forked from eglrp/ssd_tensorflow_traffic_sign_detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsettings.py
51 lines (41 loc) · 2.03 KB
/
settings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
'''
Global settings
'''
import tensorflow as tf
# Default boxes
# DEFAULT_BOXES = ((x1_offset, y1_offset, x2_offset, y2_offset), (...), ...)
# Offset is relative to upper-left-corner and lower-right-corner of the feature map cell
DEFAULT_BOXES = ((-0.5, -0.5, 0.5, 0.5), (0.2, 0.2, -0.2, -0.2), (-0.8, -0.2, 0.8, 0.2), (-0.2, -0.8, 0.2, 0.8))
NUM_DEFAULT_BOXES = len(DEFAULT_BOXES)
# Constants (TODO: Keep this updated as we go along)
NUM_CLASSES = 3 # 2 signs + 1 background class
NUM_CHANNELS = 1 # grayscale->1, RGB->3
NUM_PRED_CONF = NUM_DEFAULT_BOXES * NUM_CLASSES # number of class predictions per feature map cell
NUM_PRED_LOC = NUM_DEFAULT_BOXES * 4 # number of localization regression predictions per feature map cell
# Bounding box parameters
IOU_THRESH = 0.5 # match ground-truth box to default boxes exceeding this IOU threshold, during data prep
NMS_IOU_THRESH = 0.2 # IOU threshold for non-max suppression
# Negatives-to-positives ratio used to filter training data
NEG_POS_RATIO = 5 # negative:positive = NEG_POS_RATIO:1
# Class confidence threshold to count as detection
CONF_THRESH = 0.9
# Model selection and dependent parameters
MODEL = 'AlexNet' # AlexNet/VGG16/ResNet50
if MODEL == 'AlexNet':
#IMG_H, IMG_W = 300, 300
#FM_SIZES = [[36, 36], [17, 17], [9, 9], [5, 5]] # feature map sizes for SSD hooks via TensorBoard visualization (HxW)
IMG_H, IMG_W = 260, 400
FM_SIZES = [[31, 48], [15, 23], [8, 12], [4, 6]]
else:
raise NotImplementedError('Model not implemented')
# Model hyper-parameters
OPT = tf.train.AdadeltaOptimizer()
REG_SCALE = 1e-2 # L2 regularization strength
LOC_LOSS_WEIGHT = 1. # weight of localization loss: loss = conf_loss + LOC_LOSS_WEIGHT * loc_loss
# Training process
RESUME = False # resume training from previously saved model?
NUM_EPOCH = 200
BATCH_SIZE = 32 # batch size for training (relatively small)
VALIDATION_SIZE = 0.05 # fraction of total training set to use as validation set
SAVE_MODEL = True # save trained model to disk?
MODEL_SAVE_PATH = './model.ckpt' # where to save trained model