-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_deepSC_without_MI.py
executable file
·186 lines (160 loc) · 7.39 KB
/
predict_deepSC_without_MI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""
it's used to validate model trained from train.py
attention it's wired that argument snr failed to be transported into model and fading channel cannot update it's argument
so i put them into the same file instead of importing from outside
"""
import torch
from model import calBLEU
from nltk.tokenize import word_tokenize
from transformers import BertTokenizer, BertModel
from matplotlib import pyplot as plt
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
import pickle
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Using " + str(device).upper())
model_path = './trainedModel/deepSC_without_MI.pth'
def embedding(input_size, output_size): # embedding layer, the former is the size of dic and
# the latter is the dimension of the embedding vector
return nn.Embedding(input_size, output_size)
def dense(input_size, output_size): # dense layer is a full connection layer and used to gather information
return torch.nn.Sequential(
nn.Linear(input_size, output_size),
nn.ReLU()
)
def AWGN_channel(x, snr): # used to simulate additive white gaussian noise channel
[batch_size, length, len_feature] = x.shape
x_power = torch.sum(torch.abs(x)) / (batch_size * length * len_feature)
n_power = x_power / (10 ** (snr / 10.0))
noise = torch.rand(batch_size, length, len_feature, device=device) *n_power
return x + noise
class SemanticCommunicationSystem(nn.Module): # pure DeepSC
def __init__(self):
super(SemanticCommunicationSystem, self).__init__()
self.embedding = embedding(35632, 128) # which means the corpus has 35632 kinds of words and
# each word will be coded with a 128 dimensions vector
self.frontEncoder = nn.TransformerEncoderLayer(d_model=128, nhead=8) # according to the paper
self.encoder = nn.TransformerEncoder(self.frontEncoder, num_layers=3)
self.denseEncoder1 = dense(128, 256)
self.denseEncoder2 = dense(256, 16)
self.denseDecoder1 = dense(16, 256)
self.denseDecoder2 = dense(256, 128)
self.frontDecoder = nn.TransformerDecoderLayer(d_model=128, nhead=8)
self.decoder = nn.TransformerDecoder(self.frontDecoder, num_layers=3)
self.prediction = nn.Linear(128, 35632)
self.softmax = nn.Softmax(dim=2) # dim=2 means that it calculates softmax in the feature dimension
def forward(self, inputs):
embeddingVector = self.embedding(inputs)
code = self.encoder(embeddingVector)
denseCode = self.denseEncoder1(code)
codeSent = self.denseEncoder2(denseCode)
codeWithNoise = AWGN_channel(codeSent, snr) # assuming snr = 12db
codeReceived = self.denseDecoder1(codeWithNoise)
codeReceived = self.denseDecoder2(codeReceived)
codeSemantic = self.decoder(codeReceived, code)
codeSemantic = self.prediction(codeSemantic)
info = self.softmax(codeSemantic)
return info
net = SemanticCommunicationSystem()
net.load_state_dict(torch.load(model_path, map_location = device))
net.to(device)
tokenizer = BertTokenizer.from_pretrained('bertModel')
bert_model = BertModel.from_pretrained('bertModel')
with open('data/corpus_10w.txt', 'r', encoding='utf-8') as file:
start = ""
end = ""
text = [start + line.strip() + end for line in file]
with open('data/id_dic_10w.pkl', 'rb') as file:
id_dic = pickle.load(file)
with open('data/word_dic_10w.pkl', 'rb') as file:
word_dic = pickle.load(file)
snr_BLEU_1_gram = []
snr_BLEU_2_gram = []
