-
Notifications
You must be signed in to change notification settings - Fork 0
/
wall_repulsion.nb
4853 lines (4759 loc) · 235 KB
/
wall_repulsion.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 240161, 4845]
NotebookOptionsPosition[ 233881, 4737]
NotebookOutlinePosition[ 234274, 4753]
CellTagsIndexPosition[ 234231, 4750]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"lj93", "[",
RowBox[{"r_", ",", "\[Xi]_", ",", "\[Sigma]_"}], "]"}], "=",
RowBox[{
RowBox[{"-", "\[Xi]"}], "*", "1.5", "*",
SuperscriptBox["3",
RowBox[{"1", "/", "2"}]],
RowBox[{"(",
FractionBox["1",
SuperscriptBox["r", "5"]], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "9"}], " ",
FractionBox[
SuperscriptBox["\[Sigma]", "9"],
SuperscriptBox["r", "6"]]}], "+",
SuperscriptBox["\[Sigma]", "3"]}], ")"}], "r"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"lj93c", "[",
RowBox[{"r_", ",", "\[Xi]_", ",", "\[Sigma]_"}], "]"}], "=",
RowBox[{
RowBox[{"-",
FractionBox["3", "2"]}], " ",
SqrtBox["3"], " ", "\[Xi]", " ",
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"3", " ",
SuperscriptBox["\[Sigma]", "3"]}],
SuperscriptBox["r", "4"]], "-",
FractionBox[
RowBox[{"9", " ",
SuperscriptBox["\[Sigma]", "9"]}],
SuperscriptBox["r", "10"]]}], ")"}]}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"lj", "[",
RowBox[{"r_", ",", "\[Xi]_", ",", "\[Sigma]_", ",", "rc_"}], "]"}], ":=",
RowBox[{"If", "[",
RowBox[{
RowBox[{"r", "<",
RowBox[{"rc", " ", "\[Sigma]"}]}], ",",
RowBox[{
RowBox[{"-", "4"}], " ", "\[Xi]", " ",
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"6", " ",
SuperscriptBox["\[Sigma]", "6"]}],
SuperscriptBox["r", "7"]], "-",
FractionBox[
RowBox[{"12", " ",
SuperscriptBox["\[Sigma]", "12"]}],
SuperscriptBox["r", "13"]]}], ")"}]}], ",", "0"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"coulomb", "[",
RowBox[{"r_", ",", "ep_", ",", "q_"}], "]"}], "=",
RowBox[{
FractionBox["1",
RowBox[{"4", " ", "\[Pi]", " ", "ep"}]],
FractionBox[
SuperscriptBox["q", "2"],
SuperscriptBox["r", "2"]]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"imagePot", "[",
RowBox[{"r_", ",", "ep_", ",", "q_"}], "]"}], "=",
RowBox[{
FractionBox["1",
RowBox[{"4", " ", "\[Pi]", " ", "ep"}]],
FractionBox["q", "r"]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"L", "=",
RowBox[{"6", " ",
SuperscriptBox["10",
RowBox[{"-", "7"}]]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Epsilon]", "=",
RowBox[{"586.66", " ",
SuperscriptBox["10",
RowBox[{"-", "21"}]]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"q1", "=",
RowBox[{"1.6", " ",
SuperscriptBox["10",
RowBox[{"-", "19"}]]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"grad", "=",
RowBox[{"(",
RowBox[{"ep", " ",
RowBox[{"q1", "/",
RowBox[{"(",
RowBox[{"2",
SuperscriptBox[
RowBox[{"(", "L", ")"}], "2"], "\[Epsilon]"}], ")"}]}]}], ")"}]}],
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"eqLow", "=",
RowBox[{
RowBox[{"\[Epsilon]", " ",
RowBox[{"D", "[",
RowBox[{
RowBox[{"\[Phi]", "[", "y", "]"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "2"}], "}"}]}], "]"}]}], "==",
RowBox[{
RowBox[{"-", "2"}],
RowBox[{"q1", " ", "/",
RowBox[{"(",
SuperscriptBox["L", "3"], ")"}]}]}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"gradLow", "=",
RowBox[{"(",
RowBox[{"2", " ",
RowBox[{"q1", "/",
RowBox[{"(",
RowBox[{"2",
SuperscriptBox[
RowBox[{"(", "L", ")"}], "2"], "\[Epsilon]"}], ")"}]}]}], ")"}]}],
";", "\[IndentingNewLine]",
RowBox[{"eqHigh", "=",
RowBox[{
RowBox[{"\[Epsilon]", " ",
RowBox[{"D", "[",
RowBox[{
RowBox[{"\[Phi]", "[", "y", "]"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "2"}], "}"}]}], "]"}]}], "==",
RowBox[{
RowBox[{"-", "40"}],
RowBox[{"q1", " ", "/",
RowBox[{"(",
SuperscriptBox["L", "3"], ")"}]}]}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"gradHigh", "=",
RowBox[{"(",
RowBox[{"40", " ",
RowBox[{"q1", "/",
RowBox[{"(",
RowBox[{"2",
SuperscriptBox[
RowBox[{"(", "L", ")"}], "2"], "\[Epsilon]"}], ")"}]}]}], ")"}]}],
";", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"esPotentialLow", "[", "y_", "]"}], "=",
RowBox[{
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{"eqLow", ",",
RowBox[{
RowBox[{
RowBox[{"\[Phi]", "'"}], "[", "0", "]"}], "==", "gradLow"}], " ",
",",
RowBox[{
RowBox[{
RowBox[{"\[Phi]", "'"}], "[", "L", "]"}], "==",
RowBox[{"-", "gradLow"}]}]}], "}"}], ",",
RowBox[{"\[Phi]", "[", "y", "]"}], ",", "y"}], "]"}], "[",
RowBox[{"[",
RowBox[{"1", ",", "1", ",", "2"}], "]"}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"esPotentialHigh", "[", "y_", "]"}], "=",
RowBox[{
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{"eqHigh", ",",
RowBox[{
RowBox[{
RowBox[{"\[Phi]", "'"}], "[", "0", "]"}], "==", "gradHigh"}],
" ", ",",
RowBox[{
