generated from AICONSlab/HippMapp3r
-
Notifications
You must be signed in to change notification settings - Fork 2
/
setup.py
51 lines (50 loc) · 2.11 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from setuptools import setup, find_packages
from icvmapper import __version__
setup(
name='iCVMapp3r',
version=__version__,
description='A CNN-based segmentation technique using MRI images from BrainLab',
author=['Maged Goubran', 'Hassan Akhavein', 'Edward Ntiri'],
author_email='[email protected]',
packages=find_packages(),
include_package_data=True,
zip_safe=False,
license='GNU GENERAL PUBLIC LICENSE v3',
url='https://icvmapp3r.readthedocs.io/', # change later
download_url='https://github.com/mgoubran/iCVMapp3r',
long_description=open('README.md').read(),
classifiers=[
'Development Status :: 2 - Pre-Alpha',
'Environment :: Console',
'Environment :: X11 Applications :: Qt',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: GNU General Public License v3 (GPLv3)',
'Operating System :: POSIX :: Linux',
'Operating System :: MacOS',
'Operating System :: Unix',
'Programming Language :: Python',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.6',
'Programming Language :: Unix Shell',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Medical Science Apps.',
'Topic :: Scientific/Engineering :: Bio-Informatics',
'Topic :: Scientific/Engineering :: Image Recognition',
],
dependency_links=[
'git+https://github.com/keras-team/keras-contrib.git'
],
install_requires=[
'nibabel', 'nipype', 'argparse', 'argcomplete', 'joblib', 'keras', 'nilearn', 'scikit-learn',
'keras-contrib', 'pandas', 'numpy', 'plotly', 'PyQt5', 'termcolor'
],
extras_require={
"icvmapper": ["tensorflow==1.15"],
"icvmapper_gpu": ["tensorflow-gpu==1.15"],
},
entry_points={'console_scripts': ['icvmapper=icvmapper.cli:main']},
keywords=[
'neuroscience dementia lesion stroke white-matter-hyperintensity brain-atlas mri neuroimaging',
'medical-imaging biomedical image-processing image-registration image-segmentation',
],
)