snr_BLEU_3_gram = []
snr_BLEU_4_gram = []
snr_sen_similarity_gram = []
for snr in range(1, 18, 3):
BLEU_1_list = []
BLEU_2_list = []
BLEU_3_list = []
BLEU_4_list = []
sen_similarity_list = []
inputs = np.zeros((256, 30)) # store every id of corresponding word inside the sentence into the matrix
num_list = []
for i in range(256):
sen = text[i] # get a sentence
sen_spilt = word_tokenize(sen) # get a list consist of words inside the sentence
inputs_one_sen = np.zeros((1, 30)) # create a matrix to store the word split above
num = 0
for word in sen_spilt:
inputs_one_sen[0, num] = id_dic[word] # store the corresponding id of word into the matrix
num += 1
if num >= 30:
break
inputs[i, :] = inputs_one_sen
num_list.append(num) # used to store evert length of sentence
inputs = torch.tensor(inputs).long()
inputs = inputs.to(device)
label = F.one_hot(inputs, num_classes = 35632).float() # convert to tensor
label = label.to(device)
s_predicted = net(inputs)
id_output_arr = torch.argmax(s_predicted, dim=2)
for i in range(256):
sen = text[i]
sen_spilt = word_tokenize(sen)
num = num_list[i]
id_output = id_output_arr[i, :] # get the id list of most possible word
origin_sen = inputs[i, :]
BLEU1 = calBLEU(1, id_output.cpu().detach().numpy(), origin_sen.cpu().detach().numpy(), num)
BLEU2 = calBLEU(2, id_output.cpu().detach().numpy(), origin_sen.cpu().detach().numpy(), num)
BLEU3 = calBLEU(3, id_output.cpu().detach().numpy(), origin_sen.cpu().detach().numpy(), num)
BLEU4 = calBLEU(4, id_output.cpu().detach().numpy(), origin_sen.cpu().detach().numpy(), num) # calculate BLEU
BLEU_1_list.append(BLEU1)
BLEU_2_list.append(BLEU2)
BLEU_3_list.append(BLEU3)
BLEU_4_list.append(BLEU4)
sen_output = ''
sen_input = ''
id_output_np = id_output.cpu().detach().numpy()
for index in range(num):
key = id_output_np[index] # get the id of the word which go through the model
sen_output += word_dic[key] # convert id to the word
sen_output += " "
sen_input += sen_spilt[index] # get the id of the original word
sen_input += " "
encoded_input = tokenizer(sen_input, return_tensors='pt') # encode sentence to fit bert model
bert_input = bert_model(**encoded_input).pooler_output # get semantic meaning of the sentence
encoded_input = tokenizer(sen_output, return_tensors='pt')
bert_output = bert_model(**encoded_input).pooler_output
sen_similarity = torch.sum(bert_input * bert_output) / (torch.sqrt(torch.sum(bert_input * bert_input))
* torch.sqrt(torch.sum(bert_output * bert_output)))
sen_similarity_list.append(sen_similarity.cpu().detach().numpy())
snr_BLEU_1_gram.append(np.mean(BLEU_1_list))
snr_BLEU_2_gram.append(np.mean(BLEU_2_list))
snr_BLEU_3_gram.append(np.mean(BLEU_3_list))
snr_BLEU_4_gram.append(np.mean(BLEU_4_list)) # get mean value after processing 128 sentences
snr_sen_similarity_gram.append(np.mean(sen_similarity_list))
print("SNR: {} has finished".format(snr))
x = np.arange(1, 18, 3)
y1 = snr_BLEU_1_gram
y2 = snr_BLEU_2_gram
y3 = snr_BLEU_3_gram
y4 = snr_BLEU_4_gram
y5 = snr_sen_similarity_gram
plt.figure(figsize=(6.4, 9.6))
plt.suptitle("deepSC without MI")
plt.subplot(2, 1, 1)
plt.xlabel("SNR")
plt.ylabel("BLEU")
plt.plot(x, y1, marker='D', label='1-gram')
plt.plot(x, y2, marker='D', label='2-gram')
plt.plot(x, y3, marker='D', label='3-gram')
plt.plot(x, y4, marker='D', label='4-gram')
plt.legend(loc='best')
plt.subplot(2, 1, 2)
plt.xlabel("SNR")
plt.ylabel("Sentence Similarity")
plt.plot(x, y5, marker='D')
plt.show()
print("All done!")