RowBox[{
RowBox[{"\[Phi]", "'"}], "[", "L", "]"}], "==",
RowBox[{"-", "gradHigh"}]}]}], "}"}], ",",
RowBox[{"\[Phi]", "[", "y", "]"}], ",", "y"}], "]"}], "[",
RowBox[{"[",
RowBox[{"1", ",", "1", ",", "2"}], "]"}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"esPotentialLow", "[", "y", "]"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",", "L"}], "}"}]}], "]"}],
"\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"esPotentialHigh", "[", "y", "]"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",", "L"}], "}"}]}], "]"}]}]}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"eq", "=",
RowBox[{
RowBox[{"\[Epsilon]", " ",
RowBox[{"D", "[",
RowBox[{
RowBox[{"\[Phi]", "[", "y", "]"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "2"}], "}"}]}], "]"}]}], "==",
RowBox[{
RowBox[{"-", "ep"}], " ",
RowBox[{"q", " ", "/",
RowBox[{"(",
SuperscriptBox["L", "3"], ")"}]}]}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"grad", "=",
RowBox[{"(",
RowBox[{"ep", " ",
RowBox[{"q", "/",
RowBox[{"(",
RowBox[{"2",
SuperscriptBox[
RowBox[{"(", "L", ")"}], "2"], "\[Epsilon]"}], ")"}]}]}], ")"}]}],
";"}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"esPot", "[",
RowBox[{"y_", ",", "ep_"}], "]"}], "=",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"ep", " ", "q1"}],
RowBox[{"2", " ",
SuperscriptBox["L", "3"], " ", "\[Epsilon]"}]]}], " ",
RowBox[{"(",
RowBox[{"y", "-", "L"}], ")"}], "y"}]}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"esPot", "[",
RowBox[{"y", ",", "2"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"y", ",", "0", ",", "L"}], "}"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.843057838237948*^9, 3.843058014005555*^9}, {
3.843058095601053*^9, 3.8430581428859377`*^9}, {3.843058234984953*^9,
3.843058249353704*^9}, 3.843058280930025*^9, {3.843058361484331*^9,
3.843058385524032*^9}, {3.843058475492975*^9, 3.843058477513072*^9},
3.843058520423625*^9, {3.843058568269621*^9, 3.843058594828327*^9}, {
3.843058634898065*^9, 3.84305864101009*^9}, 3.8430588236759644`*^9,
3.843062383745019*^9, {3.843063443948743*^9, 3.843063480573707*^9}, {
3.843063527211669*^9, 3.843063536050973*^9}, {3.843071998541925*^9,
3.843072001061002*^9}, {3.843096375974*^9, 3.8430963883186893`*^9}, {
3.844167484467269*^9, 3.8441675523833027`*^9}, {3.844172398180399*^9,
3.84417240877203*^9}, {3.844172704601274*^9, 3.844172705440403*^9}, {
3.844172814198748*^9, 3.8441728305732727`*^9}, {3.855086153933646*^9,
3.8550861664015007`*^9}, {3.855086236585745*^9, 3.855086243864745*^9}, {
3.8550863972256308`*^9, 3.855086509052388*^9}, 3.855087676330961*^9, {
3.855087996755485*^9, 3.855088063304661*^9}, {3.8551563151969833`*^9,
3.855156372865418*^9}, {3.855156438878585*^9, 3.8551564651993093`*^9}, {
3.85515664526904*^9, 3.855156706866259*^9}, {3.8551570074934807`*^9,
3.855157023078457*^9}, {3.855157181818557*^9, 3.855157214499111*^9}, {
3.8551590861774817`*^9, 3.8551591552772493`*^9}, {3.855159290935256*^9,
3.855159325356653*^9}, {3.8551593613601093`*^9, 3.855159429105866*^9}, {
3.8551594662704372`*^9, 3.8551594671506557`*^9}, {3.855159554315344*^9,
3.8551597165315742`*^9}, {3.8551598087511377`*^9, 3.855159813238451*^9}, {
3.855159900557872*^9, 3.8551600662732897`*^9}, {3.8551603004337683`*^9,
3.855160335861005*^9}},
CellLabel->
"In[1764]:=",ExpressionUUID->"242be4a3-80bb-42d2-b5ef-23ee55edb1ff"],
Cell[BoxData[
RowBox[{"3.7879218324450665`*^11", " ", "ep"}]], "Output",
CellChangeTimes->{{3.85515702067809*^9, 3.855157023732835*^9}, {
3.855157201866497*^9, 3.855157215343514*^9}, 3.85515911750062*^9,
3.8551591582727327`*^9, 3.855159327578169*^9, {3.85515937122189*^9,
3.855159429757739*^9}, 3.85515972133422*^9, 3.855159813605558*^9,
3.85516001617673*^9, 3.855160067050138*^9, 3.855160338281481*^9},
CellLabel->
"Out[1772]=",ExpressionUUID->"9ed3837b-30a0-4169-914d-16b304b73254"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV2Hk8VN8bB/CR7BXfpCRZQiklaVHo6VBStmRXCKWkEGVNZSuyzsy9MyN7
hqiQLRSRNmmxl8qSrRChbJnb8ju/v+b1ft0zyz33OZ/neY2iq7eF2wIajbaU
j0b7/2u69t0/pUyx3YyX89Hkv/A9sr8e5/IZj+wmNmnmC591QS9+24W/Mprf
rX5FyCPSwwet+pc9UWgkAhaPvAfLToUhA5rx2ptGK0FCKMNO05WBPtHS9ZKN
1oMhX0Goju1NpBJm2MQ22gVStzMnrfSKkZGe7HKW0UFwbD3vHCtVh8bLlNv7
jhyBzURqc4JHC/onkEibIo5D7dFNDv02H1H5zIvf5p9Ow8qN5UWqrr0oZW7t
gIfVOaB3Ps4r2TmIFqkMhEaHnQc+xnTkYMYQcunYf/XBT3+Y1V14RkFuFDWq
RYd8sAyGza48nUT7cfRd40l+a/AlYNIGHZWTJlFQd4vipG8o0BYMpyeK/ERt
vJrrJ8TCgcFLWGRjPIV2jciMNqVEgG32imRFn2n0X/Krf/vMrkJVmkZVLmcG
6XNni3IHrgHd6+jNcmIWffHyl1qWEg2Sq2ME5ePmECnmdj7AKAbcNAusek/+
Qqm0Zs+XXbHwa/exJYGy82h5ZcIqJUY8gK5Y2uzLeWSdXaEbyokH/4XbThu9
nkckvdexOy0eCkziWlPfziPJ05qZnDvxIOP4OmR36zySkHmvvOhZPExcitjs
1TmPxEJWq8/MxkNwbefi+O/ziIbyUb1DAqzW31j4WIKHRuob3M6oJkKigeml
fxY8pMn/uMB8cyKYhJ3+qmzNQyFQPrN9RyI8vDxWeMCWh5bcz7pK25cIOTVr
