forked from thiagortk/Stereo-Vision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilteredDisparityMap.cpp
322 lines (267 loc) · 12.4 KB
/
filteredDisparityMap.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#include "opencv2/core/core.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/ximgproc/disparity_filter.hpp"
#include <stdio.h>
#include <iostream>
#include <string.h>
//to compile: g++ filteredDisparityMap.cpp -lopencv_core -lopencv_videoio -lopencv_highgui -lopencv_imgcodecs -lopencv_imgproc -lopencv_calib3d -lopencv_features2d -lopencv_ximgproc -o veRun
using namespace cv;
using namespace std;
using namespace cv::ximgproc;
Rect computeROI(Size2i src_sz, Ptr<StereoMatcher> matcher_instance){
int min_disparity = matcher_instance->getMinDisparity();
int num_disparities = matcher_instance->getNumDisparities();
int block_size = matcher_instance->getBlockSize();
int bs2 = block_size/2;
int minD = min_disparity, maxD = min_disparity + num_disparities - 1;
int xmin = maxD + bs2;
int xmax = src_sz.width + minD - bs2;
int ymin = bs2;
int ymax = src_sz.height - bs2;
Rect r(xmin, ymin, xmax - xmin, ymax - ymin);
return r;
}
int main(int, char**){
bool no_display;
bool no_downscale;
int max_disp, wsize; //Stereo correspondence parameters
double lambda, sigma; //Post-filter parameters
double vis_mult; //Coefficient used for Disparity Map (DM) visualization scale
Mat imgDisparity8U;
double minVal, maxVal;
String filter;
String algo; //Which OpenCV algorithm was used, BM or SGBM
String dst_path; //Optional path to save filtered DM result
String dst_raw_path; //Optional to save DM without filter
String dst_conf_path; //Optional path to save the trust map used for filtering
char key = 0;
Ptr<DisparityWLSFilter> wls_filter;
double matching_time, filtering_time;
Mat m_imageRight, m_imageLeft, img1, img2;
Mat imgU1, imgU2, grayDisp1, grayDisp2;
Mat GT_disp, left_for_matcher, right_for_matcher;
Mat left_disp, right_disp, filtered_disp, conf_map;
Mat filtered_disp_vis, raw_disp_vis;
Mat imgCalorHSV, imgAdd, imgCalorHOT, imgCalorBONE;
/*Caution: the images path is absolute (hardcoded). You can change to user argv, or change these two lines below to your desired path.
The path here is defined for KITTI dataset images (http://www.cvlibs.net/datasets/kitti/raw_data.php).*/
VideoCapture videoOne("/City/City/2011_09_29_2/image_00/data/%10d.png"); //Absolute path to the KITTI left grey frames
VideoCapture videoTwo("/City/City/2011_09_29_2/image_01/data/%10d.png"); //Absolute path to the KITTI right grey frames
int width, height;
width = videoOne.get(3);
height = videoOne.get(4);
cout << "width: " << width << endl;
cout << "height: " << height << endl;
VideoWriter videoOutAllTwo, videoOutAllFour, videoOutAllFive, videoOutAllSix;
videoOutAllTwo = cv::VideoWriter("originalEsq.avi",CV_FOURCC('M','J','P','G'), 30, Size(width,height),true); //To save the original left images as video
videoOutAllFive = cv::VideoWriter("MDBONE.avi",CV_FOURCC('M','J','P','G'), 30, Size(width,height),true); //To save the DM results as BONE colormap video.
videoOutAllSix = cv::VideoWriter("MDHOT.avi",CV_FOURCC('M','J','P','G'), 30, Size(width,height),true); //To save the DM results as HOT colormap video.
