-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplate-detection.py
77 lines (66 loc) · 2.74 KB
/
plate-detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Created by od3ng on 08/04/2019 11:36:25 AM.
# Project: plate-recognition-pi
# File: plate-detection.py
# Email: [email protected]
# Telegram: @nopriant0
import cv2
import Utils
import sys
import os
# Folder untuk menyimpan dataset
path_slice = "dataset/sliced"
path_source = "dataset/source"
# Template untuk proyeksi vertikal
pv_template = Utils.proyeksi_vertical(cv2.imread("dataset/templates/plate/template.jpg", cv2.IMREAD_ANYCOLOR))
for file_name in sorted(os.listdir(path_source)):
image = cv2.imread(os.path.join(path_source, file_name))
src = image.copy()
blurred = image.copy()
print(image.shape)
# Filtering gaussian blur
for i in range(10):
blurred = cv2.GaussianBlur(image, (5, 5), 0.5)
# Conversi image BGR2GRAY
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Image binerisasi menggunakan adaptive thresholding
bw = cv2.adaptiveThreshold(rgb, 255.0, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 5, 10)
# Operasi dilasi
bw = cv2.dilate(bw, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1)))
cv2.imwrite("bw.jpg", bw)
cv2.namedWindow('bw', cv2.WINDOW_GUI_EXPANDED)
cv2.imshow('bw', bw)
cv2.waitKey()
# Ekstraksi kontur
contours, hierarchy = cv2.findContours(bw, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
print(len(contours))
slices = []
img_slices = image.copy()
idx = 0
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
area = cv2.contourArea(cnt)
ras = format(w / h, '.2f')
# Pilih kontur dengan ukuran dan rasio tertentu
if 30 <= h and (100 <= w <= 400) and (2.7 <= float(ras) <= 4):
idx = idx + 1
print("x={}, y={}, w={}, h={}, area={}, rasio={}".format(x, y, w, h, area, ras))
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), thickness=1)
cv2.putText(image, "{}x{}".format(w, h), (x, int(y + (h / 2))), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255))
cv2.putText(image, "{}".format(ras), (x + int(w / 2), y + h + 13), cv2.FONT_HERSHEY_PLAIN, 1,
(0, 0, 255))
crop = img_slices[y:y - 3 + h + 6, x:x - 3 + w + 6]
slices.append(crop)
cv2.imwrite("image.jpg", image)
result = None
max_value = sys.float_info.max
for sl in slices:
# cv2.imshow("slice ke {}".format(slices.index(sl) + 1), sl)
# cv2.waitKey()
pv_numpy = Utils.proyeksi_vertical(sl.copy())
rs_sum = cv2.sumElems(cv2.absdiff(pv_template, pv_numpy))
# print("sum: {} slice ke {}".format(rs_sum[0], slices.index(sl) + 1))
if rs_sum[0] <= max_value:
max_value = rs_sum[0]
result = sl
cv2.waitKey()
cv2.imwrite(os.path.join(path_slice, file_name), result)