nWKP4vVZF3NYx/B1i7Pb/xznoeCQTV9q2YnQ/1qnnnmBh64lHdCMWUAHjQVj
AVdJHtpQvvf9bwE6jJ3vfevP5qGmNgj2FqGDfa5OxMkkHpIW3/7ESoIO+pZr
F+ml8tCdq4oW8nJ0sKp9w+7n8lCjL8+nbBcd/IcdEztKeGiFaX5xzzk6VFxm
LL7exENOB5L36l2gg0x+yU5o4aHsvdHvuAF0mOvQb/3Rin+v9ol598t0kFcr
Mrd6z0Mm62T1pmLpoFJbEyzYzUPhfHHNQrl0EEu/GyH/jYfG7p+Z0Oimg67W
M3dlfgppFtuHEb106Nz63CV3IYWC8g0lZwfoMK2+vUFVkEKCXCWtqm90IBRc
B9aKUEiR3nnZ4Bcdon5M7JMQp5CNh/GSI5IMMDbqrObIUOixnNqmiIMM0OqY
vBKkQaGKpRbJd00YoBN572HpFgoVCgYJtR9igOi1H5wxTQqljb/oU7ZhgFj0
v11HtlMouMaV/cKVAayre2VVtCm03Sn5n0gIA5pOnrEP2kuhO2kirfRCBrTW
aZevsqZQFkNjz4NiBuwTPqG3wYZCN67a5veVMSCUK+GtZUuhaM+ca5pVDHD4
MFVsak8ht916Ou31DEjV6X932pFCCt2B2Sv6GKA/7MR2dqMQS3bYP12SCbKf
OuYNL1BoaaXfnOgKJii+7fu8249CCZb8gQEyTGislVbT9KfQtRi5IHNFJshn
L/4hFUgh/19WFxdsZkKuu6TOq4sUsmuvu3LSiAl7+hLqv4RTqN37EK3NlAn1
je60JxEUMhfrDt1zmAlzVd7pqZEUOqj/K0zajgnmrIWiptcopF2kHvnKjQmD
e40ykq9TSDYuJVo9jAlsusGT4UQKJa1bL5ISyYSbgROmd+kUWva0/LpQNBOs
nV/AWQaFFvNaYnoTmFCqTh0aYVLo7ynheGYqvl4fqtHMolDvXj/GbAUTFIap
EfMUCnEps+SacSb0DBWDXA6FmhOlZid/MMGim+8PF/u3UtdhpRkmnDDYYq16
Cz9/k9Mi0RQTXD3V2zbmUkg0LSLwsDABz2WzBFRuU8gXKm0GFQlQnvfa15pP
oYzWyyXLVQgIkC7P1Cug0JuTBksOqhJw6k4X+x722sTW5wXqBKxZ+9I8qpBC
Hz+PbQvQIeB3iDSlUkQhFKYoKWpNgEle+nqFUgp5Sg176doRcOlHl1IQdvLt
wldeRwkwLuBVNGNPt+iEt7kQUBfSXnCxjEJ5a2x+pHoRsOwiX/Pj+xR6Vy5r
2uRDwFZ7nRtLyim0wHggj8+PgB+3rX4fwXY4f8755EUCDLgq9Als8WcxTZuj
CbCeQeNClRTStTus5hpLwHF3/2tG2O5jK6LIBALEzWIrY7GfLMuBeZIAfR/L
byIPcH241RY8uUnAkhWOkTPY3PmrIjPZBIjJJ4xufIj3O97EbV0eAbk30sdc
sTeUf5SNKySg4qtj9SvsHsHpWOsqAvb0WjOvV1GoILDgXUANAcsPlHwvww75
dlI+uY6AiOjOyR5smcaPJT31eD8Jcly9mkIje4jftNcEWDoqj1hhVxab7Fdq
JGAVLSw2CNuGVfvxVDsB3k2Z9TXYKkJBSjEdBFDUcZfP2NOBmp75nwiQ45vO
+ovNdMih/eglQJUVvHrXIwq5NDoZSQ7i+1P2sbHC1kDS5PYhAmJjt2l5YTcq
xa4L/k6A0aDiZBp2GmufT+okAXHvjF+WYp8V+vuwZoqAExn6B15i6wRVLOyb
JaBNT/BcJ7bo6Dkzfh4BHdXsPd+xPzpsSFL5Q8B5ienyP9h5jQN9hjQSbunK
vV9UQ6EAlKbmwU/COT2pNBns/SU2fnGCJDTLfRRbhy2lLFFbKELCi/bTazSx
B1kNwi2LSLA8Xt+rg10qFGExJU5C4Ksf+/dhhwfppkpJkqApOmJljH14dOaL
1nISItcUiB7GVnC8t/nIShLOSIK7NfZEo3tQiCwJo10pnnbYNWjN03R5Ev5d
fiFzBDu+pHNR3RoS7s4/8v6/HZRZNgMqJEyYhJ+1x1Zjm2UKrCfhZaDkf7bY
PCHhb+s2kqB1ycfRErshqG6r0WYS4EjqYTPspNHgS2c1SegUJ78bYp9y3Faf
sJ0E8XS7LQh7R9N3ieKdJHxa+E1WC1tAL/dImw4JOvsOFG3Ebi9xzp4BErY6
nB9VwOYqy4yv0CfhicmZRklsX3ablrYBCUNSGvYC2HrC8WEOB0jgVtTFzuD9
lwje//qyMQkzWxRODmIXOj5wenqYhGNFe5fWYF9q8s37YkWCX5nwYB62id7G
n0J2JCgxkh2Z2N+UM66aOJGg3658wAX7AduuycuFhFLt1Q/2Y0cLL13JOEFC
VVB/ywbstWOR+e88SEgIa+ON43qccYTZOU8Sjhr9E23CftY0t0fGh4Sa0bkn
BdiupR5tTgEkGFYe2nAKOyPYnDcUQcLpwBvvG/B5+UmcszWLIsFe+KdfCvb+
AnpZWQy+38itoWewxz83e4UxSBjY6/NOEBsMDg/IZOD1HzvCN+DzyXTyQWFZ
JBg0BgRN4PP9NYCRNpRDQus9WmcJdsKdFtuyfBIadr7t2YbdI27xxvQhrifX
wyMqOC801/uuL3tEgmz1Tq2eCtxf9JnXZOpIyFkgMkliq/u1oqF6EjjWJ7L+
4Dy69Mnifug7EmaXCopW4zyTzbFML50kIWt0ZnCshELnas5TK6dJuCZ+ti8W
+1kHYRc6R4KIwusD67HPirYvNf1LwqTgPrtjxRSq8raK+irGgp1jCsGV9yh0
RNv63Mp1LKhYFtUgh/O70NLv7ZUNLGAviLuQfRfnpSdrw9dNLJDsDopRxb6T
8W6wZBsLxm0l5tTu4HpdaGNvos8CBTfVNvk83J+bbPSvOLLAt3shp4pLofS+
e8F3nVnAX2H6aQt21pRwacdxFmjvbK6+lUWh/BVVShoeLGBtCT8WdxOfn2Py
An3+eD0teZVhBoX6J4bq9eksqBO74RWcjPebT4/mTbAg41hIzqcbFBqVTN6Z
wsbff/TGxV3Y01omt6dSWfDfwVCBKQ6FhEKLYrJvsyCftoBujfvhRokgU8Gn
LHja037lA+6vGmtar2q+YMFYvsWdNdjbt6nVODWwoHKN6IUzCfj523WrVzSx
AAms/fIrDudBpp6EexcLhG79B/wxOO81RNsaZlgQaFP56h3u97XmKXbxqmzo
8d17yBfPDwdEj2b/UWPDq0bkcgnPF61PZSY9N7MhvP5T+zU8fwzuSI4y28EG
h8TBXtIX59/qG+Xi+9hQEHgoLs0L5/UIexnzGH5/cbiGy0lcn2HMZjabDUOP
nAqLrSgUqGMhK5TMhqDSialoSwrxzfznHpDGhg8Gq1OcLPC84M74Z5vNhr/I
bImAOZ43zOjqK0vYMEIXigZjXH8yCXEpb9mwk9Px8rgeheRKrx/IXMiB6t3f
rwRspJCRkW44TZgDyDjdXlGNQn5941XOYhw42jfCbViP+7u41WbFpRywyDWP
kVqH57uzcsuz5DlgluyQnqxIoQ6V0gGuNgd8Zb0G7JdTiJ7UdTn3HAcCGQF9
+X95iP/y5vuFXRzwAeWC7Fc81Lt41av2zxx4LpXnL9zAQ9Vpgp95/Rx4Enh/
0KOehy486hY2HOHA476zhWrPeOjr71iHzzMceLDH7FfqIx56eXGYX0I8CYrV
Ot2giIfigm5a+OglQf7T1XkheJ6X8pOc3HorCdqnDBq+2vGQf76bdPrtJAjQ
2X2lwYaHPgxUIOGCJJD2JFLvWPFQsoUDo6s0CY4mOCx2N+chOY0czat1SfDx
pUt9kyEPqY7u8HvflQQPVu9Ms9jBQ9ouR3iBkjdgseGyZpWlPORsenNhTegN
4E+KsVjwfB51HPYcqjFJhlSxN/1DSvOovWZyf9WyFAj/VpNx7NwvJLpYLrT6
ewpE2zVbObHmkGfU9ahtlalw7/FiHcuSWSQykO5eTKTBrPHwDm/uDGrx+Lki
xzkdolfopu1KnEbyR//sJddnwAPfwccZHlPIcvlH5Wd8meBiq2DUvuwn2sRq
TQg6lQnkuqCAkZpJxF140634XSbcjv6h3nxyHDmovuZ91bsJJxo3RN1WG0Vq
rsvmOm7dhBc1fBXDvCHEidN0Nl6WBSn8K6fErAbRyrfeGsHBWeC5TTiF71Ev
6qkTrr3VkwWHho2F7Fd+QijX/6G1MRdMlP5wlCpaUGUW/+rHRVyQHxfuuLH0
KYrS2jcdWcIFp8RvOv/qnyCbN5GvD5ZxoY9WPWpz6QmanhEIbqvgQr6V+sbu
oTqkcVC442sNF5xrzTUMqh+jvIlFjMVvueChvzJW8Hk1StJdLnB0hAvbN9UZ
eh8sRadabLrkR7lwMDTw7ZuiErTjJKd0cIwL/efFR5ZIl6D2RGlXr0kuZOp2
9aGvRUhiQKY2bI4Ld/P6SysWFKDo6/JBeQLZoL1L8mXnCS6ylXM29xTKhtkJ
v8T1GllobWnmOk2RbHg4xAlHVCZ61qX4vmpRNtRs2/qBUExDNA3lrU2S2aAh
rZrE8iVQ07MToqQU/jx2X/9TAQZKt8/ps1uRDfc2bhUV2RKPdCPW0vtlsoG5
SzQzKCgCiUmfOpUrmw1+cf39LTsvoU/5uXBWLhskCu8MzIecR3l6w1JbFLJh
