geUiOB5Hl70ohfhhS98IQDkcdVqNRxwwAEoFouL1taHQ28MACdrFwoFnHvuufjHf/xHnHnmmejv78e9996LJz/5yfj0pz+Nl73sZbjssssWsdUPxXKYG25eLC0sh7mxHOaFwxLAYlF2Sx27du2i5z73ubR27Vp66UtfSuvXr6eNGzfS//7v/xIR0de//nVau3Yt/eQnPyEiona7TURE27dvJyFEftxiY09xHHnkkXTdddcREdGNN95Iq1evJikl/frXv87fNzc3R4cffjh96lOfWqymz8Odd95Jz3rWs0gIQRdeeCER8XbB7si2N971rnfR6173uoc9bjHwaGJ44IEH6JxzzqFXv/rVpJQiIo7phBNOoPe9731LIpblMDfcvFg684JoecyN5TAvHJYOHHP2MLj22msxOjqKm266Cf/93/+Ne+65B9VqFRdeeCFuv/12PO95z8NTn/pUXHzxxQD4SYiIEEUR1q1bhzvvvHORI2DsKY6+vj5cfPHFuPnmm3HsscfipS99KaIogpQ8HIwxqFarGBoaWhJxbN26Ff/8z/+MFStW4J3vfCc++tGPYnx8HFLKh5ShZwzBFVdcgWc/+9kAeFth69atABavbP3RxjA0NITf/e53eP3rXw/P89DpdCCEwNDQEG655Zb8Gi0mlsPccPNiacwLYPnMjeUwLxyWDhb/Tr8EQUS49tprsWLFCvT19cEYgyiK8MlPfhLj4+P44he/iBUrVuCcc87B1q1bce655yJNUwghcNtttyGKovwGuFTjGBsbw1e/+lVIKfH2t78da9euxYUXXoh7770XUkps2rQJxhicffbZix0GVq5ciac85Sl4z3veg/e+973YsGED/uZv/uZhj7/11lsxOzuLF7zgBZiensab3vQmHHLIIbjnnnsWrWz90cZQKBRQq9Vw44035j/fc889aDabOOussxa62Q/Bcpgbbl4snXkBLI+5sRzmhcMSw2LQdUsZGf3/93//93TUUUcREeUUOhHR+973Pnra056WV21961vfolKpRCeccAK94Q1voGq1Sm9+85up3W4vagXRo43jl7/8JRERXXfddbRu3Tpav349vepVr6Lh4WF69atfTbVabeEb34Msjk6nk7/2ne98Z942wO7bGd/61rfo5JNPpo985CNUrVbpmc98Jt15550L1+jd8FhiSJKELrnkEhJC0FlnnUXvfOc7aeXKlfTyl7+cZmZmFrztvVgOc8PNi6UzL4iWx9xYDvPCYelhv12cPdwkyF6/8cYbKQgC+tnPfkZE3ZvHli1baMOGDfRv//Zv+Xuuuuoq+tjHPkZ/+Zd/SZdddtnj3PI9t/fhXn+kOD772c/mx95+++30jW98g/6//+//o5/+9KcL0PqHtvfRHFOr1ejFL34xnXzyyXs87vWvfz0JIejwww+n733ve/u0nY+mfY/mmEeK4V/+5V/ozW9+M730pS/Nc1QWCsthbrh58VAs1rwgWj5zY094Is0LhycO9svFWZIklCTJHzxmcnKSXvayl9Gxxx6bv5Y9Db3oRS+is84663Ft46PB/hTH7rjuuusoiiL6z//8TyLimDI248tf/jJ9/vOf3+ft/EPYVzHMzc09Hs171Oh0Orl2FNGe/6gu9TG1HGIgenRx7I6lNi+I9l0cizk3arUaXXXVVUT08IUUT4Qx5fDEwX63OPvIRz5Cz372s+lFL3oRffKTn8xvGnuacFdddRUNDg7SRRddlL8WxzE997nPpfe85z0L1uY9YX+MoxdJktC73/1uWrduHd155530mte8hs477zyK43ghmj0P+zKGD3zgA9RoNBai2Q/BRRddRMceeyw9/elPp7PPPps2b95MRPO3aDIs1TG1HGIgemxx9GIpzQuifRvHYs2NsbExiqKIhBC0Y8cOInr4BeZSHlMOTyzsN4uzm2++mU4++WQ6+uij6Ytf/CKdffbZdMIJJ9A73vGOh31PHMf02c9+loQQ9Hd/93f0i1/8gj7zmc/QAQcckD9FLTT25zh2xw033EBCCBJC0JFHHrng+TPLIQYiZilOOOEEOuqoo+g73/kOXXLJJfT0pz+dXvnKVz7se5bamFoOMRD9cXHsjifqmNodSyEOYwzdfffd9Kd/+qd0+OGH08tf/vL89T1hKY4phycm9ovFWaPRoL//+7+ns88+e17i6Pnnn08vfOELaWpq6g++/5JLLqFnPOMZdNRRR9H69evpu9/97uPc4j3DxcEwxtBVV11Fq1evpvXr1y9KzsZyiCHDhRdeSG9+85vnbRu97W1vo7/8y7/Mf364P0ZLZUwthxiI9i6O5TKmllIcRERXXHEFnXbaafSLX/yCpJSPygtzKY0phycmlvXiLJv89XqdPvvZz9I111xDRERpmhIR0ac+9Sk67LDD8p93R++2lDFm0SqbXBzzkaYpfeQjH6ELLrjg8W3wHrAcYiCa/4dx165ddO+99+Y/K6Xo9NNPp4suuojuuuuuPb5/KYyp5RBD9tkZ/pg4MjzRx1SGpTC/e/HNb36T3va2t5Exhl784hfTU57yFCLimHbfnl0qY8rhiY9luTj7+c9/nn+fTbbeSZRNoA996EP0spe97BETVBervNnF8VBkv1toNfDlEAPR/Dj2hG9+85vU399PRx55JJ100km0YcMGete73vWwxy/GmFoOMRDt2ziWy5haCvN797b867/+a74du3XrViqXy/TSl76U/vRP/5Suv/76PZ7PSWI47C2W1eLsxhtvpKc+9akkhKBvfvObRER7ZDCyifOSl7wkT9xcSpPJxbF04lgOMRA9+jj+4z/+g7773e9SHMc0PT1Nl112GQkh6PbbbyeixY1pOcRA5OJYSnE8mhje8IY30Be/+EUiIvrhD39IQ0NDJISgf//3f1/w9jrsPxBEi+jbsQ/x+9//Hueddx5KpRKEELjllltw9913A2D15t0VsOv1Og499FB861vfwnOe8xwAwI4dO3DggQfu8fiFgotj6cSxHGIAHl0cxpjcLqe3nVu2bMFTn/pUfPSjH8Ub3/jGRWk/sDxiAFwcwNKJ45FiMMbA8zy8973vRb1ex44dO3DllVfiL/7iL/DTn/4UZ599Nv75n/85j9PBYZ9igReDjxsmJyfpAx/4AN1+++30q1/9ijZs2EDnn38+Ee25bPuHP/whbdiwgYwx9OCDD9LZZ59Nw8PDNDo6usAtnw8Xx9KJYznEQPTY4+jFV7/6VTrllFNo165dC9DSh8dyiIHIxUG0dOJ4tDGceeaZJKWkl7/85bRp0yYiIvr85z9PQoh5eXUODvsSy2JxltHi7XabiIharRZdeOGFNDg4mP9h3P2G8dGPfpTOPPNMuvjii6lUKtFzn/tc2rp168I2fDe4OJZOHMshBqI/Lo6JiQnauXMnffCDH6QDDjiA/umf/omUUotuufREjoHIxbGU4ng0MWQK/7fddhtdffXV82KanJyk888/n6anpxe45Q77C5bF4qwXWSLpHXfcQSeffDK9+tWvJqKH5jU8/elPz/VzFtqS5dHAxbF0sBxiIHp0cdx111100UUX0RFHHEFHH330IyZ7LzSWQwxELo6lhIeLYTGKKxwcMjxhFme7lyj3IkvgNMbkv0vTlL785S9TX19fbjibJAmlaUrtdpvOO+88+upXv7pAre/CxbF04lgOMRDtmzgyBfk4jumqq66iH/zgBwvR9BzLIQYiF8dSimNfze/Hasvm4LAv8IRYnF1yySX0lre8hT74wQ/S+Ph4/voj6Xpt376dzjzzTDrttNNo27Zt9PKXv3xR/nhmcHEsnTiWQwxE+zaOzMdwobEcYiBycSylOPZlDF/72tcci+aw4FjSi7Mf/vCHtG7dOjrhhBPorW99K61atYqe+cxnUr1en3fct7/9bSoUCvS1r33tIef41re+RUIIklLSk570pEXJAXJxdLHYcSyHGIiWRxzLIQYiF0cvFjuO5RCDgwPREl6cXXHFFfSMZzyD/vmf/zmnnTdt2kRCCLrvvvuIiGh2dpZe/epX04oVK+hjH/tYnsBJxE9IP/jBD2h4eJgOP/xwuuKKK1wc+3kcyyGG5RLHcojBxbG04lgOMTg4ZFiyi7Nt27bRt7/9bWo0Gvlrl19+Ob3qVa/KK2TiOKZvf/vbe5QqaDab9MY3vjEXBF0suDgYSyGO5RAD0fKIYznEQOTiyLAU4lgOMTg4ZFgyi7Nrr72WHnjggXmv9ZYuX3jhhRRFEW3YsIE2bNhAH/rQhx5yfIY92essFFwcD8VixbEcYiBaHnEshxiIXBx7ghtTDg77Hou+OLvqqqtow4YNdNBBB9GaNWvoda97Hd10001E1J0w119/PZ1xxhn0ta99jW677Tb6whe+QAcddBBddNFFi25hksHFsXTiWA4xEC2POJZDDEQujqUUx3KIwcHhkbCoi7Pt27fTqaeeSueddx498MAD9KMf/Yie8pSn0HOf+9x5ystxHD+knPmMM86gs88+e6GbvEe4OJZOHMshBqLlEcdyiIHIxUG0dOJYDjE4ODwaLKoh2KZNm3DzzTfj9a9/PdavX48Xv/jFuVfZ+9///vw43/cRBAEAwBiDWq2GJEmwZs2axWr6PLg4lk4cyyEGYHnEsRxiAFwcSymO5RCDg8OjwaIuzqanp3HkkUfCGJO/dvrpp+MVr3gFfvvb3+KKK64AgHmmss1mExdffDHm5ubwF3/xFwve5j3BxbF04lgOMQDLI47lEAPg4lhKcSyHGBwcHhUWk7a77bbbKIoi+p//+Z95r99111105pln0hve8Ib8tW9/