-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLMM(function)_240310.R
136 lines (115 loc) · 6.17 KB
/
LMM(function)_240310.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
LLMbyOutcome <- function(folder_path, measure_Pop, censoring, start_offset, end_offset, concept_id, islog) {
file_name <- paste0(folder_path, concept_id, "dur", start_offset, "to", end_offset, "cs", censoring, "log", islog)
if (censoring == 1) {
measure_Pop <- measure_Pop %>% filter(measurement_date <= cohortStartDate + survivalTime)
} else {
measure_Pop <- measure_Pop
}
measure_llm <- measure_Pop %>%
filter(measurement_concept_id == concept_id) %>%
filter(measurement_date >= cohortStartDate+start_offset) %>% filter(measurement_date <= cohortStartDate+end_offset) %>%
filter(value_as_number > 0) %>%
mutate(followup_months = floor((followup_days-1)/30)) %>%
mutate(logvalue = log(value_as_number, base = 10))
if (islog == 1){
lmm_model <- lmer(logvalue ~ followup_months * outcome + age + gender + HBVdrug + cirrhosis + (1 | person_id), data = measure_llm)
} else {
lmm_model <- lmer(value_as_number ~ followup_months * outcome + age + gender + HBVdrug + cirrhosis + (1 | person_id), data = measure_llm)
}
summary <- summary(lmm_model)
#saveRDS(summary, file = paste0(file_name,".rds"))
#terms_str <- paste0("followup_weeks [", floor((start_offset-1)/7), ":", floor((end_offset-1)/7), ", by=4]")
#ggpredict 함수에 적용
preds <- ggpredict(
lmm_model,
#terms = c(terms_str, "treatment")
terms = c("followup_months [-3:24, by = 9]", "outcome")
)
x_breaks <- seq(-3, 24, length.out = 4) # x축을 위한 5개의 균등한 점
#y_min <- min(preds$conf.low)
#y_max <- max(preds$conf.high)
#y_breaks <- seq(floor(y_min/10), floor(y_max+10/10), length.out = 4) # y축을 위한 5개의 균등한 점
p <- ggplot(preds, aes(x = x, y = predicted, group = group, linetype = group, color = group)) +
theme_minimal() +
theme(panel.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
axis.line = element_line(colour = "grey50")) +
labs(title = file_name, x = "Follow-up Months", color = "Outcome", linetype = "Outcome", fill = "Outcome") + # fill 레이블 추가
scale_x_continuous(limits = c(-5, 25), breaks = x_breaks) +
scale_y_continuous(limits = c(min(preds$conf.low)-0.2, max(preds$conf.high)+0.05)) +
geom_line() +
geom_errorbar(aes(ymin = conf.low, ymax = conf.high), width = 0.5, position = position_dodge(width = 0.5), linetype = 1) +
geom_point(aes(fill = group), shape = 21, position = position_dodge(width = 0.5), size = 2, stroke = .5) +
scale_linetype_manual(values = c("dashed", "solid")) +
scale_fill_manual(values = c("black", "white")) +
scale_color_manual(values=c("black", "black"))
#ggsave(file = paste0(file_name,".png"), plot = p, width = 10, height = 8, dpi = 300)
a <- sjPlot::tab_model(lmm_model)
print(summary)
print(a)
}
# ######################
# folder_path = byTreat
# measure_Pop = Pop
# censoring = 1
# start_offset = -90
# end_offset = +730
# concept_id = 3013721
# islog = 0
#
# ######################
LLMbyTreat <- function(folder_path, measure_Pop, censoring, start_offset, end_offset, concept_id, islog) {
file_name <- paste0(folder_path, concept_id, "dur", start_offset, "to", end_offset, "cs", censoring, "log", islog)
if (censoring == 1) {
measure_Pop <- measure_Pop %>% filter(measurement_date <= cohortStartDate + survivalTime)
} else {
measure_Pop <- measure_Pop
}
measure_llm <- measure_Pop %>%
filter(measurement_concept_id == concept_id) %>%
filter(measurement_date >= cohortStartDate+start_offset) %>% filter(measurement_date <= cohortStartDate+end_offset) %>%
filter(value_as_number > 0) %>%
mutate(followup_months = floor((followup_days-1)/30)) %>%
mutate(logvalue = log(value_as_number, base = 10))
if (islog == 1){
lmm_model <- lmer(logvalue ~ followup_months * treatment + age + gender + HBVdrug + cirrhosis + (1 | person_id), data = measure_llm)
} else {
lmm_model <- lmer(value_as_number ~ followup_months * treatment + age + gender + HBVdrug + cirrhosis + (1 | person_id), data = measure_llm)
}
summary <- summary(lmm_model)
#saveRDS(summary, file = paste0(file_name,".rds"))
#terms_str <- paste0("followup_weeks [", floor((start_offset-1)/7), ":", floor((end_offset-1)/7), ", by=4]")
#################################
predicted <- emmeans(lmm_model, specs = ~ treatment, at = list(followup_months = 24), pbkrtest.limit = 100000, lmerTest.limit = 100000)
conf_int <- confint(predicted)
print(conf_int)
print(pairs(predicted))
#################################
# ggpredict 함수에 적용
preds <- ggpredict(
lmm_model,
#terms = c(terms_str, "treatment")
terms = c("followup_months [-3:24, by = 9]", "treatment")
)
x_breaks <- seq(-3, 24, length.out = 4) # x축을 위한 5개의 균등한 점
#y_min <- min(preds$conf.low)
#y_max <- max(preds$conf.high)
#y_breaks <- seq(floor(y_min/10), floor(y_max+10/10), length.out = 4) # y축을 위한 5개의 균등한 점
p <- ggplot(preds, aes(x = x, y = predicted, group = group, linetype = group, color = group)) +
theme_minimal() +
theme(panel.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
axis.line = element_line(colour = "grey50")) +
labs(title = file_name, x = "Follow-up Months", color = "Treatment", linetype = "Treatment", fill = "Treatment") + # fill 레이블 추가
scale_x_continuous(limits = c(-5, 25), breaks = x_breaks) +
scale_y_continuous(limits = c(min(preds$conf.low), max(preds$conf.high))) +
geom_line() +
geom_errorbar(aes(ymin = conf.low, ymax = conf.high), width = 0.5, position = position_dodge(width = 0.5), linetype = 1) +
geom_point(aes(fill = group), shape = 21, position = position_dodge(width = 0.5), size = 2, stroke = .5) +
scale_linetype_manual(values = c("dashed", "solid")) +
scale_fill_manual(values = c("white", "black")) +
scale_color_manual(values=c("black", "black")) +
geom_vline(xintercept = 0, linetype = "solid", color = "gray", size = 0.5)
#ggsave(file = paste0(file_name,".png"), plot = p, width = 10, height = 8, dpi = 300)
a <- sjPlot::tab_model(lmm_model)
print(summary)
print(a)
}