/OHHyPeXj6OA96rfZxSzQcmjLer//4f8D8xrebo=
"]]},
Annotation[#, "Charting`Private`Tag$24200#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->NCache[{{0,
Rational[3, 5000000]}, {0., 113637.6522807839}}, {{0, 6.*^-7}, {0.,
113637.6522807839}}],
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.85515702067809*^9, 3.855157023732835*^9}, {
3.855157201866497*^9, 3.855157215343514*^9}, 3.85515911750062*^9,
3.8551591582727327`*^9, 3.855159327578169*^9, {3.85515937122189*^9,
3.855159429757739*^9}, 3.85515972133422*^9, 3.855159813605558*^9,
3.85516001617673*^9, 3.855160067050138*^9, 3.855160338355626*^9},
CellLabel->
"Out[1774]=",ExpressionUUID->"144c2010-3d2b-42b2-94f2-4b40b8ed23e8"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[IndentingNewLine]",
RowBox[{
RowBox[{"Clear", "[",
RowBox[{"q1", ",", "\[Epsilon]", ",", "q", ",", "L"}], "]"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "A"}], " ", "L"}], "==",
RowBox[{"(",
RowBox[{"ep", " ",
RowBox[{"q1", "/",
RowBox[{"(",
RowBox[{"2",
SuperscriptBox[
RowBox[{"(", "L", ")"}], "2"], "\[Epsilon]"}], ")"}]}]}], ")"}]}],
",", "A"}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.855160112224786*^9, 3.855160139406823*^9}, {
3.855160170692637*^9, 3.8551602238508463`*^9}, {3.855160281122079*^9,
3.85516028933533*^9}},
CellLabel->
"In[1762]:=",ExpressionUUID->"8350fae6-841a-4504-9079-9306b634c47e"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"A", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{"ep", " ", "q1"}],
RowBox[{"2", " ",
SuperscriptBox["L", "3"], " ", "\[Epsilon]"}]]}]}], "}"}],
"}"}]], "Output",
CellChangeTimes->{3.855160224361574*^9, 3.855160290049645*^9},
CellLabel->
"Out[1763]=",ExpressionUUID->"becea20e-9195-407d-bcb8-5799e6541b16"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"A", " ",
RowBox[{"(",
RowBox[{"y", "-", "L"}], ")"}], "y"}], ",", "y"}], "]"}], "/.",
RowBox[{"y", "->", "0"}]}]], "Input",
CellChangeTimes->{{3.855160259520638*^9, 3.855160261560676*^9}},
CellLabel->
"In[1761]:=",ExpressionUUID->"09211e93-5041-4f10-a7a1-408f90e1237e"],
Cell[BoxData[
RowBox[{
RowBox[{"-", "A"}], " ", "L"}]], "Output",
CellChangeTimes->{{3.855160216934461*^9, 3.8551602291376247`*^9},
3.85516026278296*^9},
CellLabel->
"Out[1761]=",ExpressionUUID->"49e724fe-5078-4b54-8b2b-cc22951e14d5"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"\[Sigma]cs", "=",
RowBox[{"2.96", " ",
SuperscriptBox["10",
RowBox[{"-", "8"}]]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Xi]cs", "=",
RowBox[{"6.46", " ",
SuperscriptBox["10",
RowBox[{"-", "15"}]]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"rccs", "=", "3.72"}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Sigma]as", "=",
RowBox[{"3.99", " ",
SuperscriptBox["10",
RowBox[{"-", "8"}]]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Xi]as", "=",
RowBox[{"2.12", " ",
SuperscriptBox["10",
RowBox[{"-", "14"}]]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"rcas", "=", "2.84"}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"lj", "[",
RowBox[{"r", ",", "\[Xi]cs", ",", "\[Sigma]cs", ",", "rccs"}], "]"}],
",",
RowBox[{"lj", "[",
RowBox[{"r", ",", "\[Xi]as", ",", "\[Sigma]as", ",", "rcas"}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"r", ",",
RowBox[{"0.6", "\[Sigma]cs"}], ",",
RowBox[{"rccs", " ", "\[Sigma]cs"}]}], "}"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.84417287645754*^9, 3.84417291559243*^9},
3.844182576482697*^9, {3.855086529344222*^9, 3.855086629332246*^9}, {
3.855086692585722*^9, 3.85508672219801*^9}, {3.855088052649208*^9,
3.855088085240243*^9}, {3.8550904876418743`*^9, 3.855090557342506*^9}},
CellLabel->
"In[1409]:=",ExpressionUUID->"24eae598-da4c-4b10-87c2-6c7c6b95436c"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVl3k0FN4bxpEWSUkkWqTsSWUvvCRKlK2orLPZBmMMRpbJWmTfZcuMhCQp
S6JeW6EsSVHZUtlKaSEp3/Tz++uezzn3fZ/nfe4995wrSfKydOLh4uJq5ubi
+v8quBR9dyfFDh5SWtJlHnHrTjhyjWi72EGlyqsDz4q4dQXqv6hwnbeDV0Ao
r1jHrWvj3f72UpYdEH5LFfQ9+wdfdjTETHHs4GnL8U2cI/8gtLNazbjUDtw9
xnSf3V+CYtlrsQL1dkAt51mSu/UX5oZZGmlDdqBSMWl1p3wREoxVEjkS9uBp
eox4Q3gBnGcl+Hxl7eFEML13/Z1fALnrIo7us4dFZZn+lWa/YObLOHMa7OHK
A93rCYnzYJZ8xUHNwR7if/2esN31E+QOXXy92tkeaASfwrync8D1wdtywNMe
ui/nvtb1nYMKVZOjISx7mD6oyZvYMQuCr//ufZJrDxnfbhxruPwDpkI/FecU
2sMDFaMpqvYPaJR/JUkrs4cq6fjdJ759B3pQhcimB/Zw/lFgcY7td3i+g/zX
btAe/HwZUh91v0GKU3vnNzEHeJiow+AwPwN1ffXRFkkHsEloOWe/NA369ziN
6fIO0MkKEF+ImoYfa4KqDh1c5jO1MzfZn+BU2d7cyLMOcPCA+iG9ySlQtBLf
fIbgAK2+v22kWVPAu7QqSd7VAeRKG1ZVCE9BldloRLe/A4SoREbnGE2C8GyK
+5ZMB7gby5kTbRmHzzkh45+uOkCXpi/Zz2kcHhl4OD4scgCN7DyFo3zj4Jth
eIpU4wCDmceSFKzGoO/gwqGyPgeoy7HPIP59Dxmh9mv1hB3hdZpE6ceYUXDX
F9tTt80RHg2+rxzXGgU93j4TVWlH6Lh5/JHr0FuYjjoRL6fuCB6rdf9zujUC
eolaghvPOsKvRKcuDc8h2Gzxa38swRGWhA7tkPkwCNNClRYr3Ryh1NRonmw7