+9v0zne+kw455BA69thj6Xe/+91CN/dh4eJYOnEshxiIlkccyyEGIhfHUopjOcTg4PBosKjM2THHHIPnPOc5+MQnPoFGo5G/vnHjRqxfvx67du1Cu90GABxxxBEYHR3FBz/4Qdx666046aSTFqvZD4GLY+nEsRxiAJZHHMshBsDFsZTiWA4xODg8Kiz26vCWW24h3/fp3//93+cJAl544YW0fv36h7XbWGpwcSwdLIcYiJZHHMshBiIXx1LCcojBweGR4C/24vC4447D3//93+NDH/oQPM/D2WefDWMMrr/+erz2ta+F7y96Ex8VXBxLB8shBmB5xLEcYgBcHEsJyyEGB4dHgiAiWuxGAMDb3/52fO9738P69esxPj6OUqmE73znOzjmmGMWu2mPCS6OpYPlEAOwPOJYDjEALo6lhOUQg4PDw2HJLM7iOMadd96JW265BWEY4rWvfe1iN+mPgotj6WA5xAAsjziWQwyAi2MpYTnE4ODwcFgyizMHBwcHBwcHB4dF1jlzcHBwcHBwcHCYD7c4c3BwcHBwcHBYQnCLMwcHBwcHBweHJQS3OHNwcHBwcHBwWEJwizMHBwcHBwcHhyUEtzhzcHBwcHBwcFhCcIszBwcHBwcHB4clBLc4c3BwcHBwcHBYQnCLMwcHBwcHBweHJQS3OHNw2AtccMEFeMpTnrLYzdgjiAhvfvObMTQ0BCEEbrnllj2+tlD49a9/jWOPPRZBEODMM89csM/d1zj44IPxyU9+8g8eI4TA//zP/zzqc1566aUYGBh4TO14wxve8ITuRwcHh4eHW5w5ODwMhBB/8OsNb3gDzj33XFx11VWL3dQ94vLLL8ell16Kyy67DKOjozjmmGP2+NreYOvWrY96kfe3f/u3eMpTnoItW7bg0ksv3avPXUz87ne/w5vf/OZ9es6zzjoL99xzzz49J/DoFpIODg5LD/5iN8DBYalidHQ0//7b3/42/vEf/xF33313/lqxWESlUkGlUlmM5j0iNm/ejDVr1uDpT3/6H3xtIdvzlre8BQceeOAef09E0FrD95f2bWnFihX7/JzFYhHFYnGfn9fBweGJCcecOTg8DFavXp1/9ff3QwjxkNd239bMtpouvvhirFq1CgMDA/jgBz8IpRTe8573YGhoCAceeCC+/OUvz/usnTt34qyzzsLg4CCGh4fxkpe8BFu3bv2D7bv66qtx8sknI4oirFmzBu9973uhlMrb8Y53vAPbtm2DEAIHH3zwHl8DgP/6r//Csccei2KxiOHhYZx++uloNpv553zlK1/BUUcdhUKhgCOPPBKf/exn899t2LABAHD88cdDCIFnP/vZD2lnxq5NTU3hjW98I4QQuPTSS/HLX/4SQghcccUVOOmkkxBFEa699lrEcYx3vvOdWLlyJQqFAp7xjGfgd7/7XX6+3vcdf/zxKBaLeM5znoPx8XH89Kc/xVFHHYVqtYqzzz4brVbrYfsv20q87LLLsHHjRpRKJbziFa9As9nEV7/6VRx88MEYHBzEO97xDmit8/ftzkbde++9eOYzn4lCoYCjjz4aP/vZz/YY/3//93/jT//0T1EqlXDcccfhN7/5zUPa0ouLLroIK1euRF9fH/7qr/4K733ve/e4hf6xj30Ma9aswfDwMN7+9rcjTVMAwLOf/Ww88MAD+Ju/+Zuc7XVwcHiCgBwcHB4RX/nKV6i/v/8hr59//vl03HHH5T+//vWvp76+Pnr7299Od911F33pS18iAPT85z+fPvzhD9M999xDF154IQVBQNu2bSMiomazSYcffji98Y1vpFtvvZXuvPNOes1rXkMbN26kOI732J4dO3ZQqVSit73tbbRp0yb6/ve/TyMjI3T++ecTEdHs7Cx96EMfogMPPJBGR0dpfHx8j689+OCD5Ps+/cu//Att2bKFbr31Vvq3f/s3qtfrRET0+c9/ntasWUPf+9736P7776fvfe97NDQ0RJdeeikREV1//fUEgH7+85/T6OgoTU1NPaStSikaHR2larVKn/zkJ2l0dJRarRb94he/IAD05Cc/ma688kq67777aHJykt75znfSAQccQD/5yU/ojjvuoNe//vU0ODiYnzt739Oe9jT61a9+RTfddBMddthh9KxnPYvOOOMMuummm+iaa66h4eFh+qd/+qc/eE2DIKDnPe95dNNNN9HVV19Nw8PDdMYZZ9CrXvUquuOOO+hHP/oRhWFI3/rWt/L3HXTQQfSJT3yCiIi01nTMMcfQs5/9bLr55pvp6quvpuOPP54A0Pe//30iItqyZQsBoCOPPJIuu+wyuvvuu+kVr3gFHXTQQZSm6R7H19e//nUqFAr05S9/me6++2764Ac/SNVq9SFjrVqt0lve8hbatGkT/ehHP6JSqUSf//