From 5c61842c49ba407d9b035afdb3d5777a01fe9545 Mon Sep 17 00:00:00 2001 From: darkliang <12132342@mail.sustech.edu.cn> Date: Tue, 28 Mar 2023 17:22:46 +0800 Subject: [PATCH] fix up cross entropy loss --- opengait/modeling/losses/ce.py | 32 ++++++++++++++++++++ opengait/modeling/losses/softmax.py | 46 ----------------------------- 2 files changed, 32 insertions(+), 46 deletions(-) create mode 100644 opengait/modeling/losses/ce.py delete mode 100644 opengait/modeling/losses/softmax.py diff --git a/opengait/modeling/losses/ce.py b/opengait/modeling/losses/ce.py new file mode 100644 index 0000000..8740fd0 --- /dev/null +++ b/opengait/modeling/losses/ce.py @@ -0,0 +1,32 @@ +import torch.nn.functional as F + +from .base import BaseLoss + + +class CrossEntropyLoss(BaseLoss): + def __init__(self, scale=2**4, label_smooth=True, eps=0.1, loss_term_weight=1.0, log_accuracy=False): + super(CrossEntropyLoss, self).__init__(loss_term_weight) + self.scale = scale + self.label_smooth = label_smooth + self.eps = eps + self.log_accuracy = log_accuracy + + def forward(self, logits, labels): + """ + logits: [n, c, p] + labels: [n] + """ + n, c, p = logits.size() + logits = logits.float() + labels = labels.unsqueeze(1) + if self.label_smooth: + loss = F.cross_entropy( + logits*self.scale, labels.repeat(1, p), label_smoothing=self.eps) + else: + loss = F.cross_entropy(logits*self.scale, labels.repeat(1, p)) + self.info.update({'loss': loss.detach().clone()}) + if self.log_accuracy: + pred = logits.argmax(dim=1) # [n, p] + accu = (pred == labels).float().mean() + self.info.update({'accuracy': accu}) + return loss, self.info diff --git a/opengait/modeling/losses/softmax.py b/opengait/modeling/losses/softmax.py deleted file mode 100644 index 1d9502a..0000000 --- a/opengait/modeling/losses/softmax.py +++ /dev/null @@ -1,46 +0,0 @@ -import torch -import torch.nn.functional as F - -from .base import BaseLoss - - -class CrossEntropyLoss(BaseLoss): - def __init__(self, scale=2**4, label_smooth=True, eps=0.1, loss_term_weight=1.0, log_accuracy=False): - super(CrossEntropyLoss, self).__init__(loss_term_weight) - self.scale = scale - self.label_smooth = label_smooth - self.eps = eps - self.log_accuracy = log_accuracy - - def forward(self, logits, labels): - """ - logits: [n, c, p] - labels: [n] - """ - n, c, p = logits.size() - log_preds = F.log_softmax(logits * self.scale, dim=1) # [n, c, p] - one_hot_labels = self.label2one_hot( - labels, c).unsqueeze(2).repeat(1, 1, p) # [n, c, p] - loss = self.compute_loss(log_preds, one_hot_labels) - self.info.update({'loss': loss.detach().clone()}) - if self.log_accuracy: - pred = logits.argmax(dim=1) # [n, p] - accu = (pred == labels.unsqueeze(1)).float().mean() - self.info.update({'accuracy': accu}) - return loss, self.info - - def compute_loss(self, predis, labels): - softmax_loss = -(labels * predis).sum(1) # [n, p] - losses = softmax_loss.mean(0) # [p] - - if self.label_smooth: - smooth_loss = - predis.mean(dim=1) # [n, p] - smooth_loss = smooth_loss.mean(0) # [p] - losses = smooth_loss * self.eps + losses * (1. - self.eps) - return losses - - def label2one_hot(self, label, class_num): - label = label.unsqueeze(-1) - batch_size = label.size(0) - device = label.device - return torch.zeros(batch_size, class_num).to(device).scatter(1, label, 1)