CBkZCqm/Axxhw9oVz4osB2A6T2zz+xxHUEjSSQPb19Do2KduV+gI6VMOlnnv
X0GGZPKZ/jJHIA10r+L2eAV619dkPX3oCD/VOlZWR/ZDRtmvrZVvHaGXZe86
2fkS2MOfBJs3EmDbwcDLN+48h1g0kvwnQgAud7+4XKvnwMwvOqAtToD0nevF
ty72gAmRZFmziwB6IfldbOMemB97k1qqQoB/K2IWtee7YPSxRuGkBgF01r8a
CbDqgo6i9CopbQIo5VKN3O91AtvVou+qAQFCSkyOQkQHmHxu35xqRQD3+oAy
74NPQL1LRrbnHAHurW/YtuNWO+wsj9QQcCDAo2cqIvK722HeS+9slDMBwibr
FpU3twF79l5WkD8BiE2zdmtFH8P8n6JtlCwCBN8vezkZ1AS7+KTI8XkEeEOq
PSG2qQlMRTk3ajgEgAs64/xljVCkkqPOV0qA52yJvH2tDWDlkWheXkeAt/O7
7gg+fQChgesyXyEBCnQ/FfwTegBl0ZeHuVoIYBaWu4nXsR54r0dQT3UQoDIz
RXErVx1UDftHLgwSQMsmNX+v0z0YnZ57KjlKgFd7EumMxzWw7o/3RpMxAril
fjrrKVcD5M0eV/M+E+BBq6blufkqEDIj1Or/Xc7rAP+PkYq74N1o9DluBxH6
2o7nlu67Bbndj5VrdhHhQuI84ZROGbQP6Qe8lSHCL52j9XvNbsLO39qrlPcR
4a3T9+0qITeg58CBna90iTDr3CBbub4I/tMtd+YyIMI1mqCimPZ1kDPdc0ve
iAj3125n7fMshBCq9KFgcyI4yr1VPDBQAErXxE5LEokQeHxk/UR9Ptjcycg2
diKC2yDOR5lehUsNm975uBFBvNBTvHgyF0YGBWit3kTIGVPrmlXMhnhhnmj3
cCKcVYjj/cuVDp8vfqqvvkaEYe+9Lck+UVCX/N4ts5gIEfe/Tr/yuwjReQOi
ATeJkFQT/nYoNAKkq5/6aFcSIVP88m9tYgg4jJXuaWkmwndWY+/PCToofit4
U9hKhJa8pc+1o1T4s5gddekpEerl587GC1Egc1Psh+O9RKBbPmztMTSBHn33
nJ53RAjVyyEZm5Pwqin5+N1xIkwlSjS8tHBFDxvbX6kfiRD9Y0p6UIOGfAyT
U2e+E6Hxjn14yBtf1Ofs4R/hIoGYnAKNWBuC1f+mA6clSBD3dEorP/MyRvKP
yXXtJkHy7hPhzOoYtBQd6i+XJUFJP/PQRFcszih1KjP2kYD7dEzHu5l4lHMo
+7QAJKiujpLH30k471Z4ZUCfBDvWXt8q45uMj/xyjz44SgKJV9eOyH9ORmJ8
XEGIKQm27UhcLdOXgtkPPGxWOZDAX2h/7WxsGrq2U9ZMEUlwg//Ojf1zaaj+
0q7miRMJpFdyhM1s0vHF9AmheE8S5FqIiFnszMB1W/c+3cQiAfPw2SyjtEwc
kJE+/zOUBCsDPs3QP2diifJ2mVeRJFBt2Kd/X/8KGhoLhGfHkeDpCtM1bR+v
4IWALwclc0kwavDGKG9XNnZsPFlvzSZBQwexspqRjVtKy7TjCklAt1Z6PNiY
jXcH3HV/lZEgXiNp1PtMDo5rfTLoekiCtcH6w9dpuaj88ngrTzMJXgbZnl1X
kYsXPG4c02wlQX9Ap1bD11zckudqfK2bBC4FiadkqXl4YmnCLOAtCSbH/+1s
NbmKWRlHn5d/IEFSAayzDr2KE0pFlmOTJDjlo1PhVnkVQx2drMy+Lee5qbRN
TSQfu3496o+cI8HS+5KuP0fyUTxJ6mzdAgkoC9Z37bzzsbLxg400NxkODzbv
2dCej1znjgzZrCRD6mHnBPfv+Xjie4F9Eh8Z7FR2qeM6Nk5IkgiLG8mgkxwl
/lGZjeIRo07Pd5EhUnrNzVl/Nrps1ZtcJUuGJwut7Y1RbKyqzHfV3kOGvGdf
OX8z2Gg65uBerEIGtxpzVk8lG3OC8fOQBhmUlDeQ3JvYOCW8gyakTQaV+tS2
kG42hhkO01kGZAg3fea1Y5KN3cPaP+4akSEgJdPo1o9lfWauz9QJMixlpXTj
32W9IlvmKSsyDA5cLmUIcZBbt/5X9DkybKlsNRXbxkHTV+IBaE+GIOW/2ibS
HJxaPRAk70wGabk96ufUOajGPvjXgUqGXfZfTA4CB8M1sy6k0ciwjT+0qcyQ
g896Fv49YZAhzkkruvoEB7e5nQ37x1z2a3vzstUpDrpx1/KoBZEhIqC8OOEc
B2uyRCOpIWRYsEx7QHLkoPnT/kt9UWQIua604YMbB/NI6mv448hQfax5KIXG
wU9/0i/rJZGh+/z+pjEGBzVSf65lppHh+plqxgCTg5F7rOJuXiHD35xStl8g
B5+3VAm8yyVDU3vB7D0WB3fYCSdu5izn/S1C4FooB6lzPoInri/3W19wWTOC
g/fiXiSH3SDDxM/X/wVc5GDRrvJAr1tkEKgVzzKO4mBGbTTZ/s6y3qp/KS+j
OXjRlHzCpHq5f+9WabEYDvqO6agdvE+GC+7OF8ViOUgJ3LJD9uGy3iWD8f5l
PiU4u0qkiQy2fHnelnEc1C/q+srzmAxHUqYs45dZWbvk9bd2Mmx/fPhW9DJL
9oY3jXSSof+cH9twmQVd7Us7e8jg/HWj0ePlflxLGql1L8ngfc2/fs0yf00V
Ci55TYZKr0mBjct+RuS/UDKGyDB9MsX07bLf7oa2k5GjZLDZXRLtuzzPQ6sC
dcYYGcJ8nVueL89bNh0sQZgig+h7GZ6F5Txyw86sMf1MhhdengZTYRyMFVX+
rvWNDKoZ8xevhXAw8Na6Afk5MtRLPEaF5XypRyabRRfIkNW778OF5fzPvWm6
ufI/MnhNznxg+3PQyCs3bfYfGSRN5cuTfTkom2Ph/Gw1BfaW7Nb/4MnBzQcU
zR7yUyC049lLQyoHV7Wt0ry5gQKnXk01BzpzcOxHPV+UKAXU2I47HB04WGAs
cwtkKSA6U7FFfvm+JY9yZSjuocBcTP6Y2jEOhjIHL4jvo4DUDf/UrfocdCxI
Mp9Xp0C8GOear8by/fzzZ/bWUQrkbVx1gLGTg+uS+oZyjCmwKsa100acg4vS
FY8vm1KgSL5YeJcwBwcsnDKdrCnQ3bZkZ7aag5k3nh3a7kwBvB2+WeMzGy/p
lu7mp1LgDGPMV3acjcy+yHW/PSkwKC3FWRxm42nuQyMv/Sigsa/kscUzNgqd
KwyLu0iBsNEWr8cVbIxbE9C+WEiBKD+BYgMvNj7oYEz2lVDA8N2s3KgzG78k
eKyqKKOARO1wu6vD8nshQjCgVC3XC3RIHTnJRsFdxxo7WyhAEmDpyCmwMU1L
pDbvPQWMZgzI25rzMZd2p1h3pxP8av6UkRN7FctefrwUkeMENXwqf8/M56BP
o44EV7EzeF3SSeYjZ+AjAfGAiVJnsL82csvCLAM32873dpY7Qyhv/lChVgbW
/Sy/lFXjDMJ/Bx95CGcg156dM8qtzhAWNfg9sjUd49J5HjqNO4PaNs2yCcV0
LKS22XTsdgHBUP2wVzxp2C9skZHBdoG2wpeTvn3JWDST1tJT6ALWT99HhLYk
I7P99be1N1ygYuRfQ86dZNwcTDAJueMCUV4motwJyXjmgxeXa7MLXBMzUow6
loyv7yRQD465gC2NGhDyMAkHTTthSNYVPjyA6k3URCyTE/TYrOgKBVULLnzG
iRjMczrLfL8rtJjqBmxXSMRtNYOzjzRdwcFVJZL9KQHttk+X3DruCkprjFoF
PRNwZJpvU4i7KwhIbQ2P94/H0ehjk5K3XaFQV2siuiAWvyeWGhtVuoIR2j6+
cykWeTIFymn3XEG9w+z3T2osSl9/4Vvf4Ao7q4y39KjEIrXJkceqxxWkX2Rr
PmmNwZ+//bdHf3eFfwPdb/H7ZVzrXnJqRsUNOqVuOyvbRuNWBv89YU03KNZq
SePoR6NiAE1cS9sNamReVMorRKNZlOq7KAM3SBvg+Eb+jsK0a400SSs3qIpz
6SJmRaHE0OvLp5luwLpmolA6fAlVT/I11tW6AfNN15EP/hdxymIyJuuBG5wT
azN6SL6IudaPrc43ukHde5OOUrOLuIIQNq3W7gYPfm1e3Sh7EXsZvzffeeUG
xET5+OevI5F+5aNn8bwbyF/bGhgOkVj24cnWNFUqBMKLnzdEI5AwVTzB0KTC
O5sNAi9XRqDwl4t3LLSpYPhYIGfDXDgGzR8+tsGACuyXXEN1PeFozFfHiDlF
hSELac3RmHCcUip9EsqgQnF6/vWzPOEoHRjj71lBhbkoJKf9DcWz/D0i7Coq
dDnrUgI/h2JMrkhVby0VosffljEGQ3EG2d80mqiQtEapI+t+KNauuOfG00uF
3k1l+xqZoWgS/8E2c5YKfhGjLXVTIejN1tZrUneHL86KktULLCw8ED4ye8gd
OvqTNToHWNjf3BYso+sOXuL19isesvDQuOX92GPuEKeH5s/DWMir4KZsfdYd
qlxubp1ax8LMynSp6QB3CBZSmv8gF4wPW2fWiDx0h2m64vH9/oGYYnV7PVeT
OxyJvhDe6hCIzmNewtOP3MEorETK72ggCvJ8l2jqdIclXhO9rZsDkaIzq+45
5A4Jaut3R9cE4NqqX5THi+6wNui5+bPF83iGw9Xkd8gDhoVfXPHM9EfF/U2t