zniYhoamqKDjzwQPrQhz5Eo6OjNDo6+rB94eDgsLTgFmcODo8Cj2VxdtBBB5HWOn9t48aN9Cd/8if5z0opKpfL9M1vfpOIiL70pS/Rxo0byRiTHxPHMRWLRbriiiv22J73ve99D3nPv/3bv1GlUsk/+xOf+AQddNBB8963+2s33ngjAaCtW7fu8XPWrVtH//f//t95r1144YV06qmnElF34XHzzTfv8f296O/vp6985Sv5z9ki63/+53/y1xqNBgVBQN/4xjfy15IkoQMOOIA++tGPznvfz3/+8/yYj3zkIwSANm/enL/213/91/T85z//Ydvzla98hQDQfffdN+89pVIpX5wSET3/+c+nv/7rv85/7l2cXXHFFeR5Hm3fvj3//U9/+tM9Ls6++MUv5sfccccdBIA2bdqUt6V3fJ1yyin09re/fV57TzvttD2ONaVU/torX/lKOuuss/bYVgcHhycO3Lamg8M+xpOe9CRI2Z1aq1atwrHHHpv/7HkehoeHMT4+DgC48cYbcd9996Gvry/PYRsaGkKn08HmzZv3+BmbNm3CqaeeOm+r6rTTTkOj0cCOHTsedVuPO+44PPe5z8Wxxx6LV77ylfjCF76AmZkZAMDExAS2b9+ON73pTXm7KpUKLrrooodt1x+Dk046Kf9+8+bNSNMUp512Wv5aEAQ4+eSTsWnTpnnve/KTn5x/v2rVKpRKJRxyyCHzXsv6+OFQKpVw6KGHznvPwQcfPC+P8A+dZ9OmTVi/fv28PLpTTz11j8f2tnfNmjUA8LDnvfvuu3HyySfPe233nwEea57nzTvvI8Xs4OCw9LG0M28dHJ6ACIJg3s9CiD2+ZowBABhjcOKJJ+Ib3/jGQ871cMnnRPSQHCIiys/9aOF5Hn72s5/huuuuw5VXXonPfOYzOO+88/Db3/4WpVIJAPCFL3wBp5xyykPet69QLpfz7x8uhj3F29unj9THD4fHeq12R9be3Y9/pM/KjvlD7Xu46/tw53yktjo4ODxx4JgzB4dFxgknnIB7770XK1euxGGHHTbvq7+/f4/vOfroo3HdddfN+4N93XXXoa+vD2vXrn1Mny+EwGmnnYYPfvCDuPnmmxGGIb7//e9j1apVWLt2Le6///6HtCsrBAjDEADmJczvDQ477DCEYYhf/epX+WtpmuKGG27AUUcdtU8+Y1/i6KOPxrZt2/Dggw/mr/Um+v+x2LhxI66//vp5r91www2P+TxhGO6za+Pg4LBwcIszB4dFxmtf+1qMjIzgJS95Ca699lps2bIFV199Nd71rnc97Bbl2972Nmzfvh3veMc7cNddd+EHP/gBzj//fPzt3/7tvC3VR8Jvf/tbXHzxxbjhhhuwbds2/Pd//zcmJibyhdAFF1yAj3zkI/jUpz6Fe+65B7fddhu+8pWv4F/+5V8AACtXrkSxWMTll1+OsbExzM3N7VVflMtlvPWtb8V73vMeXH755bjzzjtxzjnnoNVq4U1vetNenfvxwOmnn46NGzfiL/7iL/D73/8e1157Lc4777y9Pu873vEOfOlLX8JXv/pV3Hvvvbjoootw6623PuaKy4MPPhjXXHMNdu7cicnJyb1ul4ODw8LALc4cHBYZpVIJ11xzDdavX4+XvexlOOqoo/DGN74R7XYb1Wp1j+9Zu3YtfvKTn+D666/Hcccdh7e85S1405vehPe///2P6bOr1SquueYavPCFL8QRRxyB97///fj4xz+OP/uzPwMA/NVf/RW++MUv4tJLL8Wxxx6LZz3rWbj00ktz5sz3fXz605/Gf/zHf+CAAw7AS17ykr3rDAD/9E//hJe//OV43etehxNOOAH33XcfrrjiCgwODu71ufc1pJT4/ve/jziOcfLJJ+Ov/uqv8OEPf3ivz/va174W//AP/4Bzzz0XJ5xwArZs2YI3vOENKBQKj+k8H/rQh7B161Yceuihj4s+m4ODw+MDQXtKZHBwcHBwWFJ43vOeh9WrV+NrX/vaYjfFwcHhcYYrCHBwcHBYYmi1Wvjc5z6H5z//+fA8D9/85jfx85///CECtw4ODssTjjlzcHBwWGJot9v48z//c9x0002I4xgbN27E+9//frzsZS9b7KY5ODgsANzizMHBwcHBwcFhCcEVBDg4ODg4ODg4LCG4xZmDg4ODg4ODwxKCW5w5ODg4ODg4OCwhuMWZg4ODg4ODg8MSglucOTg4ODg4ODgsIbjFmYODg4ODg4PDEoJbnDk4ODg4ODg4LCG4xZmDg4ODg4ODwxLC/w8z/74HbqreDAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ds.reflectivity.sel(range=slice(0, 5000)).plot(y='range', cmap='Spectral_r');"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:param.Image06073: Image dimension time is not evenly sampled to relative tolerance of 0.001. Please use the QuadMesh element for irregularly sampled data or set a higher tolerance on hv.config.image_rtol or the rtol parameter in the Image constructor.\n",