while(1){
videoOne >> m_imageLeft;
videoTwo >> m_imageRight;
//Histogram equalization to deal with illumination problems
/*cv::cvtColor(m_imageLeft, m_imageLeft, CV_BGR2Lab);
std::vector<cv::Mat> channels;
cv::split(m_imageLeft, channels);
cv::equalizeHist(channels[0], channels[0]);
cv::merge(channels, m_imageLeft);
cv::cvtColor(m_imageLeft, m_imageLeft, CV_Lab2BGR);
cv::cvtColor(m_imageRight, m_imageRight, CV_BGR2Lab);
std::vector<cv::Mat> channelsTwo;
cv::split(m_imageRight, channelsTwo);
cv::equalizeHist(channels[0], channelsTwo[0]);
cv::merge(channelsTwo, m_imageRight);
cv::cvtColor(m_imageRight, m_imageRight, CV_Lab2BGR);*/
//Histogram equalization ends here
if(!m_imageLeft.data || !m_imageRight.data)
{
printf( " No image data \n " );
return -1;
}
imgDisparity8U = Mat(m_imageRight.rows, m_imageRight.cols, CV_8UC1);
filter = "wls_conf"; //Post-filter
algo = "sgbm"; //Defines which OpenCV algorithm was used, BM or SGBM
dst_path = "None";
dst_raw_path = "None";
dst_conf_path = "None";
max_disp = 160; //160
lambda = 8000.0;
sigma = 3.5;
vis_mult = 3.0;
wsize = 3; // 3 if SGBM
//wsize = 15; // if BM, 7 or 15
conf_map = Mat(m_imageLeft.rows,m_imageLeft.cols,CV_8U);
conf_map = Scalar(255);
Rect ROI;
//Results better than "wls_no_conf"
if(filter=="wls_conf"){
if(!no_downscale){ //This is done to leave faster, but for a better result, avoid using.
max_disp/=2;
if(max_disp%16!=0){
max_disp += 16-(max_disp%16);
}
resize(m_imageLeft, left_for_matcher, Size(), 0.5, 0.5);
resize(m_imageRight, right_for_matcher, Size(), 0.5, 0.5);
}else{
left_for_matcher = m_imageLeft.clone();
right_for_matcher = m_imageRight.clone();
}
/* The filter instance is created by providing the instance of the StereoMatcher
* Another instance is returned by createRightMatcher. These two instances are
* used to calculate the DM's for the right and left images, this is necessary
* for filtering afterwards.
*/
if(algo=="bm"){
Ptr<StereoBM> left_matcher = StereoBM::create(max_disp,wsize);
wls_filter = createDisparityWLSFilter(left_matcher);
Ptr<StereoMatcher> right_matcher = createRightMatcher(left_matcher);
cvtColor(left_for_matcher, left_for_matcher, COLOR_BGR2GRAY);
cvtColor(right_for_matcher, right_for_matcher, COLOR_BGR2GRAY);
matching_time = (double)getTickCount();
left_matcher->compute(left_for_matcher, right_for_matcher, left_disp);
right_matcher->compute(right_for_matcher, left_for_matcher, right_disp);
matching_time = ((double)getTickCount() - matching_time)/getTickFrequency();
}else if(algo=="sgbm"){
Ptr<StereoSGBM> left_matcher = StereoSGBM::create(0,max_disp,wsize);
left_matcher->setP1(24*wsize*wsize);
left_matcher->setP2(96*wsize*wsize);
left_matcher->setPreFilterCap(63);
left_matcher->setMode(StereoSGBM::MODE_SGBM_3WAY);
wls_filter = createDisparityWLSFilter(left_matcher);
Ptr<StereoMatcher> right_matcher = createRightMatcher(left_matcher);
matching_time = (double)getTickCount();
left_matcher->compute(left_for_matcher, right_for_matcher, left_disp);
right_matcher->compute(right_for_matcher,left_for_matcher, right_disp);
matching_time = ((double)getTickCount() - matching_time)/getTickFrequency();
}
/* Filter
* MD calculated by the respective match instances, just as the
* left image is passed to the filter.
* Note that we are using the original image to guide the filtering
* process.
