This repository has been archived by the owner on Nov 21, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 78
/
results_summary.py
93 lines (79 loc) · 2.33 KB
/
results_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright 2017 Abien Fred Agarap
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Module to display the experiment results"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
__version__ = "0.1.0"
__author__ = "Abien Fred Agarap"
import argparse
from utils import data
MALWARE_FAMILIES = [
"Adialer.C",
"Agent.FYI",
"Allaple.A",
"Allaple.L",
"Alueron.gen!J",
"Autorun.K",
"C2LOP.P",
"C2LOP.gen!g",
"Dialplatform.B",
"Dontovo.A",
"Fakerean",
"Instantaccess",
"Lolyda.AA1",
"Lolyda.AA2",
"Lolyda.AA3",
"Lolyda.AT",
"Malex.gen!J",
"Obfuscator.AD",
"Rbot!gen",
"Skintrim.N",
"Swizzor.gen!E",
"Swizzor.gen!I",
"VB.AT",
"Wintrim.BX",
"Yuner.A",
]
def parse_args():
parser = argparse.ArgumentParser(
description="Deep Learning Using Support Vector Machine for Malware Classification"
)
group = parser.add_argument_group("Arguments")
group.add_argument(
"-r",
"--result_path",
required=True,
type=str,
help="path where the actual and predicted labels array files are saved",
)
group.add_argument(
"-t",
"--figure_title",
required=True,
type=str,
help="the title of the confusion matrix figure",
)
arguments = parser.parse_args()
return arguments
def main(arguments):
conf, acc, report = data.plot_confusion_matrix(
arguments.figure_title, arguments.result_path, MALWARE_FAMILIES
)
print("{} Classification report :\n{}".format(arguments.figure_title, report))
print("{} Confusion matrix :\n{}".format(arguments.figure_title, conf))
print("{} Accuracy : {}".format(arguments.figure_title, acc))
if __name__ == "__main__":
args = parse_args()
main(arguments=args)