+ "WARNING:param.Image06073: Image dimension time is not evenly sampled to relative tolerance of 0.001. Please use the QuadMesh element for irregularly sampled data or set a higher tolerance on hv.config.image_rtol or the rtol parameter in the Image constructor.\n"
+ ]
+ },
+ {
+ "data": {},
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.holoviews_exec.v0+json": "",
+ "text/html": [
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ ":DynamicMap []\n",
+ " :Image [time,range] (reflectivity)"
+ ]
+ },
+ "execution_count": 50,
+ "metadata": {
+ "application/vnd.holoviews_exec.v0+json": {
+ "id": "p2000"
+ }
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ds.reflectivity.sel(range=slice(0, 5000)).hvplot(x='time', y='range', cmap='Spectral_r', rasterize=True, clabel='Reflectivity (dBZ)')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Customize our Interactive Plots\n",
+ "Our time axis doesn't tell us much... we can change that! Also note that we add additional parameters to customize our view of the field."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:param.Image06893: Image dimension time is not evenly sampled to relative tolerance of 0.001. Please use the QuadMesh element for irregularly sampled data or set a higher tolerance on hv.config.image_rtol or the rtol parameter in the Image constructor.\n",
+ "WARNING:param.Image06893: Image dimension time is not evenly sampled to relative tolerance of 0.001. Please use the QuadMesh element for irregularly sampled data or set a higher tolerance on hv.config.image_rtol or the rtol parameter in the Image constructor.\n"
+ ]
+ },
+ {
+ "data": {},
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.holoviews_exec.v0+json": "",
+ "text/html": [
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ ":DynamicMap []\n",
+ " :Image [time,range] (reflectivity)"
+ ]
+ },
+ "execution_count": 52,
+ "metadata": {
+ "application/vnd.holoviews_exec.v0+json": {
+ "id": "p2168"
+ }
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "formatter = DatetimeTickFormatter(hours=\"%d %b %Y \\n %H:%M UTC\")\n",