BPCAgj0bgt6H+SNXQ1inib4HWB2Z6fPw8MfSIZ7XksYe8H5CMa/psD8uia78
2nXOA3I2uPK7fWFiYQLfdpkAD8hbkA3INWLi9yChgP57HiClzqTwrPdDg8xD
liIPPOBelMeC829fvHKXtOd0owfosIdvvxvzRfh4d/h5uwdUCt6WFnvgi3HW
p/S73njAfBUpMN7dF+UOpPE/WvQArw23LjO7fdBhQuTqHV1PyGjTLrh+jYF3
ucH/2xFPOFo8RmInM3DldmfzfUae0GWWbVcewsCyUzU8t8w9YcrOr3CFHQP/
NFq7lBA9IXt2m2KyCAPTczL350d4wsWphWzpOG/sNBdriWvzhJvcng8KL9GR
kEXovdfhCZO8L+tk/en4813xu/fPPEH7ya5ndS503OGjznXwtSesiT3wQ/A4
Henpp3TGpzyh2StcJWgdHUUG4u/prKWB0efMYbqiFzqQecpmTtBA8v1u+UY3
T/xx83i9mAUNOn6fol829cSouaSnBlY0EN0tWEtT8cSKixIfs+1poKRL7or7
64ErSrRljtFoIO+WVbUp1QNLPjPZ+YnL+z0rNii3uON3v+k0814a1OXq3B1T
p6Lcg1v8qv00eMHD4k7cSUUCDz1cdIAG61KUYk3XUrE7Yc5r5B0Ntjy9N79u
xA1Li/8ae3ynwW2UfB55yQ1JbzZwRwt6gWKJ49zJQVfs1Vb1bDD1gsbr0UnV
qS7IFzH/ocDSC4hKFnkjIS6o96TW5pK1FxyzYluJe7hguZWO0UkHL7h3NSH4
iYELxtCO7h709IJa1pEU3l/OqM8++2Y+zguy6qtThx2csXIFy1Cpwwsqflwv
ztVyQtf+okSnZ14gbxYkECznhDtu9LzJfeEFvI8fNtNEnDDGVIrGP7TsRzSr
Nf4rZfm8OjKmPnvBn+c+E7cLKXhJVMDXYjUd3EUSPBhCFFS5ZfuYX54OmRtL
0ymLJIx/veAS6kGHBffgixNLBKzT69A7T6ND82vBmL/fCDhRkidGp9Nhwxuy
veQHAkKAfoejLx2OPIvVTmwj4IxYnJJuMB3GMwb8eJIJaGor8fNvLB1uRKg9
0ZIh4PoRw/Cgm3TYJj5VZlTpgIkfUnKZn+gQcIWPltpii3bvfZMon+nQEBbf
NHTLFuXeWUdaztAhOl1e5+AVW2weEfdQ+kEHtN1P2uNpi3NvCrQmftPhNoni
8EPUFs/13B2w4vMGFdP7aot0G9z9sHeLmpw3XOdOmgzefw7vZQilzzp5wx23
7w+uvrPGZtsSBr+rN3gKp8VXdFtj904w3031hhqbNKGX9dY4UerGf4rmDSuO
+X8zy7DGzQ2NYXeZy/V9zf+2nLBG5iSN5h3lDWeOM7pH66xQVbPj2NcSb9hh
66zXXXga776J+PNp2hsEWbu704ssMXH7K/63X7yhcU2WQPIVS/QgKmx/8dUb
9r7k1r4SY4kyH3t062eX/V7J13xKs8Sche0XYxe9gT9D5Xy9hiVGitZuUORn
wPAeO68nHRZobfVZylOBAaYxmwOM/jPHxZ7TZl9dGeD+rA/htyluGbQ1FnBn
gCb3uoSCUVNUHScZ7vFkwI5s2Zht7abo8Zuu5eLNgJ3JhyssM01xRDJe9m0A
A3iEb5s8VjfFZsbjf90xDFAM1+yoCDiJMcLqFeVlDDBjxgus33ACt5wV3Uj7
xgC6oEd+is9x7FvYKxv+gwFv+VQWtAnHMSXLQCdjjgGSe04s/TpxHNcNervh
AgPKr7r05sscRy6Hzqb13D5wjJ06XDVghFPkMMbtjT6QyH2tZ8LQCO97Tb/4
puwD3AmH//2TPYY2UQ0ZPn4+UKDebjQlaohTRamjZH8fCLDTIljzGSKz1UXh
dIAPvHk5OvnsjwGmrhREVZYPnLxQIzE+bICdEYTxn5E+cO2Z+dbMQgOEUG7V
82k+oB7Mui2oaoC7Ao48D670gedh89mitkfwE7WN/9J3H3BR2NkX1HYYa83N
dNmzPsC+oDgWUHcYL6q/YtT99IH3xK2t4bcO406eyTczv33AWc99oCr1MFpn
rSo5w+MLOTuy92YRDmNLm6GB/CZf4DqfOn7uPz3MlXoU3KnqCxy9sMHzWnpo
OtL4Rei8L5D/S5qjlungF/1VVnyBvpDY5G1edEUH44pNHvwL8oWmf843vkXq
4BN6f8znEF8oH2iRuGuvgwYrPsu2RvlCvZD5w4kNOnhITpQUkOkLwSonB/j9
tVGW4dn/tmaZJVZMfjPTQq5V4g1lP33huTOvQaH8QdTj9jqc9WuZHe+4pIkd
xJD/Wlou/vYFPxUdzSS+g7j0w7Pd4a8vNJxbvF/6URMX3zY9F1zpB/r1yprU
Uk2cv+825ivsB1we2/9bq6SJnz3v8+mo+IHXmTjVNB0NfNV39nQX3Q+23M+4
/iFIDa0ziY0fGH5wdGtyiJWnGr48S1X84+sHvzku6b0Oatg7GMQrG+AHaw8M
npw5rIad765WhYb5AemB7ljpGjVs/jImrJriByGnl87sv6KKZSu9+7Ir/UCK
1ly9p0EFw9UuW7vO+4FbNs/gHwVl7PUzm7dZ8IMaOWZRs4Qy7qoRyTj5xw/+
SjidSRFWxmb1gj7lJT9ocXpufnzpAHJr1p/+u5IJbZ/654R7D2DooS+WKSJM
UKqsL90edAAv6FqYPVBlwuUfJ+U7evdj0HExI0EfJmz5pHSuUmkfrjVPfa7o
xwSJ/sbthuL7MNtawPa4PxMOh36Rmli5D2vJ3LTwICbQqle2Ww0r4RzrY+pc
BBPs9p1Y+hinhLS799++TmOC/Hm1Q4Mze5G41cafU8ME78qR+tiHinjsS3aR
8h8maEendVyNUMASRi95z39MeLgjeF+LjwKuWeCTlFpiwlKtKuUHWQHbeQJy
RHj8gVi9WsLbQAGNt5xJWuDzh2e1+nMzKxXQ9MimQBTzhxPHdvCOx8jj6azY
k8YH/UFil9jpiFw5JBoGzxHP+8OjYdV774dkkGN4ZNWWOX/QP/fOIfDlbqzq
W4w0CjwPgSKLw+LrJFFEXHj24q/zcDNNk0vqznY0ntnerRMSALet28K3XBNb
/u8IeAbzBsKU4AWbFP3NeCLHbrEtNBD4Nv4rzk3chO22efPxq4OgWzzkq8q6
jZjSo/OOcDEInlLXafNsWI9hX1oS67iC4eTKjnve+WvRIFvrZsKlYFidu7mX
SlmNVotCNV4rWJC9Rkj2VisvlrsetsxbyQK9NknHtnpeXNXvNfN0NQuKJ0/u
mKrgxZqKThmZdSxYOkbdqZPDi1ucL2UOCbPg4w2f+6p0Xhzo+X3+uMxyvbu7
v/VWXnQoGtXafZwFbdktCUeZK7Bm04bX5iYsGBWtpsh7rMD1YTq+F06yIN3Q
WEuItAIbbLPL3liwQC3YYeDnyRW4c+Pp7Uk2LJCz7KDzyqzAD0FtS/+5s+BS
ika81ise1P74M1uBxgKLbovU4C4eTLOW0jhLZ0HOJXvblhYeNDgQ5lXpy4Kb
Vty7SBU8WDRxaNSNxQI3EQmJscs8uHTKLTgzhAWSvNZPLUN50Lopc8vjMBaU
rtAQa2Py4OrcOfOdl1hQrbEmtZHMgwS+3V9ORrOA+CSqxtCGB2uZFpeDYljw
QrKH1mPOg4JjIdI34liQ2bSvlnCMB10typv6E1hw4+2vhHkdHvwf2V2pLw==
"]]},
Annotation[#, "Charting`Private`Tag$19124#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVV3k41F0bRiq0iYhKVCi0SJKoR5asJYQWr6hm/U0YY8Y+RSGJpNeSLKWy
hKwzRHlkKQktokIviVBC1rKkb76/znVfz3mW+77uc851NpzxsCOLCAkJHRIW
Evr/Wg+b5esNSVBBqolTrRU2WDczM/7QlAQqp+qP0bjCBgkPXuspUEhQFhMR
ZZ/zF8IMsjctIUhwr+yYSrvpX/BuDVk67UaC9t/OUhE982AvrNfZwiHBwZ+R
vSeV5kHqxP3gyFASXAjdc9M1cw4ixfxezN4nQZpVvozSwDQ8aWD1t2aRoOXG
xRTn+GkYunZuUUEuCehFfhfDD06DtYyrCYlHghdupy8nZfwGyY1mTxtrSLBK
8oXhOa9fEKsv8yjlCwn8LjQGB+2ehNr55R98+kiQ/fNu6KnRCZisEpuy/U6C
Lb0+wiJ5E+BoPrdr0RgJltda0a6rTYCcQ0++uzAZ9IsMU6LUxiHZvTDTQIkM
t48kbtW2GoXGnTnP5ZXJ4FiTL05IjcKfiftfxzeTIYqZfNak/SecCri5KWsH
GWKzT27oYvwEpfALtyUNyGDwzx3hia0jcD/tcEK3MxnUmvJ2BK/4AS0ks5LH
p8lwnPlkb2vBICzcYtgaRyaD+YLqFP2jg0DJ05a2dCPD6OMR5V1J32HL47XR
RYFkePqifYHfnm+Q2/It7FISGSK9laAjtQ+clK38Cm+TQWzZ0iQriz6QYOcy
uu6RYXbC9UT9xFegSXvY6OcK4hPvx7qsv4KK3YT8+BMybOWqZCit6IXU1/O5
ZzrJcLDv4zfzim44rOh6+/oXgR4DZ7Yp+HTDnHtVDPaRQcZfcvPrnd1wcnmI
95oRMihMeN2oevAZVh8WP9D8lwy61ce/bzfrgusvpd8ZbqCAevpHwxK/DjBY
w3nmoUKB6gPK2qWLOmCY/r40RY0CbsGXfVXi2uGQeGLy9E4KjF964adb0gbi
5usphUYU6E/K738q9hEuPtsyrUSiQE7DvqSXgy2wUyZi0JpGgTXKDcb5US3w
mTT4X+A5CgiJPdhcpdkCIJpX/ZFNgdTQe8an/N/BjNGuyOuhFNgn9PrB2rXN
4PV0v6JQJgUUV4StJhRfQ+2yNX592RSIfDqW2RP9CmSdppob8yjAEcs5vVzk
FZRP5oUlllAg+VWHLGmwEYQ0lIa1nlOgKVd0IvLtS4iME6kgf6UAQ9bneE//
c+j80il76BsFyhY+OG3p+Rx2aD5mag1RIChwy721c8+g+aWX8t8JCuRPNNX8
kHkGckJfr94UpcL6hvacjhM1cJ+oO9mwiQrORaK5aYpPYar0Hq9wMxV0lQqr
awIqwWxh0PKbGlTQ4Kaq3S1H+H5bt5q0iwpf0p8rnDKoAM3WB2rzRlR4Mvx6
/VpSOVQYRP7WPEOF6Rcb3dVk+LA8ima3mkKF6hjyjatsHri2m+T+oVNhS4Z3
4UBrMYhy/ri89KTCXtprNje1CCyz3evOBlOh1fporI9pAbxfZRsff4cKJa87
XLe0Z0LGcGzNm/tUCNz24NWpigzwfvHxp8QDKsAB6UV+99NBNtDV6kIhFWLH
1Farnb8Hx3o8hGjVVNj8n4ri2Sep8LHwGrG3lwpOl/pFYtZFQ9bV5gSvASpk
L327VSnqKviSZZ89/EGF/iuJJ4IlwkFePlVx46Qg3/ilwjqNYDgZ9LBFYhEN
qkSZBSOzLtBh3QifNtPgSbjJIUONEMzdInlOdisN9otENK39G4aBIvaJNpo0
kKiKJFFfXMF1JR3jtbo0WNnNk27Rj8Z/FAazHlrQoLbv3Q9sicWtv7a/7z9M
gyPNS+R2yMbj3BvWgo12NNBcoqDeapeAKSEzzvEnaVCXu1N/viIROwfFpS8w
aHB6sOj7cedUzHt2+ECZBw2MhKOoy/1v4/nbMW7jXjSQHxr+utviDq4/Kv+C
GkiDJOciaXWnNHQp38K1iaLBl+HQIhXKPfwcbta/IZ8GE7qPKYMKmTganW1p
XkyD1fGzey9FZKJIwrI891IanKXU+J+ZzESV9Hfsx5U0iOSynZc+z0KiykXE
4Q0Nsg8mjKcczcbAF9XkgBYaPB9fMCJcnI1Rr1Xq0z4K6oP3n1bJHCz4bzB6
+DMNlk1JXOuuy8HJaR+F8FEaZLlqLpJQfoiLhDuC8iZp8Ka8+DLL5yHKiUFv
yzQNdP6cUGPWP0Q9WdGcDSJ0CN8Xa7+PnodBWtd1H0vR4fOyqF3Xb+ajBCPr
6PAuOjxo+e7T+akA17KWlK7SpUNmh0/j7rkC3OrnvkZ/Hx2y11+b+bWmEI9c
1u6+bEKHtvSgrbWOhRh776n7Bgc6dOWn4MO6QszI3tRsdoIOnIm5T1FfCrG0
MGy3uzMdSrdt6uqbK8T2ykNz5WQ6lKwM3CWhWYSKnz5esfemw59XBdeMrxeh
Zo/+kL8/HaS+3XSVyyxCo++pNmnn6TCik9/DqihC0m/S6uEwOhy/pr+0cqAI
s1eN3r+cQAdyZPex//YW4+O19mJ5SXRY/FbTRPxwMTZuLGW03KaDe4zptecu
xTiiydXakEUHVcvJqplLxah9WPxp+SM6LGzI9vSoK8YB2/6IxCd0iHl0t2j/
+2JMdnzm4PuUDsdOkr7xeotxgWvw4O4XdFihVnbkrhAPm1nTsoUf6FC8bL9Y
nDYPw3w+dEd30KHOZ8uqugM81Avk57p30UFjjPbnwSEepoV6Gm3tp4PxkLBa
2FkeMm9+c8ucEvDZ5pZSGMVD5ZQ63bAZOqwZPugSksDDj2npC8jzdDA4tMlg
RRoPDXJOJ25cRMCPx/jSppiHY/kGJGEJAuSXXFQTf8LDDJ7Cjs/LCHCG00u5
tTxcjm21KTIECG9fm3OrhYfV1aXRgfKE4H28v9j0Ew+96+JOOikQINdQrFbQ
w8P/3tj+lFMh4I22W3/NKA9ze+rXxmoTkBen8XNego+uA5l9LF0CxmfNdpRI
8nHVUGih7T4COvVqrbVk+RgwZWi2woSA87skZQKV+Lh9VlFq2IwAr6Ui6lYq
fPzy98+nRisCuh/fne1W46OleDkr4igB0qqNSXQtPs4vu7mffoyA9WV/Xzjp
8LFIylvM3IkAloIRU06Pj5TV9u9UXQio7963785+Psqv00pdeJaAO4drW8cP
8LFRSZLeSyEg0OFTj7QJH4NUhnfVEATMBlUsETbj48D27PogFgGOlt3aBw/x
MXlXeKyLNwERu+t8Uqz5aKNLcQF/Au5aPz/2zIaPovtN1BXOE2CVTfassONj
qeHGydlgAk4c4LqE2fORMBV62h5KQJe33mMlRz6ut+qMKLtCAPeO8rqoY3xs
PvLE4WYUAZHuG+Qaj/MxzP6Wkk8MAV8c/Yw7T/BR74TvoEMcAc+GOjRrT/Jx
2NmxRDuRAN4ukud5Jz7ePaMdLJ1CAPVDcuyyf/joSJU6NHaHAIVzIVtYAixx
7qfs2/sEJMXGlOUKMDJfdednEWC7sbS5QoBZnNzca7kEpKjR/qQLsIp/hI9b
AQHhEslVZAE+vuSNzB0eAb7qbYvGBf0ikmV4zY8IaPr37DI7AX6yzcluYYVA
//TBwEv/nw/v/NxTRcCOEfXZy4L5lWz6rhHPBPmD3zRcBfyOdmtsS6kngJm1
sHCpgH8Yy7PhdZOArwtH/ZoDHx8tKKWLNBMwNH9E5+tRPn6PnVu8+z0Be1Le
MqUE+iqoGmVQ2wl43ePKlhXob1N62eRWJwEcUmzb6GE+XjRv+tL4RcD38549
6VZ85LVJBf/tI2BfsO3GnRZ87COOK2oNEvBnXnV7vCkfraJ6nBLGBXq99P0x
JPDH+fVqM/W/CDg2NPikW+Cfgnz3m3OzBPwOkvpeIPDXqubpltOiDFgTIxXS
s4uPpmcNvGLFGPDscIawuSYf/SZCVtYtZUCbB+PPla187JSVtN4qwwDqgP+F
LGU+SmY5/DglzwBn/XbxMIH/jfcmRcQoMGBmPGWN8To+Zjmp1k2pMKBSs+q5
szQfPe/sO1Clw4AMfkv5RiE+3t95sXNcjwFHk85OiM/y8H11XaCqAQOaBuy4
LZOC++SrXdlVMwaYPvhlKjPIQ1F1upbjcQZcLKSN2grOd0JxnPKgHwP+nO9S
lLnLw5cmHdUK5xlANu/fS0ri4Vyr0mmbiwzwtVTVTonloevvnBR+BANCbs8Y
vQrjofr+atmgJMH+FSOdOgQPK54Pi8lUMMCi/7OaxzYe3nDIXy5UxQDHsBHe
MlUeUno9Vg3WMuCUXXpuynoeSoqMKlY1MqBc2qbrxgoekvaP67h9YoDM72ey
bT+LUYL3i/RslgGk6pV8scJiPJYmVMXROwdfbxwVY6kV42iAlN/70nMwtuq6
YYBoETbayNdE1rnBV/cz3erv8nCUMxhr0+wOci5fX/+efIDFC7gHtzd4QJxu
dJPkj3SM+vibGnSOCWrJi3XN1e5i+YGGA77uTCi8VnuAue4u9mWlyDOZTEjb
+6H/zoq7CH5GDS5sJiwOdBVdN5WGw/KR2w0CmVD7Wk3BryYNrZ0UJ/9cZcJ5
xquBBpc0XN558GJADhNOmBuFPk69g9E9N5K9vzMheKSytIueiv98YV8n/WCC
0vHl/CL7VNzS7RhiN8yEjdsUvWINUrG6c8257WNMyL//dWWITCpOtN3V75tm
gr50z6xUdQqeeFPU7iDuCS/5mpcHFFJwU0Wz3O4tnvCw+7Km3uckLI2Xihsn
e4Lo9WhqYVQiVjtlsZbQPEEscw2b7Z+Ir5TAZhPhCfIjEQGm1ETsy6YvOeru
CZZTH2xXGyaibOXT4CJvT1hbXjZLTN5E7353d8/LnrCgzcr8retN1NZtMBvJ
8gQw1aHYGSVgUdulme+DnqAVFqc8tS0OoxU+LOka8gThVzqWOopxeO60usK7
EU84vSjONlgyDlW/vTF4PO4JCgnNfXvGYzHpt0Lo1VlPSLFUclAti8WQ1Y9W
bF3CgqS1e5OEzWLR0eGHsps6CxjpmS5c4l+cfWN/ZITGgvL0mraxVzEo1+Fk
uYzBAn+xwMpswddH++uZgxpuLNj1bp+1Gy8Gz00z9ameLJi3zjGRuhWDnRui
Nnf5sQBvQGY7OQarWc/+vopggapS/lfnv9cxYpVOQV4uC2YldYIn9l5HueOr
V7r/ZIGG0H9phxKisPX3ts0Xx1gQGb3l9VRwFN5INNkfP8ECyiazysJzUbi0
w5OOv1kwtqOh8IRRFAqdaqxaLuwFzQVIYQ5H4sDZYFb+Si+4yWZQH1pEYpnH
4LufWl6gVW8cLLH0Kp68XBnvxfGCWIm9d+IrwnEg49/PZ328QM+v87rew3D0
fk5Vt/fzgvE8R8r35HD8d6EkanO94AObmeQWGI6Nl1y/ToZ4wVhAwk7hfeEI
QcLavrFeQBya3O9QcRk3+hm/DSz2guQ9zoVeL8LwO1G3JGzUCzS+X6/hz4fg
I5sjBnfGvWAmprRtYCQEQ3U+sMonvUDiXGLA5u4QVBLpbxue9gJ5b/19dTUh
6Ji4KOuYCBvKT3pkRF8JwZq6gyZq0myoNVXp1V8dgsnKtYGN2mz4S6mtq9K7
hNadT4ekfNng6Xi+MfFOMA4ZLXIQ92dD01ktD924YIzMtHryN4ANRvcboOtK
MNYz30f8uMAGl3HC6qBXMJos+LH5+WU2vNVPI1imwai3ZfUZvwQ26FjZHrUa
DsLNLLf3XSVssGw85tpkHIRCi9ZU5k4K6n0Qr0sWP48HhD0ME3+xYSYoemBs
iosX5mpqQqfZsFi0f96hl4vzY24vTv1hQ/wGyR6jSi7OdlW9lVzIATMFWf8S
Dhenyui97FUcqMtZd3GuNxB/uJWJ79/FAVLWVr/qxgD80HrcvonJAZ6bEduw
0g8dE04/7WFxYGa0fFInzw9bjhNbZ9gcKHdIXLs3xQ+bOwJEN/txIN09XeNs
gB82dqfygoI58I9z0YHDun5YPdS7SvsGB1xvpvoyeb6Yu9Cz9VYxBx7fKsjO
4/vgxd1XHGlTHLhf/XNeqJ2DzZwjUyd/c+CMxm3JukYObiyRiT88wwHbGeWN
8ZUcrNa526o1z4HYf7+oHUnnoLDuY/s/C73BZTZ45VZPDgbpDdndkPGGgGg/
7lUJDp43sD3yRNsb1p0KeVRszMYAC3lzSS9vaAsPCLV9xUKzoVsZWjPekJwh
3OEgxsTTBwMnTvv6QLKUjuwKPgPTDhovkpvwAWunWzcWStOQ1zobYu7vC3NY
GzZcTkKZNavGQ3/5wom7ay2bpM+g5bDCq/0X/EDVImU6wdAF7xPL3AJF/SGv
Krftp7oTHkr6Z7YuyB+MK7/hQO8xfOGUMhW1OAAmJVRi7D7Y4403+7tdQwPA
5FOeU/0ZOwweqokuFwqEi0OrtXda2aDJLf2ca2GB8KmeXKKQcQgdZqVKPBZw
waRwX3Yr2wLzaIZ2KQu5kF5n+P4y1QIXvfcYfrmYC2U7jwwbnrTAkoJGVdWl
XKBtIzU1GVigHCUs4dMqLoQf8OUZL7HA9jfTvhaqXPA4OXLr3j1zPJXxWX+T
BRdKdstpS7abYYn0io82Vlzo9Zcc5jeZ4fLg/ezzh7nwN99y7EyVGVY63cpt
s+VCje+B581ZZqi00l7h+kkuGM/Jyor7mmFPQN38HIMLYQ0imo2rzXDft8lb
6u5ciNhkdbR3iRnGOirvOc7kwgZRR84CITM02RnsUczmwvoflvccB0wxo0/v
M53Lhd17YlRtykxx/ig9MOECFzLWllTefmiKjlUJcs+CufBh86ZdU2mmuDh5
wkYpjAuheh/iSyNM0VV809DhcC5Ya2w+v/GCKT7ytr0SEMGFY9Jvt8V6maJk
7wWVB5FcGA05nbaUZoo027yq99cE/A/RWq7+Y4r/A5xuO8c=
"]]},
Annotation[#, "Charting`Private`Tag$19124#2"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{1.7759999999999998`*^-8, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{1.7759999999999998`*^-8,
1.1011200000000001`*^-7}, {-1.2732906026093622`*^-6,
0.000033886363526477896`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.8550880672305517`*^9, 3.8550880854556637`*^9}, {
3.8550905418921328`*^9, 3.855090560805344*^9}, 3.855090820010639*^9},
CellLabel->
"Out[1415]=",ExpressionUUID->"57d956d9-95ac-40d6-b955-8b66b8976ab8"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"lattice", " ", "=", " ",
RowBox[{
RowBox[{"Import", "[", "\"\<~/bottomWall.dat\>\"", "]"}], "[",
RowBox[{"[",
RowBox[{"2", ";;",
RowBox[{"-", "1"}]}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"NL", "=",
RowBox[{"Length", "[", "lattice", "]"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.8550867582187634`*^9, 3.85508683306031*^9},
3.8550869103933687`*^9, {3.855087370458099*^9, 3.855087384673457*^9},
3.8550904816252613`*^9},
CellLabel->
"In[1354]:=",ExpressionUUID->"301f5b50-ed4d-44d9-b44d-85ba85167b66"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"NN", "=", "200"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"NP", "=", "250"}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ydiv", "=",
RowBox[{"rccs", " ",
RowBox[{"\[Sigma]cs", "/", "NP"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"potTabCS", "=",
RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"For", "[",
RowBox[{
RowBox[{"i", "=", "1"}], ",",
RowBox[{"i", "<=", "NP"}], ",",
RowBox[{"i", "++"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"yp", "=",
RowBox[{"i", "*", "ydiv"}]}], ";", "\[IndentingNewLine]",
RowBox[{"potTot", "=", "0"}], ";", "\[IndentingNewLine]",
RowBox[{"For", "[",
RowBox[{
RowBox[{"j", "=", "1"}], ",",
RowBox[{"j", "<=", "NN"}], ",",
RowBox[{"j", "++"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"xp", "=",
RowBox[{
RowBox[{"RandomReal", "[", "]"}], "*", "L"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"zp", "=",
RowBox[{
RowBox[{"RandomReal", "[", "]"}], "*", "L"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"pot", "=", "0"}], ";", "\[IndentingNewLine]",
RowBox[{"For", "[",
RowBox[{
RowBox[{"k", "=", "1"}], ",",
RowBox[{"k", "<=", "NL"}], ",",
RowBox[{"k", "++"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"rp", "=",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"lattice", "[",
RowBox[{"[",
RowBox[{"k", ",", "1"}], "]"}], "]"}], "-", "xp"}], ")"}],
"2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"lattice", "[",
RowBox[{"[",
RowBox[{"k", ",", "2"}], "]"}], "]"}], "-", "yp"}], ")"}],
"2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"lattice", "[",
RowBox[{"[",
RowBox[{"k", ",", "3"}], "]"}], "]"}], "-", "zp"}], ")"}],
"2"]}], ")"}],
RowBox[{"1", "/", "2"}]]}], ";", "\[IndentingNewLine]",
RowBox[{"pot", " ", "=", " ",
RowBox[{"pot", " ", "+", " ",
RowBox[{"lj", "[",
RowBox[{"rp", ",", "\[Xi]cs", ",", "\[Sigma]cs", ",", "rccs"}],
"]"}]}]}], ";"}]}], "\[IndentingNewLine]", "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"potTot", " ", "=", " ",
RowBox[{"potTot", "+", "pot"}]}], ";"}]}], "\[IndentingNewLine]",
"]"}], ";", "\[IndentingNewLine]",
RowBox[{"potTot", " ", "=", " ",
RowBox[{"potTot", "/", "NL"}]}], ";", "\[IndentingNewLine]",
RowBox[{"AppendTo", "[",