Skip to content

Latest commit

 

History

History
235 lines (182 loc) · 7.87 KB

whl_en.md

File metadata and controls

235 lines (182 loc) · 7.87 KB

PaddleClas wheel package

1. Installation

  • installing from pypi
pip3 install paddleclas==2.2.1
  • build own whl package and install
python3 setup.py bdist_wheel
pip3 install dist/*

2. Quick Start

  • Using the ResNet50 model provided by PaddleClas, the following image('docs/images/whl/demo.jpg') as an example.
  • Python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs='docs/images/whl/demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))

Note: PaddleClas.predict() is a generator. Therefore you need to use next() or for call it iteratively. It will perform a prediction by batch_size and return the prediction result(s) when called. Examples of returned results are as follows:

>>> result
[{'class_ids': [8, 7, 136, 80, 84], 'scores': [0.79368, 0.16329, 0.01853, 0.00959, 0.00239], 'label_names': ['hen', 'cock', 'European gallinule, Porphyrio porphyrio', 'black grouse', 'peacock']}]
  • CLI
paddleclas --model_name=ResNet50  --infer_imgs="docs/images/whl/demo.jpg"
>>> result
filename: docs/images/whl/demo.jpg, top-5, class_ids: [8, 7, 136, 80, 84], scores: [0.79368, 0.16329, 0.01853, 0.00959, 0.00239], label_names: ['hen', 'cock', 'European gallinule, Porphyrio porphyrio', 'black grouse', 'peacock']
Predict complete!

3. Definition of Parameters

The following parameters can be specified in Command Line or used as parameters of the constructor when instantiating the PaddleClas object in Python.

  • model_name(str): If using inference model based on ImageNet1k provided by Paddle, please specify the model's name by the parameter.
  • inference_model_dir(str): Local model files directory, which is valid when model_name is not specified. The directory should contain inference.pdmodel and inference.pdiparams.
  • infer_imgs(str): The path of image to be predicted, or the directory containing the image files, or the URL of the image from Internet.
  • use_gpu(bool): Whether to use GPU or not, default by True.
  • gpu_mem(int): GPU memory usages,default by 8000
  • use_tensorrt(bool): Whether to open TensorRT or not. Using it can greatly promote predict preformance, default by False.
  • enable_mkldnn(bool): Whether enable MKLDNN or not, default False.
  • cpu_num_threads(int): Assign number of cpu threads, valid when --use_gpu is False and --enable_mkldnn is True, default by 10.
  • batch_size(int): Batch size, default by 1.
  • resize_short(int): Resize the minima between height and width into resize_short, default by 256.
  • crop_size(int): Center crop image to crop_size, default by 224.
  • topk(int): Print (return) the topk prediction results, default by 5.
  • class_id_map_file(str): The mapping file between class ID and label, default by ImageNet1K dataset's mapping.
  • pre_label_image(bool): whether prelabel or not, default=False.
  • save_dir(str): The directory to save the prediction results that can be used as pre-label, default by None, that is, not to save.

Note: If you want to use Transformer series models, such as DeiT_***_384, ViT_***_384, etc., please pay attention to the input size of model, and need to set resize_short=384, resize=384. The following is a demo.

  • CLI:
from paddleclas import PaddleClas, get_default_confg
paddleclas --model_name=ViT_base_patch16_384 --infer_imgs='docs/images/whl/demo.jpg' --resize_short=384 --crop_size=384
  • Python:
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ViT_base_patch16_384', resize_short=384, crop_size=384)

4. Usage

PaddleClas provides two ways to use:

  1. Python interative programming;
  2. Bash command line programming.

4.1 View help information

  • CLI
paddleclas -h

4.2 Prediction using inference model provide by PaddleClas

You can use the inference model provided by PaddleClas to predict, and only need to specify model_name. In this case, PaddleClas will automatically download files of specified model and save them in the directory ~/.paddleclas/.

  • Python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs = 'docs/images/whl/demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
  • CLI
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/whl/demo.jpg'

4.3 Prediction using local model files

You can use the local model files trained by yourself to predict, and only need to specify inference_model_dir. Note that the directory must contain inference.pdmodel and inference.pdiparams.

  • Python
from paddleclas import PaddleClas
clas = PaddleClas(inference_model_dir='./inference/')
infer_imgs = 'docs/images/whl/demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
  • CLI
paddleclas --inference_model_dir='./inference/' --infer_imgs='docs/images/whl/demo.jpg'

4.4 Prediction by batch

You can predict by batch, only need to specify batch_size when infer_imgs is direcotry contain image files.

  • Python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', batch_size=2)
infer_imgs = 'docs/images/'
result=clas.predict(infer_imgs)
for r in result:
    print(r)
  • CLI
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/' --batch_size 2

4.5 Prediction of Internet image

You can predict the Internet image, only need to specify URL of Internet image by infer_imgs. In this case, the image file will be downloaded and saved in the directory ~/.paddleclas/images/.

  • Python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs = 'https://raw.githubusercontent.com/paddlepaddle/paddleclas/release/2.2/docs/images/whl/demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
  • CLI
paddleclas --model_name='ResNet50' --infer_imgs='https://raw.githubusercontent.com/paddlepaddle/paddleclas/release/2.2/docs/images/whl/demo.jpg'

4.6 Prediction of NumPy.array format image

In Python code, you can predict the NumPy.array format image, only need to use the infer_imgs to transfer variable of image data. Note that the image data must be 3 channels.

  • python
import cv2
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs = cv2.imread("docs/images/whl/demo.jpg")
result=clas.predict(infer_imgs)
print(next(result))

4.7 Save the prediction result(s)

You can save the prediction result(s) as pre-label, only need to use pre_label_out_dir to specify the directory to save.

  • python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/')
infer_imgs = 'docs/images/whl/' # it can be infer_imgs folder path which contains all of images you want to predict.
result=clas.predict(infer_imgs)
print(next(result))
  • CLI
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/whl/' --save_dir='./output_pre_label/'

4.8 Specify the mapping between class id and label name

You can specify the mapping between class id and label name, only need to use class_id_map_file to specify the mapping file. PaddleClas uses ImageNet1K's mapping by default.

The content format of mapping file shall be:

class_id<space>class_name<\n>

For example:

0 tench, Tinca tinca
1 goldfish, Carassius auratus
2 great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias
......
  • Python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', class_id_map_file='./ppcls/utils/imagenet1k_label_list.txt')
infer_imgs = 'docs/images/whl/demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
  • CLI
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/whl/demo.jpg' --class_id_map_file='./ppcls/utils/imagenet1k_label_list.txt'