+ "reflectivity_plot = ds.reflectivity.sel(range=slice(0, 5000)).hvplot(x='time', y='range', cmap='Spectral_r', xformatter=formatter, clim=(-20, 40), rasterize=True, clabel='Reflectivity (dBZ)')\n",
+ "reflectivity_plot"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "And the same for velocity..."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:param.Image07300: Image dimension time is not evenly sampled to relative tolerance of 0.001. Please use the QuadMesh element for irregularly sampled data or set a higher tolerance on hv.config.image_rtol or the rtol parameter in the Image constructor.\n",
+ "WARNING:param.Image07300: Image dimension time is not evenly sampled to relative tolerance of 0.001. Please use the QuadMesh element for irregularly sampled data or set a higher tolerance on hv.config.image_rtol or the rtol parameter in the Image constructor.\n"
+ ]
+ },
+ {
+ "data": {},
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.holoviews_exec.v0+json": "",
+ "text/html": [
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ ":DynamicMap []\n",
+ " :Image [time,range] (mean_doppler_velocity)"
+ ]
+ },
+ "execution_count": 53,
+ "metadata": {
+ "application/vnd.holoviews_exec.v0+json": {
+ "id": "p2251"
+ }
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "velocity_plot = ds.mean_doppler_velocity.sel(range=slice(0, 5000)).hvplot(x='time', y='range', cmap='seismic', xformatter=formatter, clim=(-5, 5), rasterize=True, clabel='Mean Doppler Velocity (m/s)')\n",
+ "velocity_plot"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Combine our Plots\n",
+ "Now that we have our interactive plots, we can combine them using `+`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {},
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.holoviews_exec.v0+json": "",
+ "text/html": [
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ ":Layout\n",
+ " .DynamicMap.I :DynamicMap []\n",
+ " :Image [time,range] (reflectivity)\n",
+ " .DynamicMap.II :DynamicMap []\n",
+ " :Image [time,range] (mean_doppler_velocity)"
+ ]
+ },
+ "execution_count": 54,
+ "metadata": {
+ "application/vnd.holoviews_exec.v0+json": {
+ "id": "p2352"
+ }
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "reflectivity_plot + velocity_plot"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Or stacked on top of each other..."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {},
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.holoviews_exec.v0+json": "",
+ "text/html": [
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ ":Layout\n",
+ " .DynamicMap.I :DynamicMap []\n",
+ " :Image [time,range] (reflectivity)\n",
+ " .DynamicMap.II :DynamicMap []\n",
+ " :Image [time,range] (mean_doppler_velocity)"
+ ]
+ },
+ "execution_count": 55,
+ "metadata": {
+ "application/vnd.holoviews_exec.v0+json": {
+ "id": "p2533"
+ }
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "(reflectivity_plot + velocity_plot).cols(1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "---"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Summary\n",
+ "\n",
+ "Xarray brings the joy of Pandas-style labeled data operations to N-dimensional data. As such, it has become a central workhorse in the geoscience community for the analysis of gridded datasets. Xarray allows us to open self-describing NetCDF files and make full use of the coordinate axes, labels, units, and other metadata. By making use of labeled coordinates, our code is often easier to write, easier to read, and more robust.\n",
+ "\n",
+ "We also covered some interactive plots using xarray and hvPlot!\n",
+ "\n",
+ "### What's next?\n",
+ "\n",
+ "Additional notebooks to appear in this section will go into more detail about \n",
+ "- arithemtic and broadcasting with Xarray data structures\n",
+ "- using \"group by\" operations\n",
+ "- remote data access with OpenDAP\n",
+ "- more advanced visualization including map integration with Cartopy"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Resources and references\n",
+ "\n",
+ "This notebook was adapated from material in [Unidata's Python Training](https://unidata.github.io/python-training/workshop/XArray/xarray-and-cf/).\n",
+ "\n",
+ "The best resource for Xarray is the [Xarray documentation](http://xarray.pydata.org/en/stable/). See in particular\n",
+ "- [Why Xarray](http://xarray.pydata.org/en/stable/getting-started-guide/why-xarray.html)\n",
+ "- [Quick overview](http://xarray.pydata.org/en/stable/getting-started-guide/quick-overview.html#)\n",
+ "- [Example gallery](http://xarray.pydata.org/en/stable/gallery.html)\n",
+ "\n",
+ "Another excellent resource is this [Xarray Tutorial collection](https://xarray-contrib.github.io/xarray-tutorial/)."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}