*/
wls_filter->setLambda(lambda);
wls_filter->setSigmaColor(sigma);
filtering_time = (double)getTickCount();
wls_filter->filter(left_disp, m_imageLeft, filtered_disp, right_disp);
filtering_time = ((double)getTickCount() - filtering_time)/getTickFrequency();
conf_map = wls_filter->getConfidenceMap();
//Get the ROI that was used in the last filter call:
ROI = wls_filter->getROI();
if(!no_downscale)
{
//Upscale raw disparity and ROI back for a proper comparison:
resize(left_disp,left_disp,Size(),2.0,2.0);
left_disp = left_disp*2.0;
ROI = Rect(ROI.x*2,ROI.y*2,ROI.width*2,ROI.height*2);
}
}
else if(filter=="wls_no_conf"){
/* There is no convenience function for the case of filtering with no confidence, so we
will need to set the ROI and matcher parameters manually */
left_for_matcher = m_imageLeft.clone();
right_for_matcher = m_imageRight.clone();
if(algo=="bm"){
Ptr<StereoBM> matcher = StereoBM::create(max_disp,wsize);
matcher->setTextureThreshold(0);
matcher->setUniquenessRatio(0);
cvtColor(left_for_matcher, left_for_matcher, COLOR_BGR2GRAY);
cvtColor(right_for_matcher, right_for_matcher, COLOR_BGR2GRAY);
ROI = computeROI(left_for_matcher.size(),matcher);
wls_filter = createDisparityWLSFilterGeneric(false);
wls_filter->setDepthDiscontinuityRadius((int)ceil(0.33*wsize));
matching_time = (double)getTickCount();
matcher->compute(left_for_matcher,right_for_matcher,left_disp);
matching_time = ((double)getTickCount() - matching_time)/getTickFrequency();
}
else if(algo=="sgbm")
{
Ptr<StereoSGBM> matcher = StereoSGBM::create(0,max_disp,wsize);
matcher->setUniquenessRatio(0);
matcher->setDisp12MaxDiff(1000000);
matcher->setSpeckleWindowSize(0);
matcher->setP1(24*wsize*wsize);
matcher->setP2(96*wsize*wsize);
matcher->setMode(StereoSGBM::MODE_SGBM_3WAY);
ROI = computeROI(left_for_matcher.size(),matcher);
wls_filter = createDisparityWLSFilterGeneric(false);
wls_filter->setDepthDiscontinuityRadius((int)ceil(0.5*wsize));
matching_time = (double)getTickCount();
matcher->compute(left_for_matcher,right_for_matcher,left_disp);
matching_time = ((double)getTickCount() - matching_time)/getTickFrequency();
}
wls_filter->setLambda(lambda);
wls_filter->setSigmaColor(sigma);
filtering_time = (double)getTickCount();
wls_filter->filter(left_disp,m_imageLeft,filtered_disp,Mat(),ROI);
filtering_time = ((double)getTickCount() - filtering_time)/getTickFrequency();
}
//collect and print all the stats:
//cout.precision(2);
//cout<<"Matching time: "<<matching_time<<"s"<<endl;
//cout<<"Filtering time: "<<filtering_time<<"s"<<endl;
//cout<<endl;
if(dst_path!="None"){
//Mat filtered_disp_vis;
getDisparityVis(filtered_disp,filtered_disp_vis,vis_mult);
imwrite(dst_path,filtered_disp_vis);
}
if(dst_raw_path!="None"){
//Mat raw_disp_vis;
getDisparityVis(left_disp,raw_disp_vis,vis_mult);
imwrite(dst_raw_path,raw_disp_vis);
}
if(dst_conf_path!="None"){
imwrite(dst_conf_path,conf_map);
}
if(!no_display)
{
/*//Displays the original images
namedWindow("left", WINDOW_AUTOSIZE);
imshow("left", imgLeft);
namedWindow("right", WINDOW_AUTOSIZE);
imshow("right", imgRight);*/
/*if(!noGT)
{
Mat GT_disp_vis;
getDisparityVis(GT_disp,GT_disp_vis,vis_mult);
namedWindow("ground-truth disparity", WINDOW_AUTOSIZE);
imshow("ground-truth disparity", GT_disp_vis);
}*/
/*//Displays DM without filter
Mat raw_disp_vis;
getDisparityVis(left_disp,raw_disp_vis,vis_mult);
namedWindow("raw disparity", WINDOW_AUTOSIZE);
imshow("raw disparity", raw_disp_vis);*/
//Displays filtered DM
getDisparityVis(filtered_disp,filtered_disp_vis,vis_mult);
namedWindow("filtered disparity", WINDOW_AUTOSIZE);
imshow("filtered disparity", filtered_disp_vis);
/* Color Maps:
* OpenCV method to change a grayscale image to a color model.
* The human vision may have difficulty perceiving small
* differences in shades of gray, but better perceives the
* changes between colors.
*
* More Info: http://docs.opencv.org/3.1.0/d3/d50/group__imgproc__colormap.html#gsc.tab=0
*/
//Applying color maps (different DM visualization)
applyColorMap(filtered_disp_vis, imgCalorBONE, COLORMAP_BONE);
applyColorMap(filtered_disp_vis, imgCalorHOT, COLORMAP_HOT);
//imshow("Left image", m_imageLeft);
//imshow("Right image", m_imageRight);
videoOutAllTwo.write(m_imageLeft);
videoOutAllFive.write(imgCalorBONE);
videoOutAllSix.write(imgCalorHOT);
key = (char) waitKey(5);
if(key==27){
break;
}
}
